Voltage Dependence of Prostanoid Receptors

Michael Kurz, Anna-Lena Krett, and Moritz Bünemann

Institute for Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Philipps-University Marburg, Marburg, Germany

Received September 25, 2019; accepted January 25, 2020

ABSTRACT

G protein–coupled receptors (GPCRs) are the largest class of transmembrane receptors and serve as signal mediators to transduce information from extracellular signals such as neurotransmitters, hormones, or drugs to cellular responses. They are exposed to the strong electrical field of the plasma membrane. In the last decade voltage modulation of ligand-induced GPCR activity has been reported for several GPCRs. Using Foerster resonance energy transfer–based biosensors in patch clamp experiments, we discovered a robust voltage dependence of the thromboxane receptor (TP receptor) on the receptor level as well as on downstream signaling. TP receptor activity doubled upon depolarization from −90 to +60 mV in the presence of U46619, a stable analog of prostaglandin H2. Half-maximal effective potential ($V_{0.5}$) determined for TP receptor was −46 mV, which is within the physiologic range. We identified that depolarization affected the agonist affinity for the TP receptor. Depolarization enhanced responses of several structural analogs of U46619 with modifications to a similar extent all around the molecule, indicating that voltage modulates the general conformation of TP receptor. By means of site direct mutagenesis, we identified TP receptor R295, which showed alteration of voltage sensitivity of TP receptor upon mutation. Voltage sensitivity was not limited to TP receptor because prostaglandin F receptor activated with U46619 and prostaglandin E2 receptor subtype 3 activated with iloprost showed a similar reaction to depolarization as TP receptor. However, prostacyclin receptor activated with iloprost showed no detectable voltage dependence.

SIGNIFICANCE STATEMENT

Prostanoids mediate many of their physiological effects via transmembrane receptors expressed in the plasma membrane of excitable cells. We found that agonist-mediated activation of prostaglandin F receptors and prostaglandin E2 receptors as well as thromboxane receptors are activated upon depolarization, whereas prostacyclin receptors are not. The voltage-induced modulation of thromboxane receptor activity was observed on the level of receptor conformation and downstream signaling. The range of voltage dependence was restricted by R295 in the agonist-binding pocket.

Introduction

G protein–coupled receptors (GPCRs) constitute the largest family of integral membrane proteins with over 800 members encoded in the human genome. They are targets for many approved drugs as well as for new drugs under development (Hauser et al., 2017; Sriram and Insel, 2018). All membrane proteins are located in a strong electrical field (Yang and Brackenbury, 2013). Therefore, it was a striking finding when first published that the M2-muscarinic receptor, a class A GPCR, showed voltage dependence (Ben-Chaim et al., 2003). Since this first discovery at the M2-receptor, a number of GPCRs have been investigated under this aspect (reviewed in: Vickery et al., 2016). The majority of investigated GPCRs showed voltage dependence and the effect that voltage had on GPCR activity was ligand-specific (Navarro-Polanco et al., 2011; Sahlholm et al., 2011; Rinne et al., 2013, 2015; Birk et al., 2015; Moreno-Galindo et al., 2016). Voltage was able to alter either affinity, efficacy, or both (Rinne et al., 2013; Birk et al., 2015). In contrast, in the absence of ligands, no modulation of GPCR activity was observed. Point mutation studies supported this observation as the mutation of amino acids, which are involved in the ligand binding process, could alter the voltage dependence of GPCRs (Rinne et al., 2015; Barchad-Avitzur et al., 2016; Hoppe et al., 2018). Taken together, this indicates that observed voltage effects act on receptor-ligand interaction. Not much is known about the mechanism behind this voltage sensing process, and a voltage sensing domain similar to voltage-gated ion channels has not yet been found. For the M2-receptor, a gating charge was directly observed (Ben-Chaim et al., 2006). With around 0.8 elementary charges, this charge movement was rather small compared with voltage-gated ion channels. Nevertheless, modulation of ligand-induced GPCR activity might have relevance in the understanding of physiology, pathophysiology, and potential...
use for pharmacology. Voltage dependence of GPCRs can have a potential role in excitable cells, which undergo fast changes in the electrical field during action potentials, e.g., smooth muscle, cardiac, and neuronal cells. This role might not be limited to excitable cells because studies have shown changes in membrane potentials (V_M) over time in cells during the cell cycle and in cancer cells and different V_M of various differentiated cells (Arcangeli et al., 1995; Yang and Brackenbury, 2013). One group of GPCRs with almost ubiquitous expression are prostanoid receptor subtypes 1 and 2, prostaglandin E2 receptor (IP receptor), prostaglandin F receptor (FP receptor), and the thromboxane receptor (TP receptor). The prostanoids are locally generated by cyclooxygenases from arachidonic acid and have a very limited lifetime. Besides the prostaglandins, there are so-called isoprostanes, which are produced by non-enzymatic free radical-catalyzed peroxidation of arachidonic acid under conditions of oxidative stress. Isoprostanes are also able to activate certain prostanoid receptors and have an increased lifetime (Milne et al., 2014). Prostanoid receptors fulfill a variety of physiologic and pathophysiological functions. These widespread functions are also reflected in diseases in which they are targeted. TP receptor is inhibited indirectly by aspirin, e.g., for secondary prevention of heart attacks and directly by Seratrodast, which is used to treat asthma. In pulmonary hypertension, IP receptor is targeted by different IP receptor agonists such as iloprost. FP receptor is targeted by Latanoprost in glaucoma therapy and by Cloprostenol for pulmonary hypertension, IP receptor is targeted by different IP receptor agonists such as iloprost. FP receptor is targeted by prostaglandin H2 ethanolamide (14012), prostaglandin E2 methyl ester (14011), and iloprost (18215). The manufacturer was Cayman Chemical, Ann Arbor, MI. The preparation and solution steps were carried out analogously as described before (Bodmann et al., 2017). Chemical, Ann Arbor, MI. The preparation and solution steps were carried out analogously as described before (Bodmann et al., 2017).

Materials and Methods

Plasmids and Agonist

cDNAs for human TP receptor wt (henceforth referring to the α-isofrom), mouse Go11₃-mTurq2 (Bodmann et al., 2017); human GoG in wt, bovine GoG in wt (Bünnemann et al., 2003); human GoG in wt, mouse GoG in WT receptor (Hughes et al., 2001); exchange protein directly activated by cAMP (Epac1-camps (cAMP sensor)) (Nikolaev et al., 2004); human GRK2 wt (Winstel et al., 1996); and human GRK2-mTurq2 (Wolters et al., 2015) have been described previously. We used mouse Go11₃ (NM_010303.3, cDNA from N. Wettscureck, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany), Human FP receptor (prostaglandin F receptor, A937000, cat. no. #PTGFRO0000) and IP receptor (prostaglandin I2 [prostacyclin, AY242134, cat. no. #PTGIR000000]. cDNA was obtained from the Missouri S&T cDNA Resource Center (http://www.cdna.org). Mutations were introduced into TP receptor wt by site directed mutagenesis and were verified by sequencing.

The following mutagenesis primers were used: TP receptor R295A 5'-gagcagacatct-actcgggtgcaagggcagct-3'; TP receptor R295K 5'-gagcagacatctgaaggccacagagca-3'; TP receptor D193E forward: 5'-ggcgcgctgcaagggcagct-3'; reverse: 5'-gacgcaagggc tccgggacact-ggcc-3'; TP receptor S201T 5'-ttcggttgcattctacttgc tggg-3'; TP receptor S252T 5'-gatcatggtttgactctggtttgct gec-3'; TP receptor W299L 5'-ttcgggacactgaagctggcagtcgg-3'. eYFP-p115 was cloned by inserting p115, which was a kind gift from Thomas Worzfeld (Pharmacological Institute, University of Marburg, Germany), into pcDNA3 backbone vector expressing an N-terminal eYFP, using restriction sites AgeI and NotI. TP receptor-mVenuses was cloned from TP receptor (Bodmann et al., 2017) by inserting TP receptor into pcDNA3-mVenuses backbone vector using HindIII and BamHI restriction sites. The gene for isoform 1 of IP receptor (prostaglandin I2 [prostacyclin, AY242134, cat. no. #PTGIR000000]. cDNA was obtained from the Missouri S&T cDNA Resource Center (http://www.cdna.org). Mutations were introduced into TP receptor wt by site directed mutagenesis and were verified by sequencing.

In this study we used U46619 (16450), 8-iso prostaglandin E2 (13360), 8-iso prostaglandin E2, I-BOP (19600), 15-keto prostaglandin E2 (14730), 15(S)-15-methyl prostaglandin E2 (14730), prostaglandin E2 ethanolamide (14720), 15(S)-15-methyl prostaglandin E2 (14720), prostaglandin E2 ethanolamide (14012), prostaglandin E2 ethyl ester (14011), and iloprost (18215). The manufacturer was Cayman Chemical, Ann Arbor, MI. The preparation and solution steps were carried out analogously as described before (Bodmann et al., 2017). The GoG inhibitor FR900359 was a kind gift from Dr. Evi Kostenis, University of Bonn, Germany.

Cell Culture and Transfections

All experiments in this study were carried out with transiently or stably transfected HEK293 cells. Cells were cultured using standard conditions (Rinne et al., 2015). To investigate TP receptor-sensor, a stable cell line was generated by transfecting HEK293 with 1 μg of TP receptor-sensor plasmid cDNA (in a dish with 6 cm²) and subsequently culturing the cells under selection with G418. Generation of a stable cell line expressing TP receptor-eYFP construct was done analogously. Cells were transfected with Effective reagent (Qiagen) according to the manufacturer’s instructions using the following cDNAs (per dish with 6 cm²):

1. GoG1₃
2. GoG1₃
3. GoG1₃
4. GoG1₃
5. GoG1₃
6. GoG1₃
7. GoG1₃
Transfections into HEK293T Cells

TP receptor induced Go13-p115-interaction assay: TP receptor wt or mutant receptor (0.5 μg), Go13-mTurq2 (0.8 μg), Gβ1 wt (0.5 μg), Gγ2 wt (0.2 μg), YFP-p115 (1 μg); FP receptor induced G protein activation: FP receptor (0.5 μg), Goαc-YFP (1.5 μg), Gβ1-Cer (0.5 μg), Gγ2 wt (0.2 μg), as negative control FP receptor was replaced by the same amount of empty pcDNA3; TP receptor induced G protein activation: TP receptor (0.5 μg), Goαc-YFP (1.5 μg), Gβ1-Cer (0.5 μg), Gγ2 wt (0.2 μg), as negative control TP receptor was replaced by the same amount of empty pcDNA3; GRK2 (0.5 μg) was added to enhance the signal; IP receptor cAMP measurements: Epac1 receptor (0.5 μg), Epac1-camps (1 μg); β2-AR cAMP measurements and IP receptor negative control: Epac1-camps (1 μg); TP receptor cAMP measurements: TP receptor wt (0.5 μg), Epac1-camps (1 μg); TP receptor cAMP measurements and IP receptor negative control: Epac1-camps (1 μg); TP receptor cAMP measurements and IP receptor negative control: Epac1-camps (1 μg); IP receptor cAMP measurements: IP receptor wt (0.5 μg), Gαb1eYFP (1 g), Gγ2 wt (0.2 μg), GRK2-mTurq2 (0.5 μg), as negative control FP receptor was replaced by the same amount of empty pcDNA3; GIRK1 and GIRK4 subunits (0.5 μg).

Transfections into the Stable Cell Line Carrying TP Receptor-eYFP

TP receptor-Go13-interaction assay: Go13-mTurq2 (0.8 μg), Gβ1 wt (0.5 μg), Gγ2 wt (0.2 μg); TP receptor-GRK2-interaction assay: Goαq wt (0.8 μg), Gβ1 wt (0.5 μg), Gγ2 wt (0.2 μg), GRK2-mTurq2 (0.5 μg).

Fluorescence measurements were performed 48 hours after transfections. Transfected HEK293 cells were split on sterile, poly-Llysine–coated glass coverslips and measured the next day.

FRET Measurements and Electrophysiology

FRET measurements with simultaneous control of the Vm: FRET signals between CFP or variants and YFP or variants were recorded with short light flashes and the emitted donor fluorescence (F480) and acceptor fluorescence (F525) were recorded with photodiodes (TILL Photonics Dual Emission System) (see schematic representation in Fig. 1A) with a sampling frequency of 1-, 2.5-, or 5-Hz. The ratio of F525/F480 (termed emission ratio) was calculated and plotted using Patch-master software (version 2.65; HEKA). Correction for photobleaching (Supplemental Fig. 1) was performed with Origen Pro 2016 for assays shown in: Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Supplemental Fig. 1, Supplemental Fig. 2, Supplemental Fig. 3, Supplemental Fig. 4, Supplemental Fig. 5 and Supplemental Fig. 6. Data acquired from FRET-based cAMP measurements was processed by subtracting the emission ratio before agonist application (Fig. 7; Supplemental Fig. 7).

Simultaneously to FRET measurements, the cells were patched in whole-cell configuration and the membrane potential was set to the desired values with an EPC-10 amplifier (HEKA). Patch pipette resistances ranged from 3 to 7 MΩ and the patch-pipettes were filled with an internal buffer solution (in millimolar: 105 KCl, 5 NaCl, 7 MgCl2, 20 HEPES, 10 EGTA, 0.025 GTP, 5 Na2-ATP, pH 7.2). During the measurements, the patched cells were continuously superfused with extracellular buffer (in millimolars: 137 NaCl, 5 KCl, 1 MgCl2, 10 HEPES, pH 7.3 or agonist-containing solution).

FRET measurements without simultaneous control of the membrane potential: performed as described above, except the measurement of concentration-response curve for TP receptor wt induced interaction of Goα13 with p115 (Supplemental Fig. 5E), for which a previously described microscope setup was used (Bodmann et al., 2017).

Measurements of GIRK currents: GIRK currents were measured in the whole-cell configuration, analog to the measurements of FRET with simultaneous control of the membrane potential in 1 kHz sampling intervals. The applied extracellular solution contained a high concentration of potassium (in millimolars: 137 KCl, 5 NaCl, 10 HEPES, 1 MgCl2, pH 7.3). Therefore, the recorded GIRK currents were inward currents (holding potential: −90 or −30 mV, as indicated).

Fig. 1. Depolarization of the membrane potentiates TP receptor activation. (A) The scheme illustrates the experimental setup used for FRET measurements under voltage clamp conditions in HEK293 cells expressing the TP receptor-sensor. Cells were continuously superfused with buffer or agonist-containing buffer. (B) The emission of CFP and YFP in a single cell stably expressing TP receptor-sensor superfused with 3 μM U46619 was recorded over time, corrected for photobleaching, and plotted as indicated by the colors as shown in the representative trace (out of n = 6). The corresponding emission ratio YFP:CFP is shown in red (normalized to initial values). (C) In experiments similarly described in (B), cells were exposed to 100 nM U46619 at −90 mV. Subsequently, cells were depolarized to +60 mV for 20 seconds as indicated; after wash-out, a high concentration of 3 μM U46619 was applied (obtained emission ratio was normalized to the negative amplitude evoked by 3 μM U46619 n = 5; means ± S.D.). (D) Representative recording and (E) show the voltage-dependence of the TP receptor-sensor for indicated voltages. Zero and −90 mV were always included as reference potentials. (E) Summarized data (n = 5–15 cells per data point; means ± S.D.) of the voltage-induced alterations in the emission ratio after normalization to values obtained at 0 mV. These data were fitted to a Boltzmann function giving rise to value for V0.5 = −46 mV.
Measurements in HEK293 Cells Were Performed at Room Temperature

Confocal Microscopy. Confocal images of stable cell lines expressing either TP receptor-sensor or TP receptor-eYFP were taken with an inverted fluorescence microscope (TCS SP5; Leica, Wetzlar, Germany) equipped with a Lambda Blue 363/1.4 NA oil objective (Leica) analogously as described in Bodmann et al. (2017). Images were taken in a 1024x1024 pixel format.

Data Analysis and Statistics. All data represent individual observations or an average of individual recordings and are presented as mean ± S.D. of n individual cells. The data were analyzed with Origin Pro 2016 or GraphPad Prism 7 (GraphPad Software) or Excel 2016. Data sets were tested for normal distribution with D’Agostino-Pearson normality test. For statistical analysis of data sets that did not pass testing for normality, nonparametric tests were used. Statistical analysis was performed with either Kruskal-Wallis test, Mann Whitney test, or Wilcoxon matched-pairs signed rank test. Differences were considered statistically significant for P < 0.05.

For the IP receptor voltage dependence experiment (Fig. 7A), only cells with a higher response than 15% of max agonist concentration after 2 minutes of agonist application were included (at T1).

For the comparison of the voltage effect on TP receptor and TP receptor R295K (Fig. 5C), cells were selected for a similar response to 13- interaction, TP receptor induced interaction of 52 mV/90 mV (Fig. 1, D and E). The δ value was calculated to be 0.5 elementary charges.

Voltage Effect on TP Receptor Is Transduced to Downstream Effectors. Next, we wanted to know whether this observed voltage effect at the TP receptor-sensor propagates to downstream signaling. TP receptor couples primarily to Gα13- and Gα13-interaction, TP receptor induced interaction of Gα13 with p115, a RhoGEF family member, and TP induced
Voltage Modulates Agonist Affinity of Prostanoid Receptors

Voltage effect on four different FRET assays turned out to exhibit similar magnitudes (Fig. 2D).

Voltage Effect on TP Receptor’s Affinity. The observed increase of TP receptor activity upon depolarization could, in theory, be due to a voltage effect on efficacy or affinity of the agonist or a mixture of both. To investigate this, we measured concentration-response curves for the TP receptor-sensor at −90 and at +60 mV. The EC_{50} was left-shifted approximately 4.5-fold upon depolarization (Fig. 3A). We further applied 3 μM U46619 to saturate the receptor (see Supplemental Fig. 3A), no voltage induced changes of FRET of the TP receptor-sensor were detected (Fig. 3B). Similarly, on the level of the TP receptor-G_{13}-interaction (Supplemental Fig. 3B) and at TP receptor-GRK2-interaction (Supplemental Fig. 3C) we also failed to see additional stimulation. This is in line with the hypothesis that voltage primarily regulates agonist affinity for TP receptor. The third aspect that we considered in this context was the kinetics of the voltage induced receptor activation and deactivation. If voltage changes lead to a difference in affinity, this process would require agonist binding; therefore, the kinetics of this effect would be dependent on the agonist concentration. We compared the kinetics of receptor activation upon depolarization in presence of either 50 or 200 nM U46619 and observed significantly faster on-set kinetics for the higher agonist concentration (Fig. 3C). If voltage modulated TP receptor affinity for U46619, one would expect that deactivation upon hyperpolarization from +60 to −90 mV in presence of agonist should have the same kinetics as wash-out of the same concentration at −90 mV because in both processes agonist leaves the receptor in case of an affinity change. To our surprise, the voltage induced deactivation kinetics were approximately three times faster than those for washout (Supplemental Fig. 3D), possibly reflecting rebinding of the lipophilic ligand in the plasma membrane.

TP Receptor’s Voltage Dependence Is Not Dependent on Specific Moieties of the Agonist. Prostanoids have a very conserved structure and we hypothesized that systematically testing ligands substituted in one or more functional group(s) could provide information on which contact of U46619 is important for the observed voltage dependence. As TP receptor activated by U46619 showed activation upon depolarization, we searched for TP receptor ligands that differ in their structure from U46619. U46619 as a prostanoid-like ligand comprises of an α-chain and ω-chain connected to a central ring. Substituted ligands were tested in terms of voltage dependence either with the TP receptor-sensor assay (activation is reflected by a decrease in FRET) or TP receptor induced G_{13}-p115-interaction (reflected by an increase in FRET), as this assay provides a very robust signal, which also allows us to test agonists with a small efficacy. Structures of the tested ligands are shown in Fig. 4A. The following ligands were tested: I-BOP (difference in ring structure and more

Fig. 2. Propagation of voltage effect on TP receptor downstream signals. Cells transfected with indicated FRET-based biosensor for TP receptor-G_{13} (representative recording n = 5) (A), TP receptor induced G_{13}-p115 RhoGEF (representative recording n = 7) interactions (B), and TP receptor induced G_{q} activation (representative recording n = 5) (C) were subjected to single-cell FRET recording under voltage clamp conditions using the indicated voltage and superfusion protocol. (D) Values in the presence of agonist ΔF_{535}/F_{480} at +60 mV were divided by values of ΔF_{535}/F_{480} at −90 mV; the values for the effect voltage had on TP receptor-sensor activity, TP receptor-G_{13} interaction, TP receptor induced G_{13}-p115 RhoGEF interaction, and TP receptor induced G_{q} activation were compared: no significant difference could be detected (analyzed by Kruskal-Wallis-Test, P value = 0.10; means ± S.D., TP receptor-sensor = 2.21 ± 0.85, n = 29; TP receptor-G_{13} = 2.23 ± 0.24, n = 3; TP receptor induced G_{13}-p115 RhoGEF interaction = 2.53 ± 0.69, n = 15, and TP receptor induced G_{q} activation = 1.72 ± 0.42, n = 5).

Fig. 3. Activation upon depolarization consistent with that seen for TP receptor-sensor (Fig. 2, A–C vs. Fig. 1C). Note that TP receptor in the absence of agonist (Supplemental Fig. 2, A and B). Voltage effect on four different FRET assays turned out to exhibit similar magnitudes (Fig. 2D).
lipophilic ω-chain) (Supplemental Fig. 4A), 15-keto-PGE₂ (Supplemental Fig. 4B), and 15(S)-15-methyl PGE₂ (Supplemental Fig. 4C) (prostaglandin E₂ [PGE₂]-like ring structure and substituted at the hydroxyl group at position 15). Furthermore, PGE₂ ethanolamide (Fig. 4B) and PGE₂ methyl ester (Supplemental Fig. 4D) (PGE₂-like ring structure and substituted C1 position at the carboxylic acid taking away the charge), 8-iso PGE₂ (Supplemental Fig. 4E) (PGE₂-like ring structure and chiral inversion at C8) and 8-iso PGE₁ (Supplemental Fig. 4F) (like 8-iso PGE₂ but lacked the double bond between position 5 and 6) have been investigated. TP receptor activated with either ligand showed robust activation upon depolarization as seen before when activated with U46619, summarized in Fig. 4C (for detailed data see Supplemental Fig. 4G).

Mutation of R295 Alters the Voltage Effect on TP Receptor. Because we could not identify important contact(s) between ligand and receptor by testing different agonists, we mutated amino acids known to be involved in the ligand binding process of TP receptor (Funk et al., 1993;

![Fig. 3. Voltage effect on U46619 mediated TP receptor-sensor activation. (A) Means ± S.D. concentration-response curves of TP receptor-sensor at −90 (EC₅₀ 93 nM) and at +60 mV (EC₅₀ 21 nM), respectively (n = 7–15 per data point), were recorded. All amplitudes of agonist-evoked declines in FRET were normalized to the amplitude of a reference concentration (3 μM U46619 at −90 mV). (B) Voltage effect on TP receptor-sensor activity in presence of a saturating agonist concentration (n = 6). (C) Means ± S.D. of the time course of TP receptor-sensor activation induced upon depolarization from −90 to +60 mV in the presence of U46619 (50 nM [blue]; n = 7, 200 nM [red] n = 15). Left: Averaged data were fitted to a monoexponential function. Right: Half times determined by fitting of individual experiments are illustrated as means ± S.D. (t₁/₂ (50 nM) = 2.2 ± 0.33 seconds, t₁/₂ (200 nM) = 1.2 ± 0.4 seconds; ***P = 0.0001, Mann Whitney test).**

![Fig. 4. Voltage effect on TP receptor activated with U46619 analogs. (A) Structures of tested U46619 analogs (https://www.caymanchem.com/; From Cayman Chemicals). Left, from top to bottom: U46619, I-BOP, 8-iso PGE₂, 8-iso PGE₁. Right, from top to bottom: PGE₂ ethanolamide, PGE₂ methyl ester, 15-keto PGE₂, 15(S)-15-methyl PGE₂. Ligands were tested in similar experiments as shown in (B). (B) PGE₂ Ethanolamide tested in TP receptor induced Go₁₃-p115 RhoGEF interaction assay under voltage clamp conditions (representative recording n = 3). (C) Summary of ligands tested in terms of voltage dependence. “+” indicates an increase of at least 50% in ΔF₅₃₅/ΔF₄₆₀ between −90 and +60 mV in presence of a nonsaturating agonist concentration.}
Chiang et al., 1996; D’Angelo et al., 1996; Khasawneh et al., 2006) (Fig. 5A, left) with the goal to change the ligand binding mode. Studies have found that the agonist-binding mode can be crucial for the effect voltage has on GPCR activity (Rinne et al., 2015). Based on the recently published crystal structure of antagonist-bound TP receptor (Fan et al., 2019), we mutated R295, which interacts with the carbonyl group of the ligand (Fig. 5A, right) either to alanine or to lysine (TP receptor R7.40→295A or TP receptor R7.40→295K). In addition, we constructed the following receptor mutants: TP receptor S6.45255T (superscript indicates residue numbering using the Ballesteros–Weinstein nomenclature [Ballesteros and Weinstein, 1995]), TP receptor S6.45255T, TP receptor W7.44299L, and TP receptor D5.36193E. TP receptor S201T, TP receptor S255T, TP receptor W299L, and TP receptor D293E showed wild-type-like behavior in terms of voltage dependence (Supplemental Fig. 5, A–D), summarized in Fig. 5B (for detailed data see Supplemental Fig. 5E). TP receptor R295K showed ligand-induced receptor activation (consistent with previous studies [Tui et al., 1997]) and had an EC50 right shifted by about two orders of magnitude (Supplemental Fig. 5F). Therefore, U46619 concentration was adjusted from 1 to 2 nM for wt to 200 nM for the mutant receptor. TP receptor R295K showed significantly stronger activation upon depolarization compared with wt measured in Go13-p115-interaction (Fig. 5C). As R7.40→295 is a charged residue under physiologic pH, it could potentially serve as part of a voltage sensor for TP receptor. Removing the charge in this position by mutating arginine to alanine should then remove or reduce voltage sensitivity. According to Stitham et al. (2003), mutation of R7.40→ to alanine abolished the ligand binding for IP receptor. We observed agonist-induced receptor activation for TP receptor R295A in the Go13-p115-interaction assay, with an EC50 value shifted further right in comparison with TP receptor R295K (Supplemental Fig. 5F). TP receptor R295A showed robust activation upon depolarization (Fig. 5D), indicating that the positive charge was not required for voltage dependence. To study the role of R295 on voltage dependence in more detail, we measured activation voltage relation for wt (with measurements similar as in Supplemental Fig. 5G) and for R295K and R295A (with measurements similar as shown in Supplemental Fig. 5H) in Go13-p115-interaction assay, when TP receptor was activated with U46619. The retrieved values were subtracted by the agonist-induced response to −90 mV of the same cell. We measured membrane potentials between −110 and +100 mV (Fig. 5E). The curve for the mutants was shallower compared with wt and did not reach a plateau. Because no plateau was reached, no Boltzmann fit could be performed, and neither V0.5 or z-value could be calculated for the mutants. At −45 and +60 mV values for TP receptor R295K and TP receptor R295A showed significant difference against wt (n: wt = 7; R295K,A = 5; Mann Whitney test R295K: P = 0.03, R295A P = 0.003); 60 mV (n: wt = 6; KA = 7; Mann Whitney R295K: P = 0.04, R295A P = 0.01); At +100 mV values for TP receptor R295K showed significant difference against wt (n: wt = 5; K = 6; Mann Whitney test R295K: P = 0.01) (Fig. 5E). These results indicate that even though R295 is not part of the voltage sensor, its side chain, but not the positive charge, is important for the range of voltage sensitivity.

Voltage Dependence of FP Receptor, IP Receptor, and EP3 Receptor. The thromboxane receptor belongs to the prostanoid receptor group. Endogenous ligands that can activate other receptors of this family are also cyclooxygenase products of arachidonic acid. We decided to investigate which voltage behavior other members of this receptor family show, if activated by prostanoid-like ligands. FP receptor affinity to U46619 is only 10 times lower than for TP receptor (Abramovitz et al., 2000), which allowed us to use U46619 in our voltage dependence measurements at FP receptor. We measured Goα activation with FRET while we simultaneously controlled Vm with patch clamp. Here a decrease in emission ratio reflects receptor activation (Fig. 6). We transfected HEK293T cells with FP receptor and plasmids necessary for Goα activation. Our results show a strong decrease in emission ratio upon depolarization in the presence of U46619, indicating receptor activation upon depolarization (Fig. 6). In HEK293T cells without transfected FP receptor, no Goα activation could be observed (Supplemental Fig. 6). Because there was no obvious difference in voltage dependence between TP receptor and FP receptor, we wanted to test a receptor that has a lower affinity for U44619 and therefore likely a binding pocket with less similarity than those of TP receptor’s and FP receptor’s. Therefore, we characterized IP receptor, the physiologic counterpart of TP receptor in terms of voltage dependence. Due to a lack of robust FRET-based assays on receptor or G protein level, we measured cAMP production with the FRET-based Epac sensor Epac1-camps (Nikolaev et al., 2004) as a readout for the activity of Goα-coupled IP receptor at −90 or 0 mV. HEK293T cells without additionally transfected IP receptor did not show cAMP production upon stimulation with iloprost, which is a stable analog of prostacyclin and is known to activate IP receptor (Supplemental Fig. 7). Due to difficulties reaching stable steady-state signals, we compared responses to a nonsaturating concentration of iloprost in cells held at −90 mV during the whole measurement with those of cells that were held at −90 mV for 2 minutes and clamped to 0 mV for another 2 minutes (Fig. 7A, left). The FRET-based Epac1-camps signal was compared after 2 and 4 minutes in both groups. Surprisingly, no significant difference could be observed, suggesting no detectable voltage dependence of IP receptor activated with iloprost in our system (Fig. 7A, right). To test whether this system is sufficiently sensitive to pick up changes in receptor activity mediated by voltage changes, we measured TP receptor in this assay. TP receptor showed robust activation upon depolarization, as observed before (Fig. 7B). As a further positive control measurement of Goε-coupled β2-AR showed a decrease in cAMP production upon depolarization, in line with the previously reported moderate voltage dependence of this receptor (Birk et al., 2015), (Fig. 7C), indicating that voltage dependence even of GPCRs poorly sensitive to regulation by membrane potential, with an opposing polarity of voltage dependence other members of this receptor family show, can be detected in the applied assay. Next, we chose to measure the Goα-coupled EP3 receptor (prostaglandin E2 receptor subtype 3, henceforth referring to isof orm 1, Genbank accession: L27490.1). As a sensitive readout, we used GIRK channels as a reporter system. Therefore, we transiently transfected HEK293T cells with EP3 receptor and GIRK1/4. Responses to a submaximal concentration of 10 nM iloprost were compared with maximal currents evoked by a saturating agonist concentration of 1 μM iloprost at −90 and at −30 mV in the same recording (Fig. 8, left). Measured currents could be

Voltage Modulates Agonist Affinity of Prostanoid Receptors

273
blocked with barium, and I/V curve showed inward rectification (Supplemental Fig. 8A), supporting that the measured currents were, in fact, GIRK currents. The fraction of GIRK channels activated by 10 nM iloprost relative to those activated by 1 μM iloprost (ratio response to 10 nM/response to 1000 nM) was much larger at −30 mV than at −90 mV (Fig. 8, right), suggesting EP3 receptor activation upon depolarization in the presence of iloprost. Attempts to test EP1 receptor for voltage dependence failed as none of our assays showed a specific signal with this receptor.

We then performed a structure-based alignment with GPCRdb.org between the four prostanoid receptors characterized in terms of voltage dependence in this study. In particular, we screened for differences in charged residues between the voltage-activated prostanoid receptors TP receptor, FP receptor, EP3 receptor, and IP receptor, which did not show a detectable activation upon depolarization. Position 3.19 was the only position, which fulfilled the criteria: TP receptor, FP receptor, and EP3 receptor contained a negatively charged aspartate in this position, whereas IP contained

Table 1: Summary of mutants tested in terms of voltage dependence.

<table>
<thead>
<tr>
<th>TP Mutant</th>
<th>Voltage Effect on TP Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>S242T</td>
<td>+</td>
</tr>
<tr>
<td>S245T</td>
<td>+</td>
</tr>
<tr>
<td>W249L</td>
<td>+</td>
</tr>
<tr>
<td>D276</td>
<td>+</td>
</tr>
<tr>
<td>R429K</td>
<td>+</td>
</tr>
<tr>
<td>R429A</td>
<td>+</td>
</tr>
</tbody>
</table>

Fig. 5. TP receptor R295 is involved in the voltage sensing process. (A) Left: Snakeplot created with GPCRdb.org of TP receptor indicating positions of mutated amino acids either in blue or in green. Right: Crystal structure of TP receptor cocrystallized with ramatroban (Protein Data Bank: 6IIU). The black numbers indicate minimum heavy atom distances (in angstrom) between the carboxyl group of ramatroban and R7.40 (Fig. 5, right). Summary of mutants tested in terms of voltage dependence. “+” indicates an increase of at least 50% in ΔF535/ΔF480 between −90 and +60 mV in presence of a nonsaturating agonist concentration. (C–E) HEK293T cells transiently transfected with Go13-p115 RhoGEF interaction assay and as indicated with either TP receptor wt or TP receptor R295K or R295A. (C) Left: Means ± S.D. cells were depolarized from −90 to +60 mV in the presence of U46619 (TP receptor wt [blue]; n = 6, TP receptor R295K [green]; n = 5). Right: Cells were selected for a similar response to U46619 at −90 mV (included: ΔF535/ΔF480 in presence of U46619 at −90 mV: 0.02 ± 0.03; ΔF535/ΔF480 ≤ 0.08). The responses of the selected groups to +60 mV were then compared showing a significantly stronger activation upon depolarization for TP receptor R295K compared with wt (TP receptor wt = 3.13 ± 0.30, n = 7; TP receptor R295K = 5.31 ± 1.85, n = 6; Mann Whitney test **P = 0.0012). (D) Means ± S.D. TP receptor R295A induced Go13-p115-interaction (n = 6). (E) Summarized data (n = 3–14 cells per data point) of the voltage-induced alterations in the emission ratio after subtraction of the −90 mV response for TP receptor wt, TP receptor R295K, and R295A recorded in the TP receptor induced Go13-p115-interaction in presence of U46619. For −45 mV values, TP receptor R295K and TP receptor R295A showed significant difference against wt (means ± S.D., wt n = 7, ΔF535/ΔF480: 0.07 ± 0.01; R295K n = 5, ΔF535/ΔF480: 0.02 ± 0.01; R295A n = 5, ΔF535/ΔF480: 0.04 ± 0.03; Mann Whitney test R295K vs. wt: *P = 0.03, R295A vs. wt **P = 0.003); 60 mV (means ± S.D., wt n = 6, ΔF535/ΔF480: 0.09 ± 0.03; R295K n = 7, ΔF535/ΔF480: 0.17 ± 0.04; R295A n = 7, ΔF535/ΔF480: 0.16 ± 0.06; Mann Whitney test R295K vs. wt: *P = 0.04, R295A vs. wt ***P = 0.001); 100 mV (means ± S.D., wt n = 5, ΔF535/ΔF480: 0.21 ± 0.05; Mann Whitney test R295K vs. wt: **P = 0.009).
a positively charged arginine. We wondered whether a mutation in this position could lead to a change in voltage dependence, which was not the case because EP3 receptor D124R showed EP3 receptor wt-like activation upon depolarization (Supplemental Fig. 8B), suggesting a more complex mechanism underlying the differences in voltage sensitivity.

Discussion

In the present study, we discovered that the majority of the tested prostanoid receptors exhibit robust voltage dependence. Depolarization of the electrical membrane potential enhanced receptor signaling via FP receptor, EP3 receptor, and TP receptor, whereas IP receptor signaling was not affected. The findings for TP receptor are in line with previous findings, which suggested an activation upon depolarization (Martinez-Pinna et al., 2005). Interestingly, for another member of the lipid-receptor group, the lysophosphatidic acid G protein–coupled receptors, activation upon depolarization has also been observed (Martinez-Pinna et al., 2010). Using TP receptor as a model system, we found the highest sensitivity toward voltage in the physiologic range of VM. Depolarization-induced potentiation of TP receptor signaling was already detectable on the level of TP receptor conformations. To study voltage dependence of prostanoid receptors single-cell–based assay systems were needed. FRET-based assays as readout systems to measure receptor conformation, receptor interactions with downstream signaling molecules such as G proteins and G protein–coupled receptor kinases as well as G protein activity or G protein effector interaction as used here have the advantage that they do not rely on a detection unit with intrinsic voltage dependence such as ion channels. Using these assays for most of the receptors of the prostanoid family, we found that depolarization enhanced prostanoid signaling except for IP receptor (Fig. 7A). For Gαs-coupled receptors, we used the Epac1-camps biosensor assay due to its great sensitivity and signal to noise ratio. In this assay, we succeeded in detecting the modest voltage sensitivity of β2-AR (Fig. 7C) and observed a large enhancement of TP receptor stimulated raises in cAMP in response to depolarization (Fig. 7B). This result is in line with those observed with all the other FRET-based applied to TP receptor assays. For the IP receptor, application of agonist led to cAMP production; however, these rises in cAMP were insensitive toward changes of VM. We tested in all experiments for signal saturation. IP receptor induced cAMP elevations showed in both conditions a signal to 1 to 2 nM iloprost below 50% of the signal observed in response to 3 µM iloprost (Fig. 7A), indicating that the absence of voltage dependence can’t be attributed to a saturation of the signal at -90 mV. Because all three receptors (TP receptor, IP receptor, and β2-AR) exhibited similar global rises in cAMP upon agonist application, the effect of voltage was specific to the receptor expressed: β2-AR reacted with a decrease in cAMP levels upon depolarization. IP receptor induced responses were not altered by voltage changes to a detectable degree, whereas TP receptor-mediated elevations in cAMP were strongly potentiated upon depolarization. Cytosolic cAMP levels are not

![Fig. 6. Voltage dependence of FP receptor means ± S.D. of HEK293T cells transfected with FP receptor and FRET Goq—activation assay, depicted in the scheme on top. The single traces were normalized to the negative response on stimulation with 10 µM U46619 and averaged (n = 6). Cells were activated with 333 nM U46619. Agonist-activated cells were clamped from -90 to +60 mV and vice versa.](image)

![Fig. 7. Voltage dependence of IP receptor. (A) Left: Means ± S.D. of HEK293T cells transfected with mcherry-IP receptor and FRET based cAMP-Sensor Epac1-camps. The single traces were normalized to the response on stimulation with 0.1 µM iloprost and averaged (0 mV: n = 5; -90 mV n = 4). A nonsaturating agonist concentration of iloprost was applied to cells that were held at -90 mV, and after 2 minutes the mean cAMP production was measured (T1). Subsequently, cells were either clamped to 0 mV (blue) or kept at -90 mV (black traces) for 2 minutes. The mean cAMP production was measured for both groups (T2). Right: T1 blue: 30.5% ± 14.1%; black: 26.2% ± 5.8%; T2 blue 49.1% ± 12.1%; black 48.6% ± 8.6%. No significant difference between the two conditions in the production of cAMP was observed (n.s., not significant). (B) Measurements of HEK293T cells transfected with TP receptor wt and Epac1-camps. Cells were stimulated with U46619 and clamped to the indicated potentials; traces were normalized on response to 3 µM U46619. To the nonsaturating U46619 concentration the Gαq inhibitor FR900359 with a final concentration of 1 µM has been added (means ± S.D.; n = 5). (C) Measurement of β2-AR voltage dependence in cAMP assay. Cells were stimulated with isoproterenol (Iso) and clamped to the indicated potentials; traces were normalized on response to 0.1 µM isoproterenol (means ± S.D.; n = 5).]
only influenced by receptor-mediated stimulation of adenylyl cyclases but also by phosphodiesterases, which can be quite receptor specific. It seems very unlikely that phosphodiesterase activity is voltage dependent based on their intracellular localization. Although no evidence for a voltage dependence of IP receptors could be found, we cannot rule out that some voltage dependence exists below our detection limit or requiring different agonists.

The finding of depolarization enhances prostanoid receptor signaling is of special interest because prostanoid receptors are widely expressed in the human body and the potential impact might not be limited to excitable cells. Studies show changes in V_m over time in cells during cell cycle and in cancer cells and different membrane potentials of various differentiated cells (Arcangeli et al., 1995; Yang and Brackenbury, 2013). Furthermore, it has been shown for platelets, which express different voltage-gated ion channels (Mahaut-Smith, 2012), that physiologic changes of membrane potential occur, e.g., endothelial cells release epoxyeicosatrienoic acids, which hyperpolarize platelets in turn impairing GPCR-mediated signaling (Krotz et al., 2004).

For the TP receptor that we studied in depth, ligand-induced TP receptor activity for nonsaturating concentrations doubled if the membrane potential was depolarized from -90 to $+60$ mV both at TP receptor-sensor level and for TP receptor-Gα_{13} interaction (Fig. 1C; Fig. 2, A and C). With a $V_{0.5} = -46$ mV, this voltage modulation resided within the physiologic range of membrane potentials (Fig. 1, D and E). The strength of the effect was remarkable as there was no signal amplification in these assays—allowing us to see exactly the fraction of receptors that were modulated by voltage. At very low agonist concentrations leading to only a small but detectable induction of the amplified Gα_{13}/p115-RhoGEF interaction showed a threefold effect by depolarization from -90 to $+60$ mV (Fig. 5C). This is a remarkably strong effect of voltage in comparison with other receptors published (Navarro-Polanco et al., 2011; Sahilholm et al., 2011; Birk et al., 2015).

For other GPCRs described to be voltage dependent, voltage induced alterations of agonist affinity or efficacy have been described. We could show that the voltage effect on TP receptor activity was clearly due to a change in affinity because: 1) the EC_{50} was right shifted approximately 4.5 times at -90 mV compared with $+60$ mV (Fig. 3A). 2) At saturating agonist concentrations, the voltage effect was missing even at the level of the receptor-sensor (Fig. 3B). 3) On-kinetics of voltage-induced receptor activation were dependent on agonist concentration (Fig. 3C). The kinetics of re- or hyperpolarization-induced deactivation of receptor responses should ideally be similar to those measured in response to agonist withdrawal if voltage regulates affinity of the agonist toward the receptor. In case of TP receptor voltage-induced deactivation, kinetics were significantly faster than washout kinetics. One reason for this could be the slow washout of the agonist due to its lipophilic property. Nevertheless, our results strongly suggest voltage-induced modulation of TP receptor’s affinity toward the agonist.

To date, the molecular correlate for a general voltage sensor of GPCRs remains unknown, even though the tyrosine lid above the agonist-binding pocket on muscarinic receptors have been proposed to serve as such a sensor (Barchad-Avitzur et al., 2016). However, if this tyrosine lid indeed represents a voltage sensor, which is still under debate (Hoppe et al., 2018), it is not found in all other voltage-sensitive GPCRs, including prostanoid receptors. We therefore attempted to at least gain some molecular information about voltage sensitive structures on TP receptor. We screened different agonists that carried chemical modification on distinct sites of the molecule as depicted in Fig. 4A in respect to voltage sensitivity of their TP receptor activation, all agonists reacted similarly (summarized in Fig. 4C; for detailed data see Supplemental Fig. 4G). This suggests that depolarization leads to a global alteration of the TP receptor conformation in a way that it enhances binding to all agonists in a similar way, for example by increasing the probability of TP receptor to reach active conformations, or by inducing a receptor conformation, that alters the access for agonists.

In line with this, our results on the voltage sensitivity of TP receptor mutants, previously reported to be important for ligand binding, yielded no hint for a specific modulation of voltage dependence. The only exception are results obtained with mutation of arginine 295, a site proposed and confirmed to be the interaction partner for the C1 carboxylic group of prostanoids (Sugimoto et al., 1992; Audet et al., 2019; Fan et al., 2019; Toyoda et al., 2019). Upon mutation of 295 to either lysine or alanine agonist, potency was not only reduced but also enhanced the effect of voltage, extending the range of effective voltages to more positive potentials (Fig. 5, C and D). Based on these results, we can conclude that the carboxylic acid, and its interaction site is not required for voltage
Voltage Modulates Agonist Affinity of Prostanoid Receptors

277

sensitivity of TP receptor. In our opinion, the extended side chain of R295 but not the charge might cause a restriction of the voltage range possibly by reducing the flexibility of the receptor. Taken together, our results suggest that the voltage sensitivity of TP receptor leads to an enhanced probability of ligand binding and become activated, indicating a general influence of voltage on receptor conformation, instead of specific switches in certain sites of the receptor.

Acknowledgments

We thank Dr. Cornelius Kraessler for providing reagents for the GRK2-assays. Furthermore, we would like to thank Dr. Evi Kostenis for providing the Goq inhibitor FR900359.

Authorship Contributions

Participated in research design: Kurz, Bünemann.

Conducted experiments: Kurz, Krett.

Performed data analysis: Kurz, Krett.

Wrote or contributed to the writing of the manuscript: Kurz, Bünemann.

References

Moritz Bünemann, Institute for Pharmacology and Clinical Pharmacology, Faculty of Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany. E-mail: moritz.buenemann@staff.uni-marburg.de

Address correspondence to: Moritz Bünemann, Institute for Pharmacology and Clinical Pharmacology, Faculty of Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany. E-mail: moritz.buenemann@staff.uni-marburg.de

Downloaded from dx.doi.org at September 24, 2023 molpharm.aspetjournals.org by Moritz Bünemann, Institute for Pharmacology and Clinical Pharmacology, Faculty of Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany. E-mail: moritz.buenemann@staff.uni-marburg.de

http://dx.doi.org/10.1124/jpet.119.245475

"Voltage Modulates Agonist Affinity of Prostanoid Receptors"

Sensitivity of TP-receptor. In our opinion, the extended side chain of R295 but not the charge might cause a restriction of the voltage range possibly by reducing the flexibility of the receptor. Taken together, our results suggest that the voltage sensitivity of TP-receptor leads to an enhanced probability of ligand binding and become activated, indicating a general influence of voltage on receptor conformation, instead of specific switches in certain sites of the receptor.