SPECIAL SECTION ON PHOSPHOPROTEOMIC ANALYSIS OF G PROTEIN-COUPLED PATHWAYS - AXELROD SYMPOSIUM

Phosphoproteomic Analysis as an Approach for Understanding Molecular Mechanisms of cAMP-Dependent Actions
Joseph A. Beavo, Martin Golkowski, Masami Shimizu-Albergine, Michael-Claude Beltejar, Karin E. Bornfeldt, and Shao-En Ong

Phosphoproteomic Identification of Vasopressin/cAMP/Protein Kinase A–Dependent Signaling in Kidney
Karim Salhadar, Allanah Matthews, Viswanathan Raghuram, Kavee Limbutara, Chin-Rang Yang, Arnab Datta, Chung-Lin Chou, and Mark A. Knepper

Phosphoproteomics-Based Characterization of Prostaglandin E2 Signaling in T Cells
Anna Mari Lone and Kjetil Taskén

Axelrod Symposium 2019: Phosphoproteomic Analysis of G-Protein–Coupled Pathways
Katharina Schleicher and Manuela Zaccolo

Proteomic Approaches to Investigate Regulated Trafficking and Signaling of G Protein–Coupled Receptors
Mark von Zastrow

ARTICLES

Identification of Celecoxib-Targeted Proteins Using Label-Free Thermal Proteome Profiling on Rat Hippocampus
Elham Gholizadeh, Reza Karbalaei, Ali Khaleghian, Mona Salimi, Kambiz Gilany, Rabah Soliymani, Ziaurrehman Tanoli, Hassan Rezadoost, Marc Baumann, Mohieddin Jafari, and Jing Tang

Inhibition of Bitter Taste from Oral Tenofovir Alafenamide
Erik Schwiebert, Yi Wang, Ranhui Xi, Katarzyna Choma, John Streiff, Linda J. Flammer, Natasha Rivers, Mehmet Hakan Ozdener, Robert F. Margolskee, Carol M. Christensen, Nancy E. Rawson, Peihua Jiang, and Paul A. S. Breslin

Positive Allosteric Modulators of Metabotropic Glutamate Receptor 5 as Tool Compounds to Study Signaling Bias

The Negative Allosteric Modulator EU1794-4 Reduces Single-Channel Conductance and Ca^{2+} Permeability of GluN1/GluN2A N-Methyl-D-Aspartate Receptors
Riley E. Perszyk, Zhaoshi Zheng, Tue G. Banke, Jing Zhang, Lingling Xie, Miranda J. McDaniel, Brooke M. Katzman, Stephen C. Pelly, Hongjie Yuan, Dennis C. Lioitta, and Stephen F. Traynelis

Supplemental material is available online at http://molpharm.aspetjournals.org.

About the cover: Phosphoproteomic identification of sites increased by cAMP in MA-10 cells. See the article by Beavo et al. (dx.doi.org/10.1124/molpharm.120.000197).