TMEM16A Ca\(^{2+}\)-Activated Cl\(^{-}\) Channel Regulates the Proliferation and Migration of Brain Capillary Endothelial Cells

Takahisa Suzuki, Miki Yasumoto, Yoshiaki Suzuki, Kiyofumi Asai, Yuji Imaizumi, and Hisao Yamamura

Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences (T.S., M.Y., Y.S., Y.I., H.Y.) and Department of Molecular Neurobiology, Graduate School of Medical Sciences (K.A.), Nagoya City University, Nagoya, Japan

Received November 10, 2019; accepted April 20, 2020

ABSTRACT

The blood-brain barrier (BBB) is essential for the maintenance of homeostasis in the brain. Brain capillary endothelial cells (BCECs) comprise the BBB, and thus a delicate balance between their proliferation and death is required. Although the activity of ion channels in BCECs is involved in BBB functions, the underlying molecular mechanisms remain unclear. In the present study, the molecular components of Ca\(^{2+}\)-activated Cl\(^{-}\) (Cl\(_{Ca}\)) channels and their physiological roles were examined using mouse BCECs (mBCECs) and a cell line derived from bovine BCECs, t-BBEC117. Expression analyses revealed that TMEM16A was strongly expressed in mBCECs and t-BBEC117 cells. In t-BBEC117 cells, whole-cell Cl\(^{-}\) currents were sensitive to the Cl\(_{Ca}\) channel blockers, 100 \(\mu\)M niflumic acid and 10 \(\mu\)M T16A\(_{inh}\), and were also reduced markedly by small-interfering RNA (siRNA) knockdown of TMEM16A. Importantly, block of Cl\(_{Ca}\) channel blockers or TMEM16A siRNA caused an increase in resting cytosolic Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{cyt}\)) in BCECs. Our data also reveal how these BCECs may be involved in the maintenance of BBB functions, as both the proliferation and migration are altered following changes in channel activity.

SIGNIFICANCE STATEMENT

In brain capillary endothelial cells (BCECs) of the blood-brain barrier (BBB), TMEM16A is responsible for Ca\(^{2+}\)-activated Cl\(^{-}\) channels and can regulate both the resting membrane potential and cytosolic Ca\(^{2+}\) concentration, contributing to the proliferation and migration of BCECs. The present study provides novel information on the molecular mechanisms underlying the physiological functions of BCECs in the BBB and a novel target for therapeutic drugs for disorders associated with dysfunctions in the BBB.

Introduction

The blood-brain barrier (BBB) plays a critical role in the regulation of homeostasis in the brain microenvironment. Under physiological conditions, the BBB restricts the movement of substances between the circulation and the brain and protects neurons from the invasion of peripheral noxious substances. The BBB is formed by brain capillary endothelial cells (BCECs). BCECs are structurally characterized by intercellular tight junctions, relatively low transcellular transport activity, and surrounding cell types, including pericytes, astrocytes, neurons, and microglia. These surrounding cells form a neurovascular unit, which contributes to the maintenance and enhancement of the BBB (Abbott et al., 2006; Nakagawa et al., 2009). The barrier function of the BBB is maintained by the turnover of BCECs, and this involves a dynamic balance between the production of new cells by cell proliferation and their degradation by cell death (Abbott et al., 2006; Sweeney et al., 2019).

In vascular endothelial cells, an increase in cytosolic Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{cyt}\)) can influence cell fate, including cell viability and rates of proliferation, migration, and death. Endothelial Ca\(^{2+}\) signaling is modulated by the activity of ion channels (Nilius and Droogmans, 2001). BCECs have been
reported to express several types of ion channels, such as voltage-dependent K⁺ channels, inward-rectifying K⁺ (Kir) channels, Ca²⁺-activated K⁺ channels, and transient receptor potential (TRP) channels. Their combined activity contributes to the regulation of blood flow (Longden et al., 2016; Sweeney et al., 2019). Previously we have found that small-conductance Ca²⁺-activated K⁺ (SKCa) channels (SKCa2) (Yamazaki et al., 2006), Kir2.1 channels (Yamazaki et al., 2011), TRP canonical subfamily (TRPC) channels (TRPC1/3) (Yamazaki et al., 2007), and store-operated Ca²⁺ channels (Orai1/2 and stromal interaction molecule 1 (STIM1)) (Kito et al., 2014). In the TMEM16 research field, the majority of studies have focused on the functional expression of Cl⁻ channels in BCECs and can facilitate cell proliferation and death. Although the physiological significance of Ca²⁺ and K⁺ channels in BCECs has been examined in detail, that of the functional expression of Cl⁻ channels remains unclear.

Cl⁻ channels contribute to a number of physiological processes, such as epithelial fluid secretion, cell volume regulation, osmolarity sensing, smooth muscle contraction, and neuroexcitation. Among Cl⁻ channels, Ca²⁺-activated Cl⁻ (ClCa) channels are widely distributed and activated by an increase in [Ca²⁺]cyt. ClCa conductance regulates epithelial fluid secretion, smooth muscle contraction, and neurotransmission (Verkman and Galietta, 2009). Two TMEM16 family proteins, TMEM16A and TMEM16B, were recently identified as functional ClCa channels. TMEM16A channels are expressed in many cell types, including epithelial cells, smooth muscle cells, the interstitial cells of Cajal (ICC), and nociceptive neurons (Pedemonte and Galietta, 2014). On the other hand, the expression of TMEM16B channels is localized in olfactory, retinal, and hippocampal neurons (Pedemonte and Galietta, 2014). In the TMEM16 research field, the majority of studies focus on physiological and pathological functions in the epithelium, smooth muscles, neurons, and ICC. In contrast, relatively little information has been obtained from the endothelium.

In the present study, the functional expression and physiological significance of the TMEM16 family were examined in mouse BCECs (mBCECs) and a cell line derived from bovine BCECs, t-BBEC117, using ClCa channel blockers and TMEM16A small-interfering RNA (siRNA) by quantitative real-time polymerase chain reaction (PCR). Western blotting, whole-cell patch-clamp, membrane potential and [Ca²⁺]cyt measurements by fluorescent dyes, cell viability, proliferation, migration assays, and trans-endothelial permeability measurements. We have found that TMEM16A formed ClCa channels in BCECs and strongly modulated both their resting membrane potential and [Ca²⁺]cyt. These changes result in the regulation of the proliferation and migration of these cells.

Materials and Methods

Ethical Approval. All experiments were approved by the Ethics Committee of Nagoya City University and conducted in accordance with the Guide for the Care and Use of Laboratory Animals of the Japanese Pharmaceutical Society.

Cell Isolation. mBCECs were isolated as reported previously (Perrière et al., 2005). In brief, the cerebral cortices of male mice (C57BL/6N, 6–8 weeks; Japan SLC, Hamamatsu, Japan) were removed from outer blood vessels and immunes and immersed in ice-cold PBS. The dissected cortices were homogenized and incubated in Dulbecco’s modified Eagle’s medium (DMEM, low glucose; Wako Pure Chemical Industries, Osaka, Japan) containing 25 U/ml collagenase (type 2; Worthington Biochemical, Lakewood, NJ), 0.1% dispase II (neutral protease, grade II; Roche Diagnostics, Mannheim, Germany), and 10 U/ml deoxyribonuclease I (from bovine pancreas, type IV; Sigma-Aldrich, St. Louis, MO) at 37°C for 90 minutes. The digested tissues were centrifuged (1000 rpm, 4°C, 10 minutes), and the supernatant was removed. The tissue pellet was suspended in DMEM (low glucose) containing 20% bovine serum albumin (fraction V, pH 7.0; Seikagaku, Tokyo, Japan) and centrifuged (1000 rpm, 4°C, 5 minutes). After the supernatant was removed, the tissue pellet was suspended in DMEM (low glucose) containing 0.1% dispase II and 10 U/ml deoxyribonuclease I, incubated at 37°C for 60 minutes, and dispersed mechanically. After the supernatant was removed by centrifugation (1000 rpm, 4°C, 5 minutes), the cell pellet was suspended in DMEM (high glucose; Wako Pure Chemical Industries) containing 15% plasma-derived serum (from platelet poor human plasma; Sigma-Aldrich), 100 U/ml penicillin G (Wako Pure Chemical Industries), 200 μg/ml streptomycin (Meiji Seika Pharma, Tokyo, Japan), and 4 μg/ml puromycin (InviBioGen, San Diego, CA) and then filtered using the Cell Strainers (40 μm; Falcon/Corning, Corning, NY) to obtain the capillary fraction. The capillary cells were incubated on a cell culture dish coated with 0.3 mg/ml collagen (Cellmatrix type IV; Nitta Gelatin, Osaka, Japan) in DMEM (high glucose) supplemented with plasma-derived serum, penicillin G, streptomycin, and puromycin for 48 hours. Finally, mBCECs were cultured on a collagen-coated cell culture dish in DMEM (high glucose) supplemented with 15% FBS (Nichirei Biosciences, Tokyo, Japan), penicillin G, and streptomycin.

Cell Culture. The immortalized cell line of bovine BCECs, t-BBEC117, was established by transfection of SV40 large T antigen and then by isolating a single clone. In vitro culture of these cells has been accompanied by characterization of the BBB phenotypes based on the following criteria: 1) spindle-shape morphology, 2) rapid uptake of acetylated-low density lipoprotein, 3) formation of tight junction-like structures, 4) high alkaline phosphatase activity, and 5) expression of multidrug resistance and glucose transporter-1 mRNA (Sobue et al., 1999). t-BBEC117 cells were cultured on a noncoating cell culture dish in DMEM (high glucose) supplemented with 10% FBS, 100 U/ml penicillin G, and 100 μg/ml streptomycin. Human embryonic kidney (HEK) 293 cells were obtained from the Japanese Collection of Research Bioresources Cell Bank at the National Institutes of Biomedical Innovation, Health and Nutrition (Osaka, Japan). Normal and TMEM16-expressing HEK293 cells (Saeki et al., 2019) were cultured in DMEM (high glucose) supplemented with 10% FBS, 100 U/ml penicillin G, and 100 μg/ml streptomycin.

Quantitative Real-Time PCR. Total RNA extraction from t-BBEC117 cell homogenates, reverse transcription, and quantitative real-time PCR, using the ABI PRISM 7000 (Applied Biosystems, Foster City, CA) and LightCycler 96 (Roche Diagnostics) real-time PCR systems, were performed as previously reported (Yamazaki et al., 2011). Specific primers for bovine TMEM16 genes were designed as follows: TMEM16A (GenBank accession number, NM_001192717), (+) CTG GAC TTT GTG ATC TTC TTG, (–) CTG GAT CTG GCT GAT GTC; TMEM16B (XM_024992649), (+) GCC TGG CTG GGA TTA GCT, (–) CTG GCC TTT GTC ATC GTC TTC; TMEM16C (NM_001191315), (+) AAG GTG GTA ACG AAG CCG AAC T, (–) TAC AGA CAA GCT GGC ATT ACG; TMEM16E (NM_001168406), (+) CGT TAT TGG TGG CCT CTT TTG C, (–) CCT GTA CTG AGT CAG ATG AAG CCT CCA ATC TCA TAT; TMEM16F (XM_005206409), (+) TCC CCT GCT GGG TAT ATG CTT, (–) TAC AGA CAA GCT GGC ATT ACG; TMEM16H (NM_001102169), (+) CTA TGC GAT CTG CTC GTC GAT GTC; TMEM16D (NM_001102050), (+) GCC CAG CAC CAA GAG TAT AAT TTC TTT GGC CGA TCA TAT, (–) TGG TGG TCA TCG GTC GAT TCT; TMEM16G (XM_010821300), (+) GCC CCT GGT TCA TAT, (–) TTC TGG CAA GGT GAG CAT CCG T; TMEM16J (XM_010820434), (+) GCC TGG CAA GGT GAG CAT CCG T, (–) GAC GAC GAC GGT GCC TCA TTT G.
Western Blot. Western blot experiments were performed as previously described (Yamamura et al., 2018b). In brief, the protein fraction was extracted from mBCECs and t-BBEC117 cell homogenates by using RIPA buffer (Cell Signaling Technology, Danvers, MA). The extracted protein (40 μg/ml) was subjected to 7.5% SDS-PAGE. After the protein blots were treated with 5% fat-free milk (Megmilk Snow Brand, Tokyo, Japan), these were incubated with a polyclonal anti-TMEM16A antibody (1:100; ab53212; Abcam, Cambridge, MA) (Yamamura et al., 2018a) at 4°C for 24 hours, treated with an anti-rabbit horseradish peroxidase–conjugated IgG antibody (1:1000; AP132P; Chemicon International, Temecula, CA) at 4°C for 1 hour, and then exposed to an enhanced chemiluminescence detection system (Amersham Biosciences, Piscataway, NJ). Protein expression was normalized using monoclonal anti–β-actin (1:5000; A1978; Sigma-Aldrich) and anti-mouse horseradish peroxidase–conjugated IgG (1:2000; AP124P; Chemicon International) antibodies. BCECs, pericytes, and astrocytes were identified by immunoblotting, using monoclonal anti–ZO-1 (1:100; sc-33725; Santa Cruz Biotechnology, Dallas, TX), anti–platelet-derived growth factor receptor-β (PDGFR-β) (1:1000; sc1362; Cell Signaling Technology), and anti–glia fibrillary acidic protein (GFAP) (1:100; sc-36373; Santa Cruz Biotechnology) antibodies, respectively. The luminescence images were analyzed by using a LAS-3000 system (FujiFilm, Tokyo, Japan).

siRNA Knockdown. t-BBEC117 cells were cultured to a confluent monolayer (~80%) on a noncoating 60-mm dish. Cultured t-BBEC117 cells were electroporated with 200 nM of control (Medium GC Duplex #8; Invitrogen) or TMEM16A Stealth RNAi, Transducerns (Invitrogen, Carlsbad, CA) siRNA, using a Cell Line Nucleofector Kit V (Lona, Walkersville, MD) by the Nucleofector 2b electroporation system (Lonza). Experiments using siRNA-treated cells were performed 72 hours after electroporation.

Electrophysiological Recordings. Electrophysiological recordings were performed on single t-BBEC117 cells, using a whole-cell patch clamp technique with a CEZ-2400 amplifier (Nihon Kohden, Tokyo, Japan), and pCLAMP software (version 10; Axon/Molecular Devices, Foster City, CA), and analog digital converter (Digidata 1440A; Axon/Molecular Devices, Tokyo, Japan), and the fluorescent emissions (104 cells/well) were cultured to a confluent monolayer (1.0-μm pore size) and Companion Plates (12-well; Falcon/Corning) for 96 hours and then exposed to the scratch assay for 72 hours. The trans-endothelial electrical resistance (TEER) of the confluent monolayer of t-BBEC117 cells was measured by the Millicell ERS-2 electrical resistance system (EMD Millipore, Billerica, MA).

Drug. Pharmacological reagents were obtained from Sigma-Aldrich, except for EGTA and HEPES (Dojin). Niflumic acid (NFA) and T16a-401 (2-[5-ethyl-1,6-dihydro-4-methyl-6-oxo-2-pyrimidinyl]thiol-N-[4-(4-methoxyphenyl)-2-thiazoyl]-acetamide) were dissolved in dimethyl sulfoxide at a concentration of 100 and 10 mM, respectively, as a stock solution.

Statistical Analysis. Pooled data are shown as the mean ± S.D. The sample size was determined in advance. The significance of differences between two groups was assessed by the Student’s t test using the BellCurve for Excel software (version 3.10; Social Survey Research Information, Tokyo, Japan). The significance of differences among groups was assessed by Tukey’s test after a one-way analysis of variance using the same software.

Results

Expression of TMEM16A in BCECs. Expression profile of the selected TMEM16 family member in a cell line of bovine BCECs, t-BBEC117, was examined by quantitative real-time PCR and Western blotting. In these t-BBEC117 cells, TMEM16A (0.022 ± 0.007 of GAPDH, n = 9) and TMEM16F (0.020 ± 0.015, n = 9) were strongly expressed at the mRNA level (Fig. 1A). Because TMEM16A is a confirmed molecular component of ClCa channels in various cells (Pedemonte and Galietta, 2014), we have focused on the expression and function of TMEM16A in t-BBEC117 cells. Western blot analysis showed the expression of…
the TMEM16A protein (114 kDa) in t-BBEC117 cells (n = 7; Fig. 1B).

The expression of TMEM16A in native BCECs was examined by Western blotting. BCECs were identified by the presence of ZO-1 protein (BCEC marker) and the absence of PDGFR-β (pericyte marker) and GFAP (astrocyte marker) proteins (n = 4; Fig. 1C). TMEM16A was expressed at the protein level in mBCECs (n = 4). Collectively, these results strongly suggest that TMEM16A is expressed in BCECs.

ClCa Currents in t-BBEC117 Cells. Whole-cell ClCa currents were recorded in t-BBEC117 cells under voltage-clamp conditions. K+ currents were abolished by Cs+ and TEA in the pipette solution. Ca2+ concentration in the pipette solution was fixed at pCa 6.0 (1 μM). Single cells were depolarized for 500 milliseconds from the holding potential of −40 mV to the selected test potentials (−80 to +100 mV) in +20-mV increments and were then repolarized to −80 mV for 250 milliseconds every 15 seconds. Cell capacitance averaged 30.9 ± 2.2 pF (n = 14). Depolarizations positive to +40 mV evoked time-dependent outward currents (35.9 ± 14.5 pA/pF at +100 mV, n = 14; Fig. 2, A and B). The time constant for current activation (τact) at +100 mV was 244 ± 85 milliseconds (n = 14; Fig. 2C). On the other hand, repolarizing stimuli caused characteristic inward tail currents (−33.4 ± 11.3 pA/pF at −80 mV after the +100-mV stimulation, n = 14; Fig. 2A). The time constant for tail current deactivation (τtail) at −80 mV after the +100-mV stimulation was 115 ± 23 milliseconds (n = 14; Fig. 2C).

The effects of conventional and selective ClCa channel blockers, NFA and T16Amh-A01, respectively, on outward and tail currents were examined in t-BBEC117 cells. Both outward and tail currents were strongly inhibited by 100 μM NFA (5.9 ± 1.6 and −7.3 ± 2.9 pA/pF, respectively, n = 4, P < 0.05 vs. control; Fig. 2, D and E). These currents were also blocked by 10 μM T16Amh-A01 (21.1 ± 7.7 and −21.5 ± 7.2 pA/pF, respectively, n = 6, P < 0.05; Fig. 2, F and G).

To obtain more direct evidence that the ClCa currents in t-BBEC117 cells are mediated by TMEM16A channels, siRNA knockdown experiments on TMEM16A were performed. The knockdown efficiency and selectivity of TMEM16A using a specific siRNA of TMEM16A in t-BBEC117 cells was confirmed by quantitative real-time PCR and Western blotting. The expression of TMEM16A mRNA was reduced markedly by TMEM16A siRNA (by 48%, n = 8; Fig. 3A), whereas the mRNA expression of other TMEM16 genes was not changed by TMEM16A siRNA (n = 4). However, the possibility of involvement of TMEM16F was unable to be completely excluded because the mRNA level was relatively variable in t-BBEC117 cells electroporated with control or TMEM16A siRNA. Expression of the TMEM16A protein was also decreased by TMEM16A siRNA (by 36%, n = 4; Fig. 3B). In t-BBEC117 cells electroporated with TMEM16A siRNA, the outward and tail amplitudes of ClCa currents were significantly attenuated (14.3 ± 3.9 and −16.0 ± 5.7 pA/pF, n = 4, P < 0.05 vs. control siRNA of 32.8 ± 9.7 and −37.7 ± 9.9 pA/pF, n = 4, respectively; Fig. 3, C and D). Taken together, these results strongly suggest that ClCa currents that are composed of the TMEM16A-encoding protein and sensitive to NFA and T16Ainh-A01 are functionally expressed in t-BBEC117 cells.

Contribution of ClCa Channels to the Resting Membrane Potential. We next examined whether the activity of ClCa channels contributed to the resting membrane potential of t-BBEC117 cells. This was done by monitoring changes in signals from voltage-sensitive fluorescent dye, 100 nM DiBAC4(3). Membrane potential is presented as F/F140K, where F is the fluorescence intensity and F140K was the maximum fluorescence intensity in the 140 mM K+ HEKES-buffered solution (theoretically ~0 mV). The fluorescence intensity of DiBAC4(3) is increased by membrane depolarization and decreased by hyperpolarization. Furthermore, resting membrane potential was hyperpolarized by the application of 100 μM NFA (0.66 ± 0.15, n = 45, P < 0.05 vs. control of 0.73 ± 0.12; Fig. 4, A and B). Similarly, the resting membrane potential was hyperpolarized by 10 μM T16Amh-A01 (0.67 ± 0.15, n = 56, P < 0.01 vs. control of 0.81 ± 0.19).
The resting membrane potential was also shifted in the hyperpolarizing direction by the siRNA knockdown of TMEM16A (0.79 ± 0.08, n = 66, P < 0.01 vs. control siRNA of 0.84 ± 0.06, n = 74; Fig. 4, C and D). In t-BBEC117 cells electroporated with TMEM16A siRNA, hyperpolarizing changes in the membrane potential caused by the ClCa channel blockers, NFA (0.077 ± 0.048, n = 22, P < 0.01 vs. control siRNA of 0.139 ± 0.050, n = 44) and T16Ainh-A01 (0.016 ± 0.029, n = 44, P < 0.01 vs. control siRNA of 0.092 ± 0.033, n = 30), were smaller (Fig. 4, C and E). These results indicate that the activity of ClCa channels formed by TMEM16A is importantly involved in regulating the resting membrane potential in t-BBEC117 cells.

Effects of TMEM16A siRNA Knockdown on Resting \([Ca^{2+}]_{\text{cyt}}\). Because membrane hyperpolarization often increases \([Ca^{2+}]_{\text{cyt}}\) in nonexcitable cells, including BCECs (Guéguinou et al., 2014), the effects of the siRNA knockdown of TMEM16A on

Fig. 2. Whole-cell ClCa currents in t-BBEC117 cells. ClCa currents were recorded in t-BBEC117 cells under the whole-cell voltage-clamp configuration. K+ currents were abolished by Cs+ and TEA, and \([Ca^{2+}]_{\text{cyt}}\) was fixed at pCa 6.0 (1 μM) in the pipette solution. Single cells were depolarized for 500 milliseconds from the holding potential of −40 mV to test potentials (−80 to +100 mV) in +20-mV increments and subsequently repolarized for 250 milliseconds to −80 mV every 15 seconds. (A) A representative trace of whole-cell ClCa currents in t-BBEC117 cells. Note that time-dependent outward currents and inward tail currents, which are characteristic of ClCa currents, were observed. (B) Current density-voltage relationship (n = 14). (C) \(t_{\text{act}}\) and \(t_{\text{tail}}\) of ClCa currents (n = 14). (D) Representative traces of ClCa currents in the absence and presence of 100 μM NFA. (E) Inhibitory effects of NFA on outward (at +100 mV; peak) and inward (at −80 mV following +100 mV depolarization; tail) current densities (n = 4). (F) Representative ClCa currents in the absence and presence of 10 μM T16Ainh-A01 (T16A). (G) Inhibitory effects of T16Ainh-A01 on outward and inward current densities (n = 6). Data are shown as means ± S.D. *P < 0.05, **P < 0.01 vs. control (paired t test).
resting [Ca2+]\textsubscript{cyt} were examined in t-BBEC117 cells. After t-BBEC117 cells were loaded with the fluorescent Ca2+ indicator, 10 \(\mu\)M fura-2/AM, [Ca2+]\textsubscript{cyt} was measured. TMEM16A siRNA-treated t-BBEC117 cells showed higher [Ca2+]\textsubscript{cyt} at the resting level (223 \(\pm\) 77 nM, \(n = 32\), \(P < 0.01\) vs. control siRNA of 144 \(\pm\) 47 nM, \(n = 40\)) than control siRNA-electroporated cells (Fig. 5). In combination with the results obtained from membrane potential experiments, reduced TMEM16A channel activity appears to cause membrane hyperpolarization and subsequent [Ca2+]\textsubscript{cyt} increases in t-BBEC117 cells.

Involvement of Cl\textsubscript{Ca} Channel Activity in Cell Viability and Proliferation. Possible contributions of the activity of Cl\textsubscript{Ca} channels to the viability of t-BBEC117 cells were evaluated using the MTT assay. Cell viability was decreased markedly by the exposure to 100 \(\mu\)M NFA for both 72 hours (2.23 \(\pm\) 0.26, \(n = 16\), \(P < 0.05\) vs. control of 2.90 \(\pm\) 0.90, \(n = 8\)) and 96 hours (2.76 \(\pm\) 0.22, \(n = 16\), \(P < 0.01\) vs. control of 4.04 \(\pm\) 0.65, \(n = 8\); Fig. 6A). Similar results were obtained by the application of 30 \(\mu\)M T16Ainh-A01 for 72 hours (2.16 \(\pm\) 0.17, \(n = 16\), \(P < 0.01\) vs. control of 3.09 \(\pm\) 1.11, \(n = 8\); Fig. 6B). Cell viability was also attenuated concentration-dependently after the 96-hour treatment at lower concentrations of 3 \(\mu\)M (2.96 \(\pm\) 0.36, \(n = 16\), \(P < 0.05\) vs. control of 4.04 \(\pm\) 0.67, \(n = 8\)) and 10 \(\mu\)M (3.26 \(\pm\) 0.59, \(n = 16\), \(P < 0.05\)) as well as 30 \(\mu\)M (2.25 \(\pm\) 0.30, \(n = 16\), \(P < 0.01\)). In t-BBEC117 cells electroporated with TMEM16A siRNA, cell viability significantly decreased at 72 hours (1.58 \(\pm\) 0.04, \(n = 6\), \(P < 0.01\) vs. control siRNA of 1.76 \(\pm\) 0.04, \(n = 6\)) and 96 hours (1.67 \(\pm\) 0.04, \(n = 6\), \(P < 0.01\) vs. control siRNA of 2.04 \(\pm\) 0.09, \(n = 6\); Fig. 6C).

The involvement of Cl\textsubscript{Ca} channels in the proliferation of t-BBEC117 cells was examined using the BrdU incorporation assay. These results revealed that cell proliferation was reduced by the treatment with 100 \(\mu\)M of NFA (0.15 \(\pm\) 0.06, \(n = 9\), \(P < 0.01\) vs. control of 0.25 \(\pm\) 0.05, \(n = 9\)) or 30 \(\mu\)M of T16Ainh-A01 (0.18 \(\pm\) 0.05, \(n = 9\), \(P < 0.05\)) for 72 hour (Fig. 6D). Furthermore, the siRNA knockdown of TMEM16A also significantly reduced the proliferation of t-BBEC117 cells at 72 hours (0.13 \(\pm\) 0.03, \(n = 6\), \(P < 0.05\) vs. control siRNA of 0.20 \(\pm\) 0.07, \(n = 6\); Fig. 6E). Thus, the activity of TMEM16A Cl\textsubscript{Ca} channels contributes to regulating the proliferation of t-BBEC117 cells.

Inhibitory Effects of Cl\textsubscript{Ca} Channel Blockade on Cell Migration. To reveal the contributions of Cl\textsubscript{Ca} channels to cell migration, a wound-healing assay was performed under 2% FBS conditions in t-BBEC117 cells. After the treatment with Cl\textsubscript{Ca} channel blockers or TMEM16A siRNA, these cells were stained with Hoechst 33342. Then, the number of cells that had migrated into the scratch zone was counted by the high-content imaging system Operetta. Migrated cell numbers...
were significantly decreased by the application of 100 μM of NFA (51 ± 3 cells, n = 4, P < 0.01 vs. control of 149 ± 5 cells, n = 4; Fig. 7, A and B) or 10 μM of T16Ainh-A01 (59 ± 5 cells, n = 4, P < 0.01) for 72 hours. The number of migrated cells were also decreased significantly by TMEM16A siRNA for 72 hours (59 ± 12 cells, n = 4, P < 0.01 vs. control siRNA of 167 ± 14 cells, n = 4; Fig. 7, C and D). In combination, these results strongly suggest that the activity of TMEM16A ClCa channels regulates the migration, as well as the proliferation, of t-BBEC117 cells.

Physiological Roles of TMEM16A in BBB Function. To reveal the involvement of ClCa channels in the BBB function, the trans-endothelial permeability of t-BBEC117 cells was analyzed by the TEER measurements. The TEER of the confluent monolayer of t-BBEC117 cells was 24.6 ± 4.7 Ω × cm² (n = 6; Fig. 8), as previously reported in immortalized cell lines of BCECs (Weksler et al., 2005; Yang et al., 2017). The TEER was significantly decreased by the application of 100 μM of NFA (8.1 ± 3.0 Ω × cm², n = 6, P < 0.01) or 10 μM of T16Ainh-A01 (6.4 ± 1.1 Ω × cm², n = 6, P < 0.01) for 72 hours. This result suggests that the activity of TMEM16A ClCa channels is involved in the regulation of the trans-endothelial permeability in the BBB.

Discussion

In the BBB, BCECs are responsible for its lower permeable barrier function. Accordingly, a delicate balance between the proliferation and death of BCECs is required to maintain BBB functions (Abbott et al., 2006; Sweeney et al., 2019). In various cells, including endothelial cells, cell proliferation and death are modulated by changes in [Ca²⁺]ₗ (Nilius and Droogmans, 2001). Although it is known that changes in [Ca²⁺]ₗ levels in BCECs are modulated strongly by the activity of ion channels, the underlying mechanisms remain unclear. In the present study, we found that a specific type of ClCa channels, TMEM16A,
are expressed in BCECs. These channels contribute to ClCa conductance and participate in determining both the resting membrane potential and [Ca^{2+}]_{cyt}, which are involved in the proliferation and migration of BCECs.

In the present study, expression analyses of the TMEM16 family revealed that TMEM16A can be detected at the mRNA and protein levels in mBCECs and t-BBEC117 cells. In addition, in t-BBEC117 cells, relatively large voltage-dependent currents can consistently be recorded under the whole-cell voltage-clamp configuration, after K+ currents were completely blocked by Cs+ and TEA, and [Ca^{2+}]_{cyt} was fixed at 1 mM in the pipette solution. Specifically, depolarizing voltage steps to positive membrane potentials elicited a slow time-dependent outward current, and subsequent repolarization produced a characteristic inward tail current. The \(\tau_{act} \) and \(\tau_{tail} \) of TMEM16A currents ranged between 120–300 and 55–150 milliseconds, respectively (Adomaviciene et al., 2013; Scudieri et al., 2013; Ohshiro et al., 2014b; Yamamura et al., 2018a). In the present study, the kinetic parameters (\(\tau_{act} \) and \(\tau_{tail} \)) of ClCa currents in t-BBEC117 cells were 244 and 115 milliseconds, respectively, which are similar to those of TMEM16A currents. In addition, these currents were sensitive to a selective blocker of TMEM16A channels, T16Ainh-A01, as well as to a conventional ClCa channel blocker, NFA. The results obtained from the siRNA knockdown of TMEM16A strongly suggest TMEM16A-encoding ClCa currents in t-BBEC117 cells.

ClCa channel blockers or TMEM16A siRNA caused membrane hyperpolarization and a subsequent increase in [Ca^{2+}]_{cyt} in BCECs. In nonexcitable cells including endothelial cells, membrane hyperpolarization promotes the electrochemical driving force for Ca^{2+} and, thus, facilitates Ca^{2+} influx through voltage-independent Ca^{2+} channels (Yamazaki et al., 2006; Yamazaki et al., 2011; Guéguinou et al., 2014; Kito et al., 2014). Cytosolic Cl\(^{-}\) concentration varies widely, 10–60 mM, often in a tissue-dependent manner. Although the cytosolic Cl\(^{-}\) concentration in BCECs is not known, it is estimated to be 30–40 mM in vascular endothelial cells (Kitamura and Yamazaki, 2001). Accordingly, the theoretical equilibrium potential of Cl\(^{-}\) in BCECs may be approximately –30 mV under physiological conditions. The resting membrane potential of t-BBEC117 cells was between –30 and –40 mV, as previously reported (Yamamura et al., 2016). Block of ClCa channels led to consistent hyperpolarization under our experimental conditions. We previously reported that membrane hyperpolarization following the activation of K+ channels promoted Ca^{2+} influx through nonselective cation channels in t-BBEC117 cells (Yamazaki et al., 2006, 2011). Similarly, membrane hyperpolarization following ClCa channel inhibition also facilitated Ca^{2+} influx through the same signaling pathway as K+ channel activation.

We previously reported that membrane hyperpolarization and subsequent [Ca^{2+}]_{cyt} increases led to BCEC proliferation (Yamazaki et al., 2006), whereas excessive hyperpolarization and abnormal [Ca^{2+}]_{cyt} increases induced cell death (Kito et al., 2011; Yamazaki et al., 2011). These effects are mediated by SKCa2 (Yamazaki et al., 2006), K<>2.1 (Kito et al., 2011; Yamazaki et al., 2011), TRPC1/3 (Yamazaki et al., 2007), and Oral1/2/STIM1 (Kito et al., 2014, 2015) channels. Furthermore, the present results showed that TMEM16A ClCa channels were involved in regulating the proliferation and migration of BCECs. When ClCa channel blockers and the TMEM16A knockdown attenuated the proliferation and migration of BCECs, the IC_{50} value of T16A_{inh}-A01 for cell viability was \(\sim 10 \) \(\mu \)M. Because the IC_{50} value for TMEM16A channels was reported to be 1–10 \(\mu \)M in reconstituted and native cells (Namkung et al., 2011; Davis et al., 2013; Ohshiro et al., 2014a; Yamamura et al., 2018a), the inhibitory effects of T16A_{inh}-A01 on the proliferation and migration are potentially mediated by TMEM16A ClCa channels. Similar inhibitory effects using T16A_{inh}-A01 and TMEM16A knockdown were reported in ICC, pancreatic duct cells (Mazzone et al., 2012), and native cells (Namkung et al., 2011; Davis et al., 2013; Ohshiro et al., 2014a; Yamamura et al., 2018a), the inhibitory effects of T16A_{inh}-A01 on the proliferation and migration are potentially mediated by TMEM16A ClCa channels. Similar inhibitory effects using T16A_{inh}-A01 and TMEM16A knockdown were reported in ICC, pancreatic duct cells (Mazzone et al., 2012),
and some carcinoma cells, including head and neck squamous (Duvvuri et al., 2012), prostate (Liu et al., 2012), and colorectal (Sui et al., 2014) cancer cells. In contrast, downregulation of TMEM16A channels can promote the proliferation of rat basilar artery smooth muscle cells (Wang et al., 2012). These quite different effects of TMEM16A channels may be due to differences among cell types. Our results clearly showed that the activity of TMEM16A-encoding ClCa channels is a positive regulator of the proliferation and migration of BCECs that maintains the balance between the proliferation and death of these cells in the BBB.

The roles of TMEM16A in cell survival and death, particularly cell proliferation, metastasis, invasiveness, and tumor development in cancer cells, are well established. TMEM16A can activate epidermal growth factor receptor, Ca2+/calmodulin-dependent protein kinase II, mitogen-activated protein kinase, and nuclear factor κB signaling (Wang et al., 2017). However, the signaling mechanisms of TMEM16A for the proliferation and migration of endothelial cells remain unclear. Further studies are needed to elucidate the complete molecular mechanisms associated with TMEM16A for the proliferation and migration of BCECs. TMEM16A channels were reported to be functionally expressed in cardiac vascular endothelial cells for the prevention of ischemic damage (Wu et al., 2014), umbilical vein endothelial cells for facilitating reactive oxygen species generation associated in the setting of hypertension (Ma et al., 2017), and brain microvascular endothelial cells for regulating BBB integrity after ischemic stroke (Liu et al., 2019). However, many of physiological and pathological functions of TMEM16A in the endothelium remain unclear. In the present study, we found that the activity of TMEM16A channels partly but substantially contributed to the proliferation and migration of BCECs and the barrier function of the BBB. Because dysfunctions in the BBB can lead to the disruption of homeostasis in the brain, they have been associated with various diseases, such as Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, multiple sclerosis, stroke, epilepsy, and brain tumors (Abbott et al., 2006; Sweeney et al., 2019). For these
reasons, TMEM16A channels may be a novel target for therapeutic drugs for disorders associated with dysfunctions in the BBB.

In conclusion, we have demonstrated that TMEM16A is expressed in BCECs. The activity of TMEM16A Cl\textsubscript{Ca} channels contributes to regulation of the resting membrane potential and [Ca2+]\textsubscript{cyt} in BCECs. Both of those signals are crucial for their proliferation and migration. Our results provide novel information on the molecular mechanisms underlying the physiological functions of BCECs in the BBB.

Acknowledgments

We express our sincere thanks to Dr. Wayne R. Giles (University of Calgary, Calgary, Canada) for critical reading and editing of this manuscript. We also thank Dr. Tamihide Matsunaga and Ms. Misaki Yamashita (Nagoya City University, Nagoya, Japan) for technical supports. We acknowledge the assistance of the Research Equipment Sharing Center at the Nagoya City University.

Authorship Contributions

Participated in research design: T. Suzuki, Imaizumi, Yamamura.
Conducted experiments: T. Suzuki, Yasumoto.
Contributed new reagents or analytic tools: Asai.
Performed data analysis: T. Suzuki, Yasumoto, Y. Suzuki, Imaizumi, Yamamura.
Wrote or contributed to the writing of the manuscript: T. Suzuki, Yamamura.
TMEM16A Channels in Vascular Endothelial Cells

References

Address correspondence to: Dr. Hisao Yamamura, Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuhoku, Nagoya 467-8603, Japan. E-mail: yamamura@phar.nagoya-cu.ac.jp