


residue on a4 is a stronger driver of differences in protein
flexibility.
To determine the effects ofmutations in salt bridge–forming

residues on protein dynamics, both an in silico approach (all-
atom MD simulations) and an experimental approach
(hydrogen-deuterium exchange) were employed. In simula-
tions, the increase in positive correlation between residues
in the a4 and a5 helices in the RGS19 L118D mutant likely
results from the introduced interhelical salt bridge. The
decrease in DI in the a4 helix of RGS19 in the HDX studies is
consistent with reduced solvent exposure. This is of partic-
ular interest given that the Cys123 target of the thiadiazo-
lidinone compounds is located in that helix. Conversely,

mutations that eliminated salt bridges in RGS4 and RGS8
increased DI in some fragments from their a4 helices (Fig. 5,
A and B), suggesting that this results in increased solvent
exposure and greater compound accessibility at the buried
cysteine. Surprisingly, the RGS4 D90L mutant did not have
increased DI in the fragment spanning the mutation site
(Fig. 5C). In addition, the microsecond timescale MD
simulations captured positive residue-residue (Ca-Ca) cor-
relations between the a4 and a5 helices that were similar in
WT and mutated RGS4 D90L. This fits with the thermal
stability data and suggests that the effect of the D90L
mutation in RGS4 is more complex than simple disruption
of an ionic contact.

Fig. 5. Difference in percentage of deuterium incorporation (D%DI) betweenmutated and unmutated proteins in RGS19 L118D (A), RGS8E84L (B), and
RGS4 D90L (C) fragments, as measured by HDX. Red arrows indicate fragments containing mutated residue, and black arrows indicate fragments
containing conserved a4 cysteine. Kinetics results of deuterium incorporation in these fragments for individual constructs are shown below (n5 3). Error
bars represent S.D. Analyzed by two-way ANOVA with Sidak’s multiple comparisons test (*P , 0.05; **P , 0.01; ****P , 0.0001).
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In MD simulations, the RGS4 D90L and RGS8 E84L
mutations did not have as large an effect on the magnitude
of residue fluctuations as did the L118D mutation in RGS19
(Fig. 3, A and B). This may be because differences become
apparent on shorter timescales in RGS19 than in RGS4 and
RGS8; therefore, simulations on microsecond timescales may
not have captured all of the differences in dynamics caused
by mutations in RGS4 D90L and RGS8 E84L. Indeed, in
the HDX studies, stronger differences in DI were observed
between RGS19 and RGS19 L118D at shorter timepoints
(1 and 3minutes) than in RGS4D90L and RGS8 E84L (Fig. 5).
Finally, to determine how changes in protein flexibility

affected the potency of inhibition by an RGS inhibitor, we used
flow cytometry protein interaction assay to evaluate the
inhibition of Ga binding by CCG-50014. Importantly, ma-
nipulation of RGS protein flexibility induced the expected
changes in the potency of inhibition by thiadiazolidinone

covalent modifiers. Thus, enhancing flexibility by removal of
salt bridge–forming residues increased the potency of in-
hibition by CCG-50014 while reducing protein flexibility
reduced potency of inhibition by CCG-50014. These results
support a causal relationship between RGS protein flexibility
and potency of inhibition.
In conclusion, differences in flexibility among RGS iso-

forms appear to drive differences in the potency of a covalent
inhibitor, CCG-50014. The differences in isoform flexibility,
in turn, are strongly influenced by the presence or absence of
an a4-a5 salt bridge and manipulation of this salt bridge is
sufficient to induce changes in inhibitor potency among
single-cysteine RGS proteins. Developing a deeper under-
standing of these differences in flexibility may enable the
development of a new generation of RGS inhibitors with novel
specificities.
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Figure S1. L118D mutation increases thermal stability of RGS19, but Q183K mutation has no significant 
effect (n=3, 1-way ANOVA with Sidak’s multiple comparison test. ****p<0.001). L118D mutation in 
RGS19 has reduced potency of inhibition of CCG-50014 (n=3), but Q183K mutation does not (n=1). Ki, 
calculated using a Cheng-Prusoff correction,2 is reported to account for effect of mutations in RGS on 
Gαo affinity.  

  



 

Figure S2. The traces of root-mean-squared-deviation (RMSD) vs. simulation time (μs) for (a) RGS4 
D90L, (b) RGS8 E84L, and (c) RGS19 L118D.   Two independent simulation runs for each structure are 
presented, and the wild-type runs are presented from our previous work1. 

  



 

Run No. System Initial structure Run length (μs) System size (atoms) No. of runs 

1 RGS4 D90L 1AGR 1 30031 2 

2 RGS4 1AGR 1 30031 2 

3 RGS8 E84L 2ode 1 32257 2 

4 RGS8 2ode 1 32257 2 

5 RGS19 L118D 1cmz 1 25077 2 

6 RGS19  1cmz 1 25077 2 

 

Table S1. Details of MD simulations. 

  



 

 

α4-α5 

% of 
sim 

within 
4 Å α5-α6 

% of 
sim 

within 
4 Å α6-α7 

% of 
sim 

within 
4 Å 

CCG-
50014 
IC50 
(μM) 

RGS4 D90 K125 58.7 S120 S138 - D130 K155 31.5 8.5 
RGS8 E84 R119 44.2 D114 R128 47.5 D124 K149 36.1 >1000 
RGS19 L118 K153 - S148 N166 - D158 Q183 - 1.1 

 

Table S2. The salt-bridge interaction within the α4-α7 bundle of helices in single-cysteine structure of 
RGS4, RGS8, and RGS19 from MD simulations and potency of CCG-50014 inhibition of single-cysteine 
RGS proteins in our previous work.1 

  



 Gαo KD (nM) CCG-50014 IC50 (log M) CCG-50014 pKi (log M) 
RGS19 20.5 ± 6.3 -5.96 ± 0.23 -6.50 
RGS19 L118D 23.9 ± 5.3 -5.08 ± 0.25 -5.57 
RGS8 3.9 ± 1.8 -5.09 ± 0.69  -6.23 
RGS8 E84L 4.8 ± 0.3 -5.29 ± 0.41 -6.35 
RGS4 8.8 ± 3.1 -5.08 ± 0.16 -5.91 
RGS4 D90L 6.7 ± 2.6 -5.63 ± 0.19 -6.56 

 

Table S3. Interaction affinities between Gαo and RGS proteins and mutants, and IC50 and Ki of inhibition  
of RGS-Gαo binding by CCG-50014. n=3. Ki values were calculated by Cheng-Prusoff correction2 of the 
IC50 values. 
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