












maintenance period, neither time nor treatment was signifi-
cantly different (Fig. 4A). In contrast, HET mice displayed
significant progressive declines in EGGTP during the mainte-
nance period with HAL reaching isoEEG within 35 minutes
(Fig. 4B) regardless of CAF exposure. However, HET mice
exposed to dietary CAF showed significantly shorter temporal
decrements to isoEEG thanHETmice exposed to vehicle alone
(adjusted P = 0.025; Fig. 4, inset table). Interventions with
DAN prior to commencing the maintenance period did
not significantly alter the decay fraction compared with
HET+VEH, and it was not influenced by dietary CAF (compare
HET+VEH vs. HET+DAN or HET+CAF+DAN; adjusted P .
0.05; Fig. 4, inset table). However, DAN selectively eliminated
the effects of dietary CAF exposure by delaying the fractional
reduction in EEGTP [compare HET+CAF+DAN vs. HET+DAN
(adjusted P = 0.64) or HET+CAF (adjusted P = 0.0008)].
Noteworthy was the highly significant differences in the loss
of EEGTP in HET+DAN versus HET+CAF treatment groups
(adjusted P , 0.0001; Fig. 4B, inset table).
Further results of the influences of time*treatment inter-

actions revealed that, once controlled for false discovery rate,
the most significant differences between HET+VEH ver-
sus HET+CAF occurred within the first 10 minutes of the

maintenance phase of HAL anesthesia (Supplemental
Table 2). In comparison, the influence of DAN was to prolong
EEGTP throughout the recording time in animals exposed to
dietary CAF (Supplemental Table 2).
VEH-treated HET mice rapidly lost detectable cortical

brainwave activity, achieving isoEEG with a mean time of
12.3 6 1.9 minutes. Mean time to isoEEG preceded the mean
time to loss of ECG (50% shorter time), regardless of whether
mice received VEH or dietary CAF (2CAF group: mean time
from 12.3 6 1.9 to 24.2 6 5.2 minutes, P = 0.018; and +CAF
group: mean latency from 8.96 0.8 to 17.26 4.8 minutes, P,
0.036, respectively) (Table 1). At the time cortical EEG activity
was lost (isoEEG), there was no evidence of alterations on
ECG morphology such as absent P wave, wide QRS, or tall T
(not shown), indicating that modest hyperkalemia observed at
this time (Supplemental Table 1) was insufficient to affect
changes in ECG.
Synergism of HAL and CAF Toward RYR1 Single-

Channel Function. We next tested the hypothesis that
CAF and HAL, in combination, produce synergistic effects
on RYR1 channels, their putative molecular target. Func-
tional RYR1 channels assemble as homotetramers. Tis-
sues from HET mice would be expected to produce

Fig. 3. HET mice maintained with 1.5% HAL anesthesia achieve respiratory and cardiac arrests despite maintenance of euthermic core body
temperature: Dietary CAF significantly shortens time to adverse drug response, whereas DAN negates effects of CAF. Simultaneous recording of core
body temperature (A), respiratory (B), and ECG (C) rates during maintained 1.5% HAL anesthesia for a duration of 60 minutes was performed as
described inMaterials andMethods. Each genotype and respective treatment group had n = 3–4mice. OriginLab 9.0 was used to perform unpaired t test,
and the P value, if ,0.05 (in red), is regarded as significantly different.
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WT/HET chimeric channels of all possible ratios resulting
in heterogenous channel behaviors even in the presence of
tightly defined cis/trans buffer solutions (Feng et al.,
2011). To circumvent confounding issues that arise due
to channel heterogeneity and the fact that the combination
of HAL+CAF significantly synergizes responses in WT
myotubes (see Fig. 7, below), we investigated whether the
combination was capable of directly synergizing single-
channel kinetics isolated from WT RYR1. Accordingly,
skeletal muscle junctional SR fused with BLMs to measure
single-channel gating kinetics under voltage clamp. The
exemplary baseline gating activity of WT RYR1 channels
(two channels were incorporated in the BLM) in the

presence of 2:100 mM cis:trans Ca2+ exhibited low Po that
increased 21-fold upon addition of the combination HAL
(0.05%) and CAF (50 mM). This increase in Po resulted from
decreasing mean closed time (tc) from 19.55 to 1.19 milli-
seconds and increasing mean open time (to) from 0.56 to
1.86 milliseconds for level 1 (Fig. 5, traces A and B) and
was coincident with the appearance of a second channel
(level 2; Fig. 5, trace C). At these concentrations, CAF
alone had no influence on channel Po, whereas HAL alone
increased Po by nearly 5-fold (Fig. 6). However, HAL+-
CAF in combination increased channel Po an average of
18-fold over their respective baselines in three separate
experiments.

Fig. 4. HET mice exposed to dietary CAF shortens time to isoEEG, an effect mitigated by acute DAN intervention. EEGTP was recorded during the
maintenance period under 1.5% HAL anesthesia. EEG records were binned in 5-minute intervals for a total of 50 minutes. EEGTP during the
maintenance period was normalized to the mean EEGTP taken from eachmouse by obtained from 9 to 12 epochs during the 2minutes of recording during
the baseline period as described in theMaterials andMethods. The number of mice in each treatment group was n = 3 to 4 (cohort 2). (A)WT and (B) HET
treatment groups. Statistical analysis for the HET defined for each treatment was conducted with mixed effects models and SAS 9.4 Proc Mixed (SAS
Institute). An adjusted P value ,0.05 was considered statistically significant.

TABLE 1
HET mice exhibit significantly shorter times to isoEEG
WT and HET mice maintained with 1.5% HAL anesthesia were instrumented to continuously record EEG and ECG as described in the Materials and Methods. Data across
genotype and treatment condition were analyzed using paired t test (OriginLab 9.0). Each genotype and treatment group had n = 3–4 mice.

Genotype CAF DAN isoEEG ECG arrest EEG vs. ECG arrest
Mean 6 S.D., min Mean 6 S.D., min P value

WT 2 2 .60.0 .60.0 N/A
+ 2 .60.0 .60.0 N/A

HET 2 2 12.3 6 1.9 24.2 6 5.2 0.018
+ 2 8.9 6 0.8 17.2 6 4.8 0.036
+ + 25.8 6 8.8 32.5 6 11.7 0.041
2 + 29.5 6 9.7 38.5 6 5.7 0.042

N/A, not applicable.
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HAL and CAF Synergize RYR1-Mediated Intracellu-
lar Ca2+ Release. To further verify the hypothesis that
synergism between CAF and HAL observed in vivo and in
single-channel measurements, we performed single-cell Ca2+

imaging experiments with myotubes cultured from adult HET
and WT mice, an established model to investigate MH
susceptibility. Despite the fact that HET myotubes had only
40% of the releasable SR Ca2+ stores compared with WT,
demonstrated by the smaller Ca2+ transient amplitude pro-
duced by 20 mM CAF (Fig. 7, A and B), HET cells were more
sensitive toHAL (0.05% v/v) (Fig. 7, A and C). Importantly, the
combination of HAL and CAF produced a greatly synergized
response in both genotypes compared with either drug alone
(Fig. 7), but the degree of synergism was significantly greater
in HET thanWT with CAF#0.25 mM due to a left shift in the
concentration-effect curve by up to one order of magnitude
(Fig. 7, A and C). Despite the diminished SR Ca2+ content in
HET myotubes, their sensitivity to HAL+CAF was signifi-
cantly greater when normalized to the release elicited by
20 mM caffeine, although this distinction converged at higher
CAF concentrations $0.5 mM (Fig. 7C).

Discussion
A seminal finding in the present study identifies a common

dietary factor, CAF intake, synergizes adverse outcomes
during maintenance anesthesia with a halogenated volatile
general anesthetic, exemplified by HAL in our study, in

a mouse model (R163C-RYR1; HET) of human MH suscepti-
bility. A second new finding identifies a dominant central
influence of CAF and HAL, singly or in combination, that
precedes the canonical peripheral manifestation of fulminant
MH when core body temperature is clamped within the
physiologic range. The synergistic actions of CAF+HAL
exposures in HET mice elicits an ADR in vivo at blood CAF
concentrations (range of 5–30 mM) well below those needed to
trigger SR Ca2+ release from WT or HET skeletal myotubes
(.100 mM). Measurements of RYR1 channels isolated from
WT provide evidence of significant synergism of the modest
influence of 0.05%HAL (20 mM), with CAF (50 mM) enhancing
RYR1 open probability nearly 30-fold. The synergistic effects
of CAF+HAL can be demonstrated in WT and HETmyotubes,
although it is clear that the synergistic actions are greatly
amplified in the HET genotype.
Direct muscle effects alone cannot fully explain our current

findings with the combination of CAF and/or HAL in vivo.
Exposure of HET mice to dietary CAF that produces median
plasma concentrations commensurate with those measured in
human populations (Smith et al., 1982; Barone and Roberts,
1996; de Leon et al., 2003; Mitchell et al., 2014) significantly
shortens the time to achieve isoEEG aswell as respiratory and
cardiac (ECG) arrest in HETmice. Interestingly, HETmice do
not differ from WT in their baseline EEGTP or blood chemis-
tries, regardless of whether they were exposed to dietary CAF.
These results suggest that HET mice do not differ in cortical
electrical activity from WT mice during baseline recording

Fig. 5. Combination of CAF (50 mM) and HAL (0.05%) synergistically enhance WT RYR1 channel gating activity. (A) Exemplary gating activity of WT
RYR1 channels when measured in the presence of 2 and 100 mM cytoplasmic (cis) and luminal (trans) free Ca2+ side of the bilayer chamber before and
after exposure to the combination of 0.05% (v/v in buffer) HAL and 50 mM CAF. Cs+ is the current carrier (see Materials and Methods). (A) shows
a representative trace of an entire recording. (B and C) are expanded 7-second segments taken from trace A indicated by the dashed lines showing finer
details of channel gating behavior before and after addition of HAL andCAF.Horizonal arrows and corresponding dashed lines to the right of traces B and
C indicate current amplitude of the channels in the closed state (level 0), one channel in full conductance (level 1), and a second channel in full conductance
(level 2). (D) summarizes the gating kinetic parameters, mean dwelling time (t, ms), and Po of each of the gating level (0, 1 and 2). Data are representative
of n = 3 independent channel fusions.
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under the experimental conditions used in the present study.
The lack of differences in baseline EEGTP measured in HET
mice during the baseline period, regardless of treatment, also
extended to the EEG spectra (data not shown). Although the
electrographic study (cohort 2) was powered based on the large
effect size observed with of dietary CAF on time to respiratory
arrest in HETmice (cohort 1), it should be viewed in light of its
pilot design for generating hypotheses regarding the central
influences of CAF in synergizing general volatile anesthetics
and possible other triggering agents in MH susceptible
individuals. Nevertheless, a recently published study of HET
mice provided a detailed comparison of whole-body energetics
and voluntary activity in HET andWTmice (Rutkowsky et al.,
2020). No genotype differences were apparent in voluntary
movement measured in a calorimetry chamber or decreased
24-hour energy expenditure, especially during the dark cycle
whenmice aremost active (Rutkowsky et al., 2020). This study
provides additional evidence that HET mice in their home
cage environment do not differ in arousal, as measured by
baseline EEGTP, compared with WT mice.
Only during maintenance anesthesia with HAL did EEGTP

decline in a genotype-, CAF treatment–, and treatment*time–
dependent manner. Administration of HAL anesthesia to
HET mice resulted in the loss of EEG activity before detect-
able alterations in ECG patterns, regardless of whether the

animals received CAF. Under the conditions used that
maintain core temperature, blood drawn at the time of death
(loss of detectable ECG) indicates only mild to moderate
hyperkalemia and acidosis in euthermic HET mice compared
with HET mice that are permitted to proceed to a fulminant
MH episode. Collectively, these data indicate that central
nervous system mechanisms contribute to susceptibility of
HET mice to lethal consequences of HAL anesthesia, even in
the absence of dietary CAF, and that CAF greatly synergizes
the effects of this anesthetic. The observation that DANdelays
the time to isoEEG and respiratory and cardiac arrest in
a time-dependent manner further suggests that the synergis-
tic actions of dietary CAF and HAL in HET mice may be
mediated through a commonmechanism involving RYRs. This
interpretation is supported by results obtained from myotube
and single RYR1 channel experiments.
The central effects of dietary CAF are well documented and

primarily mediated by its potent antagonism of adenosine
receptors, causing increased excitatory neurotransmitter re-
lease that lower neuronal activation threshold (Phillis et al.,
1979; Nehlig et al., 1992; Keane et al., 2007; Keane and James,
2008). Adenosine A2A receptors are found in brain areas rich
in dopamine D2 receptors such as the basal ganglia, and
changes induced by CAF within the basal ganglia would
very likely exert a downstream effect on the motor cortex

Fig. 6. Influence of 50 mM CAF, 0.05% HAL, or CAF+HAL
on RYR1 single-channel gating activity. Cs+ currents were
measured in the presence of 2 mM free Ca2+ in cis and 100
mM trans. The gating of a RYR1 channel was recorded for 1
minute before being exposed to 50 mM CAF (A); represen-
tative channel from n = 3 experiments. (B) shows a repre-
sentative response to addition of 0.05% HAL (n = 2
experiments). The gating parameters of the channel, Po
and the mean dwelling time at closed – level 0 (t0) and open
state – level 1 (t1) are denoted by the horizontal arrows to
the right of each current trace. (C) summarizes of RYR1
channel open probability for level 1 (Po) before and after
addition of 50 mM CAF, 0.05% HAL or their combination
(HAL+CAF). Po values were acquired from 10 epochs, 3
seconds per bin of each BLMmeasurement before and after
the addition of test compound(s), allowing 20–30 seconds of
mixing using a micromagnet stirring device. (C) shows Po
values (means6 S.D.) from RYR1 channels gating at level 1
before (control) and after exposure to HAL (n = 2), CAF (n =
3), or HAL+CAF mixture (n = 3). Statistical analysis of
unpaired t test was made with software GraphPad (Prism).
*P , 0.05.
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(Ferre et al., 1997; Fisone et al., 2004). However, CAF also
antagonizes adenosine A2A receptors directly within the
motor cortex by inhibiting the release of GABA, thus reduc-
ing GABAergic inhibitory transmission in the motor cortex
(Cerqueira et al., 2006). Expression of RYR1 mRNA within
brain regions, including cortical motor regions, has been
documented, although less abundantly than RYR2 (Furuichi
et al., 1994; Giannini and Sorrentino, 1995; Mori et al., 2000),
although data from immunolabeling and western blot studies
for RYR1 protein are more limited (Hertle and Yeckel, 2007;
Feng et al., 2017), possibly due to antibody cross-reactivity.
Behavioral studies using MH susceptible mice arguably pro-
vide stronger evidence for a functional role of RYR1 in the
mammalian nervous system (Wayman et al., 2012; Keil et al.,
2019).
There are a few studies in MH susceptible pigs that suggest

alterations in cerebral cortical activity measured by EEG
recording during the onset of the fulminant MH crisis in pigs
(R615C-RYR1) (Artru and Gronert, 1980; Kochs et al.,
1990a,b) and horses (R2454G-RYR1) (Aleman et al., 2005).
Results from two studies with MH susceptible pigs showed
significant depression of EEG activity preceding the onset of
cardiovascular and metabolic changes during induction of
halothane-triggered fulminant MH (Kochs et al., 1990a,b).
One of these studies documented the temporal decrease in
total power concomitant with a shift to lower frequencies
(delta-theta activity) in the EEG of MH susceptible pigs
maintained with 1% halothane, and these alternations pre-
ceded the development of fulminant MH (Kochs et al., 1990a).
Moreover, altered EEG patterns in MH susceptible pigs

were not the result of hypotension, hypoxia, or hypercapnia,
leading the authors to speculate that changes in brain wave

activity were due to either systemic factors unrelated to the
acute MH crisis or involvement of the central nervous system
as a primary target in the pathophysiology of the fulminant
MH syndrome (Kochs et al., 1990). In another study, EEG
alterations during halothane anesthesia were interpreted as
secondary to heat-induced central nervous system injury
resulting from the fulminant MH episode (Forrest et al.,
2015), a variable tightly controlled in the present study.
The question arises as to why CAF+HAL act synergistically

on RYR1 channels isolated from WT tissue while producing
no ADRs in WT mice exposed to HAL up to 60 minutes.
Excitation-contraction coupling in skeletal muscle requires
precise physical interactions between voltage-gated Ca2+

channels (CaV1.1s) in the T-tubule and RYR1 residing in the
terminal cisternae of SR (Franzini-Armstrong, 2018). Their
interactions engage bidirectional signaling, both orthograde
activation of RYR1 and retrograde activation of CaV1.1 current
(Nakai et al., 1996). There is strong evidence for reciprocal
negative regulation of the two channels, especially orthograde
suppression of RYR1 channel activity by CaV1.1, that physi-
ologically both dampen resting Ca2+ in the myoplasm by
controlling RYR1-mediated Ca2+ leak and control Ca2+ release
properties during excitation-contraction coupling (Pessah
et al., 1997; Bannister et al., 2009; Eltit et al., 2012). MH
mutations weaken several aspects of CaV1.1-RYR1 negative
regulation increasing RYR1 leak responsible for the chroni-
cally elevated resting Ca2+ observed in the affected myoplasm
and depleted SR Ca2+ stores (Yang et al., 2006; Bannister
et al., 2010; Esteve et al., 2010; Eltit et al., 2012) and explain
the inherently high open probabilities of RYR1 channels
isolated from R163C-RYR1 (HET mouse used in the present
study) andT4826I-RYR1HETandhomozygousMHsusceptible

Fig. 7. Synergism between CAF and HAL
enhances SRCa2+ release inWT andHET skeletal
myotubes. (A) Representative traces showing cy-
toplasmic Ca2+ responses recorded from WT and
HET myotubes loaded with Fluo-4 exposed to the
combinations CAF and HAL as indicated. Both
genotypes were first exposed to a brief perfusion of
CAF 20 mM to assess the filling state of the SR
store followed by a washout. Once cytoplasmic
Ca2+ concentration recovered to original baseline
(not shown), myotubes were exposed to a brief
perfusion of HAL (0.05% v/v in buffer) and allowed
to recover. Subsequent exposure by perfusion with
0.025–0.5 mM CAF in the presence of HAL (kept
constant at 0.05% throughout) was sequentially
tested with intervening washout to recover base-
line (not shown). (B) Concentration-effect response
relationship ofWT (n = 12 to 13) and HET (n = 8 to
9) myotubes to brief exposure to CAF alone
(0.25–20 mM), indicating that HET myotubes
have chronically depleted CAF-sensitive SR Ca2+

stores compared with WT. (C) Data summarizing
responses of WT (n = 14) and HET (n = 14)
myotubes to low concentrations of CAF (0–0.5
mM) in the absence or presence of constant HAL
(0.05% v/v). Ca2+ transient amplitude is expressed
as a percent of maximal response elicited by
20 mM CAF. CAF alone had no effect up to 0.5
mM. All data represent means 6 S.E. *P # 0.05,
comparing between genotypes at each CAF con-
centration (one-way ANOVA with Bonferroni’s
post-hoc test, using OriginLab 9.0).
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mouse muscle, which lack CaV1.1 and negative regulation
(Feng et al., 2011; Barrientos et al., 2012). MHmutations also
alter excitation-coupled Ca2+ entry mediated by CaV1.1 (Yang
et al., 2006; Cherednichenko et al., 2008; Bannister et al.,
2010). Based on the present findings we posit that triadic
complexes that possess RYR1 mutations conferring MH
susceptibility are more sensitive to pharmacologic dysregula-
tion by HAL and related triggering anesthetics and that
dietary levels of CAF greatly synergize these disruptive
influences as clearly demonstrated in vitro here. These results
may provide a mechanistic framework for understanding
a recent report that CAF markedly augments neurotoxicity
of isoflurane in the fetal macaque brain and may have more
general impacts on susceptible life stages(Noguchi et al.,
2018).
Our study provides the first evidence of pharmacological

synergism between a general volatile anesthetic and dietary
CAF in a mouse model of MH susceptibility. The study also
demonstrates early central nervous system involvement
mediating adverse outcomes to dietary CAF during mainte-
nance anesthesia with an exemplary triggering agent HAL.
Dietary CAF is a modifiable lifestyle factor that may mitigate
risks associated with MH-causing mutations in RYR1.
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