






(Murphy et al., 1983; Goll et al., 1984; Striessnig et al., 1986).
Therefore, BZTs and DHPs most likely target Ca21 channels
at distinct, but possibly overlapping, binding sites. By com-
parison with our previous structure of CaVAb in complex
with the DHP amlodipine, the diltiazem-binding site is indeed
physically separate from the DHP-binding site, which is
located at an intersubunit crevice on the lipid-facing surface
of the pore module. To investigate the structural basis for
the allosteric interactions between these sites, we deter-
mined the crystal structure of CaVAb with both diltiazem
and amlodipine bound. Consistent with the structural results
obtained with the two antagonists individually, diltiazem
and amlodipine are engaged with their respective binding
sites on two sides of the S6 segments that form the wall of
the CaVAb pore module (Fig. 4, A and B). Bound diltiazem
is located inside the pore, whereas amlodipine is more than
11 Å away, docking at the outer lipid-facing surface of
the pore, which is separated from the diltiazem site by
the S6 segments.
The structure of the diltiazem-CaVAb in complex with

amlodipine reveals changes in the binding pose of diltia-
zem (Fig. 4, C and D). The distinct binding poses of diltiazem

in the absence and presence of amlodipine are illustrated at
higher resolution with the associated electron density maps
in Supplemental Fig. 1. Similar to its binding mode without
the DHPs, the central 1,5-benzothiazepine scaffold of diltia-
zem lies parallel to the lipid bilayer underneath the selectivity
filter. However, compared with the CaVAb complex with
diltiazem alone, the 1,5-benzothiazepine scaffold is flipped by
� 180° and the methoxylbenezene moiety is inserted deeper
into the fenestration (Fig. 4, C andD; Supplemental Fig. 1). As
a result, the positively charged tertiary amino group extends
toward the intracellular end of the narrow passage through
the selectivity filter and approaches the backbone carbonyl
group of Thr175. This backbone carbonyl contributes to the
inner Ca21 coordination site (Site 3) in the selectivity filter,
which has the lowest affinity of the three Ca21-binding sites
and is unoccupied by Ca21 in the presence of diltiazem in our
crystals.
Comparison between the diltiazem-CaVAb-amlodipine and

CaVAb-amlodipine structures shows that the C-terminal regions
of two CaVAb subunits become partially ordered when
diltiazem is present, suggesting a global conformational
change (Fig. 5). We speculate that the structure of diltiazem

Fig. 3. Comparison of CavAb block by diltiazem and verapamil. (A) Side view of CaVAb with diltiazem (sticks in green) bound underneath the selectivity
filter. Ca21 is shown as green spheres. The three calcium-binding sites are indicated by the numbers 1, 2, and 3. Portions of the channel are omitted for
clarity. (B) Side view of CaVAbwith Br-verapamil (sticks in pink) bound reveals overlap between the binding sites of the PAA drug and diltiazem. (C) Side
view of CavAb as in (A andB), with superposition of bound diltiazem (green sticks) and verapamil (pink sticks). (D) Orthogonal view of the central cavity of
CavAb, showing the overlapping PAA/BZT-binding sites as if one were standing at the bottom of the central cavity and looking upward at the selectivity
filter.
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bound with amlodipine represents a higher affinity binding
pose with the tertiary amino group inserted into the inner
end of the ion selectivity filter to engage Ca21-binding Site 3
formed by the backbone carbonyls of Thr175 (Figs. 4 and 5).
This change in binding pose is induced by conformational
changes caused by amlodipine binding, which may be similar
to the structural changes in the inactivated state to which
both amlodipine and diltiazem bind preferentially. The pose
of diltiazem bound alone might represent an intermediate
state of diltiazem binding, in which the drug has not yet
taken its final high-affinity position to plug the selectivity
filter. Thus, our structures reveal plasticity of diltiazem
binding induced by allosteric interactions with DHP bind-
ing and potentially by the conformational transition to the
inactivated state.
Diltiazem and DHPs Alter Ca21 Binding. Besides

physically blocking the ion-conduction pathway, diltiazem
also alters the interactions between Ca21 and the selectivity
filter of CaVAb (Fig. 6). In the diltiazem-CaVAb structure, we
observed electron densities at both Sites 1 and 2, which most
likely represent bound Ca21 (Tang et al., 2014). Strikingly,
unlike Ca21 bound to the unblocked channel, these bound
ions are off the central axis of the pore when diltiazem is
bound (Fig. 6, A and C; see also the electron density map in
Supplemental Fig. 1). Ca21 in Site 1 interacts directly with
the carboxyl group of one of four D178 residues, suggesting
that it is in a partially dehydrated state. This blocker-
induced direct interaction between the Ca21 at Site 1 and
the selectivity filter is very similar to the proposedmechanism
by which DHPs allosterically block CaVAb (Tang et al., 2014).
These changes in Ca21 binding provide a plausible expla-
nation for potentiation of diltiazem binding by Ca21

(Dilmac et al., 2003) and for the allosteric interactions
between amlodipine and diltiazem. Consistent with the
notion that the diltiazem-CaVAb-amlodipine structure
has captured diltiazem transitioning into its high-affinity
bound form, Ca21 bound at Site 1 interacts with a D178
carboxyl side chain that has rotated around one torsion
angle to form a hydrogen-bonding network with neighbor-
ing side chains (Fig. 6B). This side chain rotation resembles
the dunking motion of E177 side chains of NaVAb as they
interact with entering Na1 ions (Chakrabarti et al., 2013);
therefore, it is likely to represent a normal conformational
transition of the pore.

Discussion
Diltiazem Binds in the Central Cavity and Physically

Blocks Ca21 Permeation. Our structural analysis of diltia-
zem block of CaVAb has mapped its binding site on the Ca21

channel in three dimensions in detail. The BZT receptor
site is located in the central cavity of the pore, just on the
intracellular side of the ion selectivity filter. In this position,
diltiazem would prevent conductance of Ca21 by physically
blocking it. This binding position is consistent with electro-
physiological results, which show that diltiazem completely
blocks Ca21 current.
Diltiazem Binding Overlaps the PAA Receptor

Site. Radioligand-binding studies have suggested a complex
allosteric/competitive binding interaction between BZTs and
PAAs. Binding of PAAs was inhibited by diltiazem but substan-
tial PAA binding remained at apparently saturating con-
centrations of PAAs, consistent with an indirect negative
allosteric interaction (Goll et al., 1984). On the other hand,

Fig. 4. Structural basis for allosteric interactions between
diltiazem and dihydropyridines bound to CavAb. (A) Surface
representation of CaVAb in complex with diltiazem and
amlodipine. (B) Zoom-in view of diltiazem binding at the
intracellular side of the selectivity filter. Diltiazem is shown
in stick format, along with an Fo-Fc omit map contoured at
3s. Nearby side chains are highlighted and shown in stick
format. (C) Comparison of diltiazem binding to CaVAb alone
(green) or in the presence of amlodipine (yellow). Dashed
arrows indicate the differences between diltiazem positions.
(D) Orthogonal view of (C) with calcium bound to the
selectivity filter shown in green spheres.
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extensive molecular mapping studies using photoaffinity
labeling and site-directed mutagenesis revealed overlap-
ping amino acid residues in the BZT and PAA receptor sites
(Kraus et al., 1996; Dilmac et al., 2003). Our results are
consistent with both aspects of this previous work. On one
hand, we show that the diltiazem-binding site clearly overlaps
with the PAA-binding site. On the other hand, our results reveal
complexities of diltiazem binding that may lead to allosteric/
competitive interactions. We find that diltiazem has two binding
poses that can be allosterically modulated by amlodipine
binding and potentially by voltage-dependent inactivation.
The lower affinity binding pose of diltiazem may leave room
for PAA binding in their overlapping sites, thereby inducing a
mixed allosteric/competitivemode of inhibition in ligand-binding
studies.
Diltiazem Interacts Allosterically with Amlodipine.

We previously found that binding of amlodipine induces a
global conformational change in CaVAb, which alters its quater-
nary structure (Tang et al., 2016). Our present studies reveal the
structural basis for allosteric interaction between diltiazem
and dihydropyridines, consistent with the allosteric bind-
ing interactions observed in classic ligand-binding studies of

CaV channels (Murphy et al., 1983; Striessnig et al., 1986).
Amlodipine binding also modifies the coordination of Ca21,
bringing one Ca21 ion close to the carboxylate side chain of the
D178 residue in the CaVAb subunit that binds amlodipine
(Tang et al., 2016). In this study, we also found that drug
binding alters the coordination of Ca21; that is, diltiazem
binding to its site in the central cavity induces an allosteric
change inCa21 coordination. As for amlodipine, it is likely that
this change in Ca21 coordination greatly reduces or blocks ion
conductance through the pore.
Diltiazem Binding May Be a Two-Step Process. Our

structures reveal diltiazem in two binding poses. In the
absence of other drugs, diltiazem binds loosely to the upper
walls of the central cavity, in what appears to be a low-
affinity binding mode, but it does not penetrate the ion
selectivity filter. In the presence of amlodipine, diltiazem
binding appears tighter, and its tertiary amino group extends
upward into the inner end of the selectivity filter and
interacts with Site 3 formed by the backbone carbonyls of
T175. We speculate that this binding pose may be favored
by voltage-dependent inactivation, which is also favored
by amlodipine binding. Detailed studies of the kinetics
of diltiazem binding have also suggested the possibility
of two distinct binding poses and partial stepwise bind-
ing interactions (Prinz and Striessnig, 1993). Thus, in the
absence of other drugs, diltiazem may enter the pore, form
a loose channel-blocking complex, and then rearrange to
a tighter-binding, more stably blocked complex with bound
diltiazem projecting into the selectivity filter from the
central cavity upon voltage-dependent inactivation. Con-
formational changes in the ion selectivity filter that we
observed upon inactivation of NaVAb may be responsible
for this change in binding of diltiazem.
Diltiazem Binding Modulates Ca21 Binding in the

Selectivity Filter. Allosteric interactions of bound diltiazem
induce high-affinity binding of Ca21 in the pore, as judged
by close the interaction of bound Ca21 with one D178 side
chain. This allosteric change in Ca21 binding may contrib-
ute to pore block and to the energetics of allosteric interactions
between the two drug-binding sites. Thus, our structures
unveil, at the atomic level, the mechanism of pore block and
allosteric interactions of this important class of Ca21-channel
blockers and provide guidance and strategy for develop-
ing next-generation BZTs with improved potency and
specificity.
Comparison with Ca21 Antagonist Receptor Sites on

Mammalian CaV Channels. As we prepared this paper
for submission, a cryoelectron microscopy study of skeletal
muscle CaV1.1 channels revealed the structures of the re-
ceptor sites for PAAs, DHPs, and BZTs at high resolution in
that channel type (Zhao et al., 2019). Although the CaV1.1
channels are not themselves a pharmacological target for
Ca21 antagonists, they are modulated by these drugs in
a similar manner as the cardiac/vascular smooth muscle
CaV1.2 channels that are the in vivo drug targets; however,
CaV1.1 channels typically have lower affinity for Ca21 antag-
onist drug binding. As we show here, diltiazem bound to a site
in the central cavity of CaV1.1, just on the intracellular side
of the ion selectivity filter overlapping the PAA-binding site.
The binding pose of diltiazem in CaV1.1 is most similar to the
pose we observe in the presence of amlodipine, which is poten-
tially a higher affinity binding configuration stimulated by

Fig. 5. Structural basis for inhibition of CaVAb by amlodipine and
diltiazem in combination. (A) Surface representation of diltiazem and
amlodipine bound to CaVAb reveals that these drugs bind to different sides
of S6. (B) Overall structure of diltiazem-CavAb-amlodipine shown as
ribbons.
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transition to an inactivated state. Overall, there is remarkable
agreement between the BZT binding to bacterial and mam-
malian CaV channels, suggesting that the details of allosteric
modulation of amlodipine and Ca21 binding that we have
observed here in CaVAb may also be relevant for mammalian
CaV channels.
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