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ABSTRACT
PF-05089771 is an aryl sulfonamide Nav1.7 channel blocker that
binds to the inactivated state of Nav1.7 channels with high
affinity but binds only weakly to channels in the resting state.
Such aryl sulfonamide Nav1.7 channel blockers bind to the
extracellular surface of the S1-S4 voltage-sensor segment of
homologous Domain 4, whose movement is associated with
inactivation. This binding site is different from that of classic
sodium channel inhibitors like lidocaine, which also bind with
higher affinity to the inactivated state than the resting state but
bind at a site within the pore of the channel. The common
dependence on gating state with distinct binding sites raises the
possibility that inhibition by aryl sulfonamides and by classic
local anesthetics might show an interaction mediated by their
mutual state dependence. We tested this possibility by examin-
ing the state-dependent inhibition by PF-05089771 and lido-
caine of human Nav1.7 channels expressed in human embryonic
kidney 293 cells. At 280 mV, where a small fraction of channels
are in an inactivated state under drug-free conditions, inhibition

by PF-05089771 was both enhanced and speeded in the
presence of lidocaine. The results suggest that lidocaine binding
to the channel enhances PF-05089771 inhibition by altering the
equilibrium between resting states (with D4S4 in the inner
position) and inactivated states (with D4S4 in the outer position).
The gating state–mediated interaction between the compounds
illustrates a principle applicable to many state-dependent
agents.

SIGNIFICANCE STATEMENT
The results show that lidocaine enhances the degree and rate of
inhibition of Nav1.7 channels by the aryl sulfonamide compound
PF-05089771, consistent with state-dependent binding by
lidocaine increasing the fraction of channels presenting a high-
affinity binding site for PF-05089771 and suggesting that
combinations of agents targeted to the pore-region binding site
of lidocaine and the external binding site of aryl sulfonamides
may have synergistic actions.

Introduction
Local anesthetics, like lidocaine, act by inhibiting the

voltage-gated sodium channels that generate action poten-
tials. The binding site for local anesthetics is inside the pore-
forming region of the channel, and a wide variety of other
pharmacological agents including antiepileptic drugs like
carbamazepine bind to the same site [Ragsdale et al., 1994,
1996; Kuo, 1998; Yarov-Yarovoy et al., 2001, 2002; reviewed by
Catterall (1999), Catterall and Swanson (2015)]. A common
feature of these agents is that they bind with much higher
affinity to the open and inactivated states of the channel
induced by depolarization than to the resting state that
predominates at normal resting potentials (Hille, 1977;
Catterall, 1999). The high-affinity binding site for these drugs
is apparently formed when the gating charge–containing S4
segments of the channel move from their more internal
(resting) to more external (activated) positions (Vedantham
and Cannon, 1999; Sheets and Hanck, 2007; Fozzard et al.,
2011). These S4 movements promote inactivation (Kuo and
Bean, 1994; Capes et al., 2013; Ahern et al., 2016), so the

formation of the high-affinity binding site for drugs like
lidocaine roughly parallels the development of inactivation.
However, it is probably the outward position of the S4 regions,
especially those of the third and fourth pseudosubunits, that is
important for high-affinity binding of local anesthetics rather
than inactivation per se (Wang et al., 2004; Muroi and
Chanda, 2009; Nguyen et al., 2019).
Recently, a new class of small-molecule inhibitors has been

identified that interacts with the sodium channel in a com-
pletely different manner (McCormack et al., 2013; Bagal et al.,
2014; Alexandrou et al., 2016; Focken et al., 2016, 2018;
Flinspach et al., 2017; Pero et al., 2017; Wu et al., 2017, 2018).
These molecules, based on an aryl sulfonamide scaffold, bind
to the voltage-sensor region of the fourth pseudosubunit
domain (VSD4) at a site that is on the external side of the
plasma membrane (McCormack et al., 2013; Ahuja et al.,
2015). Like local anesthetics, binding is strongly state-
dependent, with tight binding to inactivated channels and
weak binding to resting channels (Alexandrou et al., 2016;
Theile et al., 2016). A plausible model is that when the S4
region of VSD4 moves outward during inactivation (Capes
et al., 2013; Hsu et al., 2017), it forms a high-affinity binding
site for the aryl sulfonamide compounds (Ahuja et al., 2015).
The state dependence of such agents may be important for
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ABBREVIATIONS: VSD4, voltage-sensor region of the fourth pseudosubunit domain.
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their potential clinical efficacy and for designing screens for
new compounds (Chernov-Rogan et al., 2018).
If binding of aryl sulfonamide compounds and classic

sodium channel inhibitors occurs at different sites, and
binding of one agent does not interfere with binding of
another, there could be a mutual synergistic enhancement of
channel inhibition by the two compounds because at any given
voltage, binding of each compound can occur not only to
normal drug-free inactivated channels but also to the new
fraction of inactivated channels occupied by the other com-
pound. On the other hand, binding of one compound might
affect binding of the other. For example, binding of lidocaine to
its site within the pore of the inactivated channel might alter
the position of the VSD4 in such a way as to alter the binding
site for the aryl sulfonamide compounds. To explore these
possibilities, we tested whether binding of lidocaine to human
Nav1.7 channels modifies the state-dependent interaction
of the aryl sulfonamide compound PF-05089771. We found
that the presence of lidocaine enhanced both the degree and
speed of inhibition by PF-05089771, suggesting that state-
dependent binding by lidocaine results in an increased
fraction of channels presenting a high-affinity binding site
for PF-05089771.

Materials and Methods
Pharmacology. PF-05089771 (4-[2-(5-Amino-1H-pyrazol-4-yl)-4-

chloro-phenoxy]-5-chloro-2-fluoro-N-thiazol-4-yl-benzenesulfonamide;
Swain et al., 2017) was obtained from Sigma-Aldrich as the p-toluene
sulfonate salt (PZ0311; Sigma-Aldrich), prepared as a stock solution
of 500 mM in DMSO (Sigma), and diluted to final concentrations of
100–500 nM in recording solution. Lidocaine was purchased from
Sigma-Aldrich and prepared as a stock solution of 100 mM in
distilled water.

Cell Culture. Human embryonic kidney 293 cells stably express-
ing human Nav1.7 channels (Liu et al., 2012) were grown in Eagle’s
Minimum Essential Medium (American Type Culture Collection)
containing 10% FBS (Sigma), 800 mg/ml G418 (Sigma), and penicil-
lin/streptomycin (Sigma) under 5% CO2 at 37°C.

Electrophysiology. Whole-cell recordings were obtained using
patch pipettes with resistances of 2–3.5 MV when filled with the
internal solution consisting of 61 mM CsF, 61 mM CsCl, 9 mM NaCl,
1.8 mM MgCl2, 9 mM EGTA, 14 mM creatine phosphate (Tris salt),
4 mM MgATP, 0.3 mM GTP (Tris salt), and 9 mM HEPES, with pH
adjusted to 7.2 with CsOH. The shank of the electrode was wrapped
with Parafilm to reduce capacitance and allow optimal series re-
sistance compensation without oscillation. Seals were obtained and
the whole-cell configuration was established with cells in Tyrode’s
solution containing 10mMTEACl (155mMNaCl, 3.5mMKCl, 10mM
TEACl, 1.5 mM CaCl2, 1 mM MgCl2, 10 mM HEPES, 10 mM glucose,
pH adjusted to 7.4 with NaOH). After establishing whole-cell re-
cording, cells were lifted off the bottom of the recording chamber and
placed in front of an array of quartz flow pipes (250 mm internal
diameter, 350 mm external diameter). Recordings were made using
the Tyrode’s solutionwith 10mMTEACl. Solution changesweremade
(in ,1 second) by moving the cell between adjacent pipes. Control
solution contained the same DMSO concentration as the PF-
05089771–containing solution to which it was matched.

The amplifier was tuned for partial compensation of series re-
sistance (typically 70%–80% of a total series resistance of 4–10 MV),
and tuning was periodically readjusted during the experiment.
Currents were recorded at room temperature (21–23°C) with an
Axopatch 200 amplifier and filtered at 5 kHz with a low-pass Bessel
filter. Currentswere digitized using aDigidata 1322Adata acquisition
interface controlled by pClamp9.2 software (Axon Instruments).

Analysis. Data were analyzed using programs written in Igor
Pro 4.0 (Wavemetrics, Lake Oswego, OR) using DataAccess (Bruxton
Software) to read pClamp data files into Igor Pro. Currents were
corrected for linear capacitative and leak currents, which were
determined using 5-mV hyperpolarizations delivered from the resting
potential (usually 2100 or 2120 mV) and then appropriately scaled
and subtracted. The time course of inhibition by PF-05089771 (or PF-
05089771 in 1 mM lidocaine) could be fit well by a single exponential
function; at concentrations of 200 nM PF-05089771 or below, in-
hibition did not reach a steady state in 10 minutes, and the fitting
allowed the asymptote to vary as a free parameter. Statistical
analyses were performed using Igor Pro. Data are given as mean 6
S.D., and statistical significance was assessed with the two-tailed
Mann-Whitney Test.

Results
We first determined the kinetics and state dependence of

inhibition of human Nav1.7 channels under our recording
conditions, using protocols similar to those introduced pre-
viously to study PF-05089771 inhibition (Alexandrou et al.,
2016; Theile et al., 2016). Figure 1 shows the time course of
dose-dependent inhibition by PF-05089771 using a pulse pro-
tocol in which binding of PF-05089771 is facilitated by long
depolarizing prepulses. Sodium current is evoked by a 10-
millisecond depolarization to 0mV from a holding voltage of2
120 mV. In each delivery of the pulse protocol, binding of PF-
05089771 is facilitated by a 4-second prepulse to 0 mV, which
puts channels into inactivated states with high affinity for PF-
05089771 (Alexandrou et al., 2016; Theile et al., 2016). After
the prepulse, a 3-second return to 2120 mV enables nearly
complete recovery from non–drug-bound channels, including
slow inactivated channels (Jo and Bean, 2011, 2017), but is too
short for any significant recovery from drug-bound inactivated
states (Theile et al., 2016). Thus, this protocol (repeated every
15 seconds) effectively monitors the time course of drug
binding. Drug binding occurs almost entirely during the
prepulse to 0mV, duringwhich channels are in the inactivated
state after the first few milliseconds, because there is essen-
tially no inhibition if the protocol is run without a prepulse,
thus delivering the 10-millisecond test pulse from a steady
holding potential of 2120 mV (Theile et al., 2016). With this
protocol, a 10-minute application of 500 nM PF-05089771
produced steady-state inhibition of 95% 6 2% (n 5 6, mean 6
S.D.). With lower concentrations of PF-05089771, inhibition
was slower, and it was not feasible to determine a steady-state
dose-response relationship at lower concentrations. There-
fore, in designing subsequent experiments, we focused on the
time course of inhibition. This was strongly concentration-
dependent, with the time constant for inhibition by 100 nM
PF-05089771 (323 6 85 seconds, mean 6 S.D., n 5 6)
decreasing about 2-fold with 200 nM PF-05089771 (151 6 12
seconds, n 5 6) and about 5-fold with 500 nM PF-05089771
(71 6 8 seconds, n 5 6). This relationship is roughly what is
expected if PF-05089771 binds to inactivated channels during
the prepulse with a binding rate constant proportional to PF-
05089771 concentration and a much slower unbinding rate
constant.
The slow time course of inhibition by PF-05089771 seen

with the protocol in Fig. 1, with only a small increment in
inhibition with each application of a 4-second prepulse to
0 mV, raises the possibility that PF-05089771 occurs by
binding to slow inactivated states of the channels, which are
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produced by long depolarizations of sodium channels. How-
ever, it can be difficult to distinguish selective binding to slow
inactivated states from high-affinity binding to fast inacti-
vated states that simply occurs with slow on- and off-rates
(Karoly et al., 2010). Figure 2 shows the results with a protocol
used previously to discriminate between these mechanisms
(Jo and Bean, 2011, 2017) based on the different voltage
dependence of occupancy of fast and slow inactivated states.
The experiment compares the kinetics of drug inhibition at
two different voltages: 240 mV, where fast inactivation is
complete (Fig. 2A, open circles) but slow inactivation is not,
and at 0 mV, where slow inactivation is maximal (Fig. 2A,
closed circles). If drug binding occurs selectively to slow
inactivated states, the time course of inhibition should be
much faster at 0 mV, where a substantial fraction of channels
are in the slow inactivated state, than at 240 mV, where few
channels are in the slow inactivated state, and most channels
are in the fast inactivated state. In fact, however, the time
course of inhibition is nearly identical at the two voltages,
occurring with a time constant of 167 6 31 seconds (mean 6
S.D.) with prepulses to 240 mV (n 5 6) and 151 6 12 seconds
(mean 6 S.D.) with prepulses to 0 mV (n 5 6) (P 5 0.68, two-
tailed Mann-Whitney Test). As expected, with a prepulse to2
80 mV, where a smaller fraction of channels are in any
inactivated state, the time course of inhibition was slower
(time constant of 2846 52 seconds, mean6 S.D., n5 5) (0 mV
vs.280mV, P5 0.008, two-tailedMann-Whitney Test). These
results fit well with a previous study, wherein the inhibition
byPF-05089771was found to depend on the total time spent at
depolarized voltages where channels are inactivated, regard-
less of whether the time is divided into many short prepulses,

where channels are mostly in fast inactivated states, or fewer
long prepulses, where channels are mainly in slow inactivated
states (Theile et al., 2016).
Next, we examined whether channel occupancy by lidocaine

affects binding of PF-05089771. First, we characterized the
effects of lidocaine applied alone. We used a high concentra-
tion of lidocaine (1 mM) because for these experiments, we
wanted to explore the rate of PF-05089771 binding to channels
that are all occupied by lidocaine. At 1mM, lidocaine inhibited
current evoked from a holding potential of2120mV by 31%6
8% (mean 6 S.D., n 5 4, consistent with a Kd of binding of
2.2 mM to the low-affinity resting state of the channel) (see
Bean et al., 1983). With a holding potential of280 mV, where
channels were partially inactivated (on avg. by 20%6 9%, n5
22), 1 mM lidocaine inhibited current evoked by a step to 0mV
completely (Fig. 3A), consistent with far higher affinity to
inactivated channels. After complete inhibition at 280 mV,
when the membrane voltage was changed to 2120 mV,
lidocaine-bound channels recovered availability in about
a second (Fig. 3B). Figure 3C shows the time course of
inhibition by 1 mM lidocaine using a pulse protocol incorpo-
rating 4-second conditioning pulses to 280 mV (which would
produce essentially complete occupancy of sodium channels by
lidocaine) followed by 3 seconds at 2120 mV (long enough to
completely remove the extra inhibition produced by lidocaine
binding at 280 mV) and then a test pulse to 0 mV. With this
protocol, lidocaine inhibited test pulse current by 30% 6
9% (mean 6 S.D., n 5 23) and, with the pulse protocol
delivered every 15 seconds, inhibition by lidocaine developed
and recovered within one cycle. Thus, this protocol is ideal
for testing whether lidocaine binding can enhance binding of

Fig. 1. PF-05089771 (PF-771) inhibition of human
Nav1.7 channels. (A) Top: pulse protocol. Sodium cur-
rent was assayed by a 10-millisecond test pulse to 0 mV
from a holding potential of 2120 mV. Binding of PF-
05089771 was facilitated by a 4-second prepulse de-
polarization to 0 mV, followed by a 3-second return to2
120 mV to allow recovery from inactivation of channels
not bound to drug (including recovery from slow in-
activation). The sequence was repeated every 15 sec-
onds. Bottom: Currents evoked by the test pulse before
and after exposure to 200 nM PF-05089771 for 10
minutes. (B) Time course of sodium current (INa) in-
hibition by 100, 200, and 500 nM PF-05089771. (C)
Collected results for inhibition produced by 10 minutes
of drug exposure with 4-second prepulses to 0 mV. Open
circles show results from individual cells, and closed
symbols showmean6 S.D., n5 6 for each concentration
of PF-05089771. (D) Collected results for time constant
of inhibition. Open circles show results from individual
cells, and closed symbols show mean 6 S.D., n 5 6 for
each concentration of PF-05089771.
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PF-05089771 because binding of PF-05089771 during the
protocol occurs during the 4-second depolarization to 280 mV,
where channels are all occupied by lidocaine (if 1 mM lidocaine
is present), but although lidocaine unbinds rapidly during the
following 3-second period at 2120 mV, PF-05089771 does not,
so repeated cycles of the pulse protocol can monitor the rate
and extent of PF-05089771 binding.
Figure 4 shows the results of experiments using this pulse

protocol to test whether channel occupancy by lidocaine affects
binding of PF-05089771. These experiments showed that
exposure to lidocaine enhanced channel inhibition by PF-
05089771. Applied for 10 minutes, 100 nM PF-05089771
applied alone inhibited by 51% 6 6% (mean 6 S.D., n 5 7),
whereas 100 nMPF-05089771 applied in the presence of 1mM
lidocaine inhibited by 83%6 7% (normalizing inhibition to the
current in 1 mM lidocaine alone just before application of 100
nM PF-05089771; n5 9; P5 0.001, two-tailed Mann-Whitney
Test). Also, as expected if a larger fraction of channels present
a high-affinity binding site for PF-05089771 in the presence of
lidocaine (a new fraction of inactivated channels bound to

lidocaine as well as inactivated channels not bound) than
without (only the fraction of inactivated channels), the de-
velopment of PF-05089771 inhibition was faster when in the
presence of lidocaine (time constant of 1846 37 seconds, mean
6S.D., n5 9) than in the absence of lidocaine (time constant of
4446 117 seconds,mean6S.D., n5 6) (P5 0.0018, two-tailed
Mann-Whitney Test).

Discussion
Synergistic Inhibition by Lidocaine and PF-05089771.

These results show that inhibition by PF-05089771 is en-
hanced in the presence of lidocaine, suggesting a synergistic
action of the two types of inhibitors. The most likely mecha-
nism for this effect is that both agents interact with particu-
larly high affinity with channels in which the voltage-sensor
regions of the channels are in the more external “activated”
position yet bind at distinct sites. Thus, the mass-action effect
of each inhibitor to “pull” channels into conformations with
voltage sensors in the external position results in a larger

Fig. 2. Dependence of PF-05089771 inhibition on prepulse voltage. (A) Voltage dependence of occupancy of fast and slow inactivated states in absence of
drug. Occupancy of fast inactivated states (open circles) was assayed by sodium current (INa) evoked by a 20-millisecond test step to 220 mV after 100-
millisecond prepulses to varying voltages normalized to the current evoked from2140 mV. Solid curve: best fit by the Boltzmann Eq. 1/(11 exp ((Vm 2
Vh)/k)), wherein Vm is conditioning potential, Vh is voltage of half-maximal inactivation, and k is the slope factor, with Vh 5 266.5 mV and k 5 8.2;
collected values Vh 5 265 6 8 mV, and k 5 8 6 2.4 mV (mean 6 S.D., n 5 23). Slow inactivation (filled circles) was measured with a 5-second
depolarization to varying voltages, returning to 2120 mV for 100 milliseconds to allow recovery from fast inactivation and then assaying channel
availability with a test pulse to220mV. Relative sodium current was normalized to that with a conditioning pulse to2140mV. Data are fit by amodified
Boltzmann equation (Carr et al., 2003): I/Imax 5 (12 Iresid)/((11 exp ((Vm 2 Vh)/k))1 Iresid, with Vh 52316 9 mV, k5 166 6 mV, and Iresid 5 0.76 0.2
(mean6 S.D., n5 8). (B) Time course of inhibition by 200 nMPF-05089771 using stimulation prototcols as in Fig. 1 with 4-second prepulses to280,240,
or 0 mV. (C) Collected results for inhibition produced by 10 minutes of drug exposure with protocols using prepulses to each voltage. Open circles show
results from individual cells, and closed symbols showmean6 S.D., n5 6 for each prepulse voltage. (D) Collected results for time course of inhibition with
prepulses to each voltage. Open circles show results from individual cells, and closed symbols showmean6S.D., n5 6 for each prepulse voltage. The time
constant for best fit of a single exponential decay to steady state, with prepulses to280 mV (2846 52 seconds, n5 5),240 mV (1676 31 seconds, n5 6),
or 0 mV (151 6 12 seconds, n 5 6) (0 mV vs. 240 mV, P 5 0.68; 0 mV vs. 280 mV, P 5 0.008, two-tailed Mann-Whitney Test). Open circles indicate
individual experiments, and filled circles show mean 6 S.D. from collected results.
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fraction of all channels with voltage sensors in the external
position, mimicking the effect of a more depolarized resting
potential and increasing the fraction of channels presenting
a high-affinity site for binding of the other inhibitor at its
separate site. Channels with voltage sensors in the external,
“activated” position are in inactivated states except for the
first few milliseconds after a voltage step, during which they
pass transiently through open states. Because binding of both
lidocaine and PF-05089771 occurs over hundreds of millseconds
to many seconds, binding of both agents will occur primarily to
inactivated states. Thus, it is reasonable to view both agents as
stabilizing inactivated states of the channel, even though it is
movement of the voltage-sensor regions from more internal to
more external “activated” positions rather than inactivation per
se that results in formation of the distinct high-affinity binding
sites for both lidocaine (Vedantham and Cannon, 1999; Wang
et al., 2004; Sheets and Hanck, 2007; Fozzard et al., 2011) and
PF-05089771 (Ahuja et al., 2015).
Contrast with Lacosamide and Lidocaine. Previously,

we have done similar experiments examining interaction be-
tween sodium channel inhibition by lidocaine and lacosamide (Jo
and Bean, 2017). These showed the opposite effect: the extent of
lacosamide inhibition was reduced in the presence of lidocaine,
which was consistent with binding of lidocaine preventing
binding of lacosamide, fitting with other evidence that the two
agents bind at the same binding site (Wang and Wang, 2014).
Tight Binding of PF-05089771 to Both Fast and Slow

Inactivated States. Together with a previous study (Theile
et al., 2016), the results in Fig. 2 showing that the extent and

kinetics of PF-05089771 inhibition are almost identical at
voltages of 240 mV (where fast inactivation is complete but
there is little slow inactivation) and 0 mV (where slow
inactivation is nearly maximal) suggest that PF-05089771
binds equally well to fast and slow inactivated states. This
is consistent with the expectation that the voltage-sensor
regions of the channel would be in the external position in both
fast and slow inactivated states. Interestingly, lidocaine
binding to Nav1.7 channels may be different in this respect
because lidocaine binding appears to hinder entry of channels
into the slow inactivated state (Sheets et al., 2011). The
structural basis of this effect is unknown and may be specific
to Nav1.7 channels. Under physiologic or even pathophysio-
logical conditions, the voltage range over which lidocaine
binding and PF-05089771 binding might interact is unlikely
to be more positive than 240 mV and so might be expected to
involve primarily binding to fast inactivated states.
Clinical Implications. It remains to be seen whether

the synergistic sodium channel inhibition by lidocaine and
PF-05089771 can be exploited clinically. In vivo, the efficacy
and time course of both injected and orally administered pain
inhibitors depend strongly on their pharmacokinetics in
addition to their fundamental action on sodium channels
(e.g., Sun et al., 2019). Our results would predict that local
injection of lidocaine and PF-05089771 would synergistically
enhance nerve block compared with either agent alone.
Interestingly, such synergy was recently reported for bupiva-
caine and neosaxitoxin (Lobo et al., 2015; Templin et al., 2015);
in this case, a synergistic action at the level of channel block

Fig. 3. Lidocaine binding to Nav1.7 channels is complete at
280 mV and recovers in 3 seconds at2120 mV. (A) Effect of
1 mM lidocaine on current evoked at 0 mV when applied
from a holding potential of 2120 mV or after holding at 2
80 mV for 4 seconds. (B) Time course of recovery of sodium
channels at2120 mV after a 4-second conditioning pulse to
280mV. Black filled circles: sodium current (INa) in control,
normalized to maximal current (measured after 10 seconds
at2120 mV). Red filled circles: currents in 1 mM lidocaine,
normalized to maximal control current. Red open circles:
currents in 1 mM lidocaine, normalized to maximal current
in lidocaine. Mean 6 S.D., n 5 4. The pulse protocol was
repeated every 15 seconds with increasing Dt up to 10
seconds. (C) Time course of inhibition and recovery by 1 mM
lidocaine applied with illustrated pulse protocol.
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has not yet been investigated but is plausible because binding
of tetrodotoxin (closely related to saxitoxin) favors the out-
ward position of the domain IV voltage sensor (Capes et al.,
2012), producing a component of use-dependent inhibition
(Patton and Goldin, 1991). However, the state dependence of
tetrodotoxin or saxitoxin binding is much weaker than that of
PF-05089771, suggesting that synergy between PF-05089771
and local anesthetics is likely stronger.
The action of lidocaine to enhance inhibition by PF-

05089771 is expected to be shared by a wide range of clinically
used sodium channel inhibitors that bind at the same site as
lidocaine and similarly stabilize inactivated states of the
channel. Such agents include other local anesthetics; antiep-
ileptic drugs like carbamazepine, phenytoin, lamotrigine, and
lacosamide; and probably amitriptyline, an antidepressant
also used to treat neuropathic pain, in which it likely acts in
part by sodium channel inhibition (Kalso, 2005; Dick et al.,
2007). Although studies have shown utility of the new Nav1.7
aryl sulfonamide compounds for treating pain in various
animal models (Focken et al., 2016; Flinspach et al., 2017;
Pero et al., 2017; Wu et al., 2017; Sun et al., 2019), it is still
unclear how effective they will be in humans and for what
conditions. Because of the unusual anionic nature of the
compounds associatedwith the negatively charged “warhead,”
it is possible that tissue distribution may present unusual

challenges and limit the concentration of compound that can
be achieved at nerve endings or axons. The very slow binding
of the compounds to channels even in the inactivated state
may also limit the fraction of channels inhibited. Our results
suggest that combination therapies with agents like orally
active phenytoin, carbamazepine, or amitriptyline may syn-
ergistically enhance the efficacy of the compounds for treating
pain systemically.
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