

















Dofetilide+LUF7244 Rescues K,11.1 Trafficking and Its Function
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Fig. 4. G601S cells were either nontreated (control) or treated with 10 pM dofetilide, 3 puM LUF7244, or 10 pM dofetilide + 3 pM LUF for 24 hours.
K,11.1 channels were labeled (left column), along with Cadherin as a pseudomembrane marker (Cadherin). Line scans of selected regions at cell
extensions (containing membrane ruffles) are indicated in the merged pictures by boxes. Results of the line scan recordings are given on the right panels.

Scale bar, 10 pm.

Ik, levels in the presence of a K,11.1 channel inhibitor. A
number of compounds have been demonstrated as K,11.1
activators (Perry et al., 2010). Activators influence gating
kinetics and can, for example, slow down or remove inactiva-
tion and/or facilitate activation (Sanguinetti, 2014). K,11.1
activators normally interact with a region distant from the
inner cavity (Perry et al., 2010), but they can bind to several
distinct sites of the channel (Perry et al., 2007; Guo et al.,
2015; Gardner et al., 2017). Negative allosteric modulators
decrease the binding affinity of Ik, blockers, either by in-
creasing dissociation rates, lowering association rates, or both
(Christopoulos et al., 2014). In our previous study, and also
shown here, LUF7244 alone can dose dependently increase
K,11.1 current and reduce inactivation of K,11.1 at higher
concentration (Qile et al., 2019). In the current study, instead
of the blockade effect of dofetilide, dofetilide + LUF7244
treatment led to a statistically significant increase in Ix,111
level in HEK-hERG cells. In G601S cells, dofetilide + LUF7244
treatment increased (not statistically significantly) steady-state
current as well. Furthermore, long-term exposure increased
Ixy11.1 continuously, which indicates that Iy, inhibitors’ acute
channel blockade could be reversed by LUF7244 and that its
trafficking rescue characteristic might further functionally ben-
efit K,11.1 for long-term administration.

We observed a stronger Ik, 11 1 increase for G601S channels
than for WT channels (Figs. 5 and 6), which could not be
explained by methodological means. Although speculative, we
can envision that, besides an effect on trafficking, the G601S
mutation may result in increased binding affinity for
LUF7244 or show subtly different channel kinetics in re-
sponse to LUF7244 compared with WT. Whether these effects
are mutation-specific are points for further investigation.
Furthermore, the finding that LUF7244 can strongly activate
the low amount of G601S channels that do reach the plasma
membrane in cells not treated with dofetilide may shortcut the
need for complete restoration of trafficking.

Modeling suggests that LUF7244 disrupts drug blocking at
the fenestration via binding close to the protein-lipid interface
(Fig. 1F). Drug binding to this site has recently been reported
for ivabradine, a K, 11.1 blocker (Perissinotti et al., 2019) with
low micromolar affinity. It has been reported that this drug
interacts with lipid-facing residues in the fenestration, in-
cluding F557 and F656, in a state-dependent manner. Even
though dofetilide is unlikely to access the K,11.1 cavity via
this fenestration, as has been shown for the more lipophilic
drug ivabradine, residue F557 has been shown to reduce
binding affinity >50-fold when mutated to a leucine (Saxena
et al., 2016). This suggests that this lipid-facing residue is
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Fig. 5. LUF7244 combined with dofetilide acutely rescued Ik,11.1 in HEK-hERG cells. (A) Shown are representative currents from cells expressing WT-
K,11.1 channel proteins using the voltage protocol in the inset. Cells were recorded in control conditions or in dofetilide + LUF7244 (acute application). In
(B), shown are the mean I-V relations based on peak tail Ik,;1.; amplitude after repolarization, recorded from cells expressing WT-K,11.1 channel
proteins. Cells were recorded in control conditions (n = 10) or in dofetilide + LUF7244 (acute) (n = 10). Data are shown as means = S.E.M. Compared with
control cells, cells recorded in dofetilide + LUF7244 increased Iky11.1 after prepulses from —70 to 10 mV (P < 0.05). Two-way ANOVA with Tukey’s test

was applied.

critical for high-affinity block of different hERG inhibitors.
Our modeling proposes that LUF7244 could disrupt coupling
between state-dependent dynamics of F557 and F656 and
interfere with dofetilide binding to the fenestration (Fig. 1E).
Given the impact of LUF7244 on inactivation, one plausible
scenario would be that the negative allosteric inhibitor
prevents dofetilide from binding or accessing the “high-affinity”
inactivated state in the fenestration, but this will require
further modeling of the inactivated state(s).

However, based on the current simulations of 50 nano-
seconds, we cannot exclude that K,11.1 has additional
LUF7244 binding sites. Additional binding sites may explain
the dual character of LUF7244 as a negative allosteric
modulator (Yu et al., 2016) and activator (Qile et al., 2019,
this study). Additional experimental analyses that may re-
quire in-depth NMR studies on drug-channel interaction are
necessary to resolve this issue. The Ik, activator ICA-105574
has structural similarities with LUF7244 and also has similar
functional characteristics (Gerlach et al., 2010). It was shown
that ICA-105574 enhanced K,11.1 currents via a mechanism
that seems to prevent or limit the inactivation gating process.
Additionally, ICA-105574 dose dependently shortened the
AP duration in isolated guinea pig ventricular cardiomyocytes.
It also remarkably suppressed the K,11.1 channel inhibitor

E4031-induced AP lengthening. In this perspective, it would
be interesting to compare these two compounds with respect to
the mechanism of action on K,11.1 channels.

Besides, in view of its predicted binding site, LUF7244 by
itself had no effects on K,11.1 channel trafficking, and it
neither inhibited pentamidine-associated trafficking defects
nor affected dofetilide-mediated rescue. Previously, we dem-
onstrated that pentamidine-induced K,11.1 forward traffick-
ing defects could be rescued by dofetilide and that both
compounds may compete for the same binding site within
the K,11.1 channel (Varkevisser et al., 2013a). Defective
K,11.1 forward trafficking can be restored by a number of
K,11.1 inhibitors that stabilize the channel via binding to the
inner pore, close to the selectivity filter (e.g., Perry et al., 2010;
Varkevisser et al., 2013a). We demonstrated that dofetilide
analogs with higher affinity tended to provide better rescue in
K 11.1 trafficking defects, whereas LUF7244 reduced the
K,11.1 channel affinity for dofetilide (Yu et al., 2016). In-
terestingly, in our current study, the combination of dofetilide
and LUF7244 still rescued pentamidine-induced K,11.1 traf-
ficking defects. One possible reason may be that LUF7244
cannot completely reduce the binding of dofetilide to the
trafficking-inhibited channels by which the capacity of
dofetilide to rescue K,11.1 trafficking remained. Another
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Fig. 6. Long-term (24—48 hours) exposure of LUF7244 combined with dofetilide rescued Iky11.; in G601S cells. (A) Shown are representative currents
from cells expressing G601S-K,11.1 channel proteins using the voltage protocol in the inset. Cells were recorded in control conditions, in dofetilide +
LUF7244 (acute), in dofetilide + LUF7244 after being cultured long-term in dofetilide + LUF7244 (LT), or in LUF7244 (acute). (B) Shown are the mean
I-V relations based on peak tail Ix,1;.1 amplitude after repolarization, recorded from cells expressing G601S-K,11.1 channel proteins. Cells were
recorded in control conditions (n = 10), in dofetilide (n = 8), in dofetilide + LUF7244 (acute) (n = 10), in dofetilide + LUF7244 after being cultured in
dofetilide + LUF7244 for 24-48 hours (LT) (n = 10), or in LUF7244 (n = 7). Data are shown as means * S.E.M. Two-way ANOVA with Tukey’s test was

applied.

possibility is the absence of LUF7244 binding to intracellu-
larly localized, immature, and only core-glycosylated K,11.1
channels. This may also explain 1) the absence of effects of
LUF7244 on defective G601S trafficking, 2) the lack of
interference of pentamidine-mediated trafficking defects by
LUF7244, and 3) permitting dofetilide- and E4031-mediated
rescue of K,11.1 trafficking. Recent preliminary data indicate
that dofetilide specifically binds to membrane preparations of
G601S cells, which is in line with the observed trafficking
rescue effect. It now has to be determined to which extent this
binding is sensitive to LUF7244. We hypothesize that
LUF7244 will certainly not completely inhibit dofetilide
binding to intracellularly localized K,11.1; otherwise, dofeti-
lide + LUF7244 would not provide any rescue of maturation,
membrane staining, and Ix,111, as shown in the current
manuscript.

Negative allosteric modulators and activators can be con-
sidered as therapeutic options to prevent drug-induced ar-
rhythmia (Sanguinetti 2014; Yu et al., 2016). Recently, we
have shown that LUF7244 suppressed astemizole-induced

early after depolarizations (EADs) andAP AP prolongation in
neonatal rat ventricular myocytes (Yu et al., 2016). Addition-
ally, LUF7244 pretreatment prevented the occurrence of
astemizole-induced EADs, whereas LUF7244 per se did not
shorten AP duration (APD) or strongly affect dispersion of
APD,p in neonatal rat ventricular myocytes at 10 uM (Yu Z
et al.,, 2016). In contrast, in isolated canine ventricular
cardiomyocytes and human induced pluripotent stem cells
(iPS)-derived cardiomyocytes, LUF7244 remarkably short-
ened the APDgy, which is in line with its activator character-
istics (Qile et al., 2019). Moreover, we demonstrated that
LUF7244 suppressed EADs in isolated canine ventricular
myocytes and prevented dofetilide-induced ventricular
arrhythmias in the dog with chronic atrioventricular node
block (Qile et al., 2019).

In conclusion, the current study demonstrates that
LUF7244, and possibly also other negative allosteric modu-
lators and activators, might also have a role in suppression
or preventing arrhythmia caused by defective forward traf-
ficking. Thus, the negative allosteric modulator/activator

1202 ‘vZ Jequieides uo sfeudnor | 34SY e Buo'sfeulno fiedse w.reyd jow wiou) pspeojumod


http://molpharm.aspetjournals.org/

364 Qile et al.

LUF7244 in combination with a genuine K,11.1 inhibitor
could provide a new pharmacological treatment to function-
ally correct both congenital and acquired K,11.1 trafficking
defects.
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