ARTICLES

Structural Determinants of Kv7.5 Potassium Channels That Confer Changes in Phosphatidylinositol 4,5-Bisphosphate (PIP₂) Affinity and Signaling Sensitivities in Smooth Muscle Cells
Lyubov I. Brueggemann, Leanne L. Cribbs, and Kenneth L. Byron

hsa-miR-9-3p and hsa-miR-9-5p as Post-Transcriptional Modulators of DNA Topoisomerase IIα in Human Leukemia K562 Cells with Acquired Resistance to Etoposide

Bupropion Inhibits Serotonin Type 3AB Heteromeric Channels at Clinically Relevant Concentrations
Antonia G. Stuebler and Michaela Jansen

CITCO Directly Binds to and Activates Human Pregnane X Receptor
Wenwei Lin, Monicah Bwayi, Jing Wu, Yongtao Li, Sergio C. Chai, Andrew D. Huber, and Taosheng Chen

Ser100-Phosphorylated RORα Orchestrates CAR and HNF4α to Form Active Chromatin Complex in Response to Phenobarbital to Regulate Induction of CYP2B6
Muluneh Fashe, Takuyu Hashiguchi, Masahiko Negishi, and Tatsuya Sueyoshi

Interactions between Atorvastatin and the Farnesoid X Receptor Impair Insulinotropic Effects of Bile Acids and Modulate Diabeticogenic Risk
Theresa Hoffmeister, Julia Kaiser, Simon Lüdtke, Gisela Drews, and Martina Düfer

The Peroxisome Proliferator–Activated Receptor (PPAR)-γ Antagonist 2-Chloro-5-Nitro-N-Phenylbenzamide (GW9662) Triggers Perilipin 2 Expression via PPARγ and Induces Lipogenesis and Triglyceride Accumulation in Human THP-1 Macrophages
Martin Schubert, Stefanie Becher, Maria Wallert, Marten B. Maeß, Masoumeh Abhari, Knut Rennert, Alexander S. Mosig, Silke Große, Regine Heller, Michael Grün, and Stefan Lorkowski

Discovery of Small Molecules That Target the Phosphatidylinositol (3,4,5) Trisphosphate (PIP₃)-Dependent Rac Exchanger 1 (P-Rex1) PIP₃-Binding Site and Inhibit P-Rex1–Dependent Functions in Neutrophils
Jennifer N. Cash, Naincy R. Chandan, Alan Y. Hsu, Prateek V. Sharma, Qing Deng, Alan V. Smrcka, and John J.G. Tesmer

Supplemental material is available online at http://molpharm.aspetjournals.org.

About the cover: Treatment of zebrafish larvae with compound 1 inhibits neutrophil motility and recruitment to injury sites. See article by Cash et al. (dx.doi.org/10.1124/mol.119.117556).