Role of Glycosylation in Trafficking of Mrp2 in Sandwich-Cultured Rat Hepatocytes

Peijin Zhang, Xianbin Tian, Priyamvada Chandra, and Kim L.R. Brouwer

Division of Drug Delivery and Disposition, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7360
Running title page

Running title: Glycosylation modulates Mrp2 trafficking

1. Address correspondence to:

Kim L. R. Brouwer, Pharm.D., Ph.D.
School of Pharmacy, CB# 7360, Kerr Hall
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-7360
Phone: (919) 962-7030; Fax: (919) 962-0644
Email: kbrouwer@unc.edu

2. Number of text pages: 29
 Number of tables: 1
 Number of figures: 9
 Number of references: 30
 Number of words (abstract) 245
 Number of words (introduction) 468
 Number of words (discussion) 1578

3. List of non-standard abbreviations used in this paper:
BEI (biliary excretion index); CDF (5-(and –6)-carboxy –2’, 7’-dichlorofluorescein); Clbile (biliary clearance); DMEM (Dulbecco’s Modified Eagle’s Medium); HBSS (Hank’s Balanced Salt Solution); Multidrug resistance-associated protein 2 (Mrp2, Abcc2); Phosphate Buffered Saline (PBS); polyvinylidone difluoride (PVDF); TBS/Tween (tris-(hydroxymethyl) amino-methane-buffered saline containing 0.05% Tween-20)
Abstract

The multidrug resistance–associated protein (MRP) family plays a major role in the hepatic excretion of organic anions. The expression, localization and function of Mrp2 (Abcc2), a canalicular multispecific organic anion transport protein, were studied in sandwich-cultured rat hepatocytes. The amount of Mrp2 protein remained constant in sandwich-cultured rat hepatocytes over 4 days in culture, but the molecular weight increased ~10 kD from 190 kD to 200 kD. Mrp2 was internalized initially after hepatocyte isolation, and was gradually sorted to the canalicular membrane. Disposition of 5-(6)-carboxy-2’, 7’ dichlorofluorescein (CDF), an Mrp2 substrate, confirmed the changes in Mrp2 localization. CDF was localized predominantly inside hepatocytes at Day 0, and gradually localized to the canalicular domain over time in culture. By Day 4 in culture, CDF was localized exclusively in the canalicular networks. Tunicamycin, an inhibitor of glycosylation, decreased the molecular weight and simultaneously impaired the trafficking of Mrp2 to the canalicular membrane. Treatment of lysates from both Day 0 (Mrp2, 190 kD) and Day 4 (Mrp2, 200 kD) sandwich-cultured rat hepatocytes with PNGase F, a deglycosylation agent, resulted in a band of 180 kD, suggesting that Mrp2 from both Day 0 and Day 4 was glycosylated, but Mrp2 on Day 4 was more glycosylated than on Day 0. In conclusion, these data support the hypothesis that glycosylation of Mrp2 is responsible for the increase in molecular weight and may be involved in directing the canalicular localization of Mrp2 in sandwich-cultured rat hepatocytes over days in culture.
Introduction

Mrp2 (Abcc2), previously designated the canalicular multispecific organic anion transporter (cMOAT), has been characterized as an ATP-dependent membrane transport protein responsible for the biliary excretion of organic anions, including both conjugated and unconjugated amphiphilic anions (Borst et al., 2000; Gerk and Vore, 2002; König et al., 1999). In the liver, Mrp2 is located exclusively on the canaliculal membrane, with a molecular weight of 190 kD (Ogawa et al., 2000).

Dedifferentiation and loss of many liver-specific properties are well known to occur in primary hepatocytes cultured in a conventional configuration. For example, Na⁺-dependent taurocholate cotransporting polypeptide activity in primary rat hepatocytes cultured on a gelled collagen substratum has been shown to be reduced to 2%-7% of basal activity after 72 hours in culture, while Mrp2 activity was maintained at 50% of its original value (Rippin et al., 2001). However, hepatocytes cultured in a sandwich configuration (between two layers of gelled collagen) exhibit a more normal physiological morphology including extensive bile canalicular networks and maintenance of transport protein expression and function compared to hepatocytes cultured in a conventional configuration (Liu et al., 1998; Liu et al., 1999b; Liu et al., 1999c). The sandwich-cultured hepatocyte system has been used as an in vivo-like model to study biliary excretion (Liu et al., 1999c).

Nascent proteins contain signals that determine their ultimate destination within the cell, and protein glycosylation is one strategy used by cells to assist in sorting proteins to the
proper membrane domain. MRP2/Mrp2 has at least two glycosylation sites, one of which is located in the N-terminus, and the other in the third extracellular loop of the C-terminus (Borst et al., 2000). Non-functional MRP2 identified in a patient with Dubin-Johnson syndrome was found to contain 2 amino acid deletions (Keitel et al., 2000; Keitel et al., 2003). This mutant protein was less glycosylated, retained in the endoplasmic reticulum, and was sensitive to endoglycosidase, suggesting impaired stability and trafficking of MRP2 (Keitel et al., 2000). Trafficking experiments with a series of chimeric Mrp1/Mrp2 proteins suggested that the critical domain determining Mrp2 trafficking was in the N-terminal fragment (Konno et al., 2003). Liu et al. reported that the molecular weight of Mrp2 in rat hepatocytes cultured for 5 days in a sandwich configuration was increased by ~10 kD (Liu et al., 1999b). These data were consistent with the hypothesis that Mrp2 underwent glycosylation in primary sandwich-cultured rat hepatocytes over time in culture.

Tunicamycin, a hydrophobic analog of UDP-N-acetylglucosamine, is an antibiotic that inhibits N-glycosylation by blocking the addition of N-acetylglucosamine to dolichol phosphate, the first step in the formation of the core oligosaccharide (Christensen et al., 2000; Kamitani and Sakata, 2001). In the current study, tunicamycin was used to block Mrp2 glycosylation, and to explore the influence of glycosylation on the localization of this transport protein in sandwich-cultured rat hepatocytes.
Materials and Methods

Chemicals and antibodies: Complete® protease inhibitor cocktail tablets were obtained from Roche (Mannheim, Germany). PNGase F was obtained from New England BioLabs (Beverly, MA). Collagenase (type I, class I) was obtained from Worthington Biochemical Corporation (Lakewood, NJ). Dulbecco’s Modified Eagle’s Medium (DMEM), fetal bovine serum (FBS) and insulin were from Gibco (Rockville, MD). Rat-tail collagen (type I) and ITS™+ culture supplement (insulin, transferrin and selenium) were obtained from BD Bioscience (Bedford, MA). Bovine serum albumin (BSA), trypsin inhibitor and tunicamycin were purchased from Sigma (St. Louis, MO). Mouse monoclonal anti-Mrp2 (M2III-6) antibody was purchased from Alexis Biochemicals Corporation (Pittsburgh, PA) and mouse anti-actin antibody was purchased from Chemicon International (Temecala, CA). Horseradish peroxidase (HRP)-conjugated anti-mouse IgG antibody was obtained from Amersham Life Science, Inc (St Louis, MO) and Alexa Fluor 488 conjugated anti-mouse and rabbit IgG antibodies, Rhodamine Red-X conjugated anti mouse and rabbit IgG antibodies, and CDF were purchased from Molecular Probes (Eugene, OR). Rabbit polyclonal anti-calreticulin and mouse anti-Golgi antibodies were purchased from AbCam (Cambridge, UK). Rabbit antiserum anti Mrp2 was a kind gift from Dr. Sugiyama (the University of Tokyo, Japan). Electrophoresis reagents were obtained from Invitrogen/Novex (Carlsbad, CA). LumiGlo Chemiluminescence substrate kit was purchased from Kirkegaard and Perry Labs (Gaithersburg, MD).

Animals: Male Wistar rats from Charles River Laboratories, Inc. (Raleigh, NC) were used as liver donors. Rats were housed in an alternating 12-h light/dark cycle for at least 1 week.
before the study was performed and were allowed food and water ad libitum. All animals received humane care according to the criteria outlined in the “Guide for the Care and Use of Laboratory Animals” prepared by the National Academy of Sciences (NIH publication 86-23 revised 1985). The Institutional Animal Care and Use Committee approved all procedures.

Sandwich-cultured hepatocytes: Hepatocytes were isolated as described previously (Chandra et al., 2001). Briefly, rats were anesthetized with ketamine and xylazine (60 and 12 mg/kg i.p., respectively). The liver was perfused *in situ* with oxygenated Ca²⁺-free Krebs-Henseleit bicarbonate buffer containing 5.5 mM glucose for 10 min at 37°C followed by perfusion with the same buffer containing 5 mM CaCl₂ and 0.5 mg/ml of collagenase type I for 10 min. After perfusion, the liver was removed and hepatocytes were released into 100 ml of DMEM by gently tearing the capsule of the liver. The cells were filtered through a nylon mesh and centrifuged at 50 x g for 2 min. The pellet was resuspended in 25 ml of DMEM and 25 ml of 90% isotonic Percoll, and centrifuged at 70 x g for 5 min. The cells were washed again with DMEM, and the viability of hepatocytes was determined by trypan blue exclusion. Only those hepatocytes with viability greater than 90% were seeded onto dishes.

Nunc plastic culture dishes (60 mm) from Nalge Nunc International (Rochester, NY) were precoated with neutralized rat-tail collagen solution at least 1 day before isolating the hepatocytes. Twenty-four hours later, the gelled collagen was hydrated with 3 ml DMEM. After isolation, the hepatocytes were resuspended in DMEM containing 5% FBS. The
hepatocytes were seeded onto these pre-coated dishes at a density of 3 x 10^6/dish; 1-2 hours later the medium was replaced with 3 ml of fresh medium supplemented with 5% FBS + 0.1 µM dexamethasone (Day 0). After 24 hours, neutralized collagen (0.2 ml, 1.5 mg/ml, pH 7.4) was overlaid on top of the hepatocytes. Fresh DMEM supplemented with 1% ITS (v/v) + 0.1 µM dexamethasone was added on top of the gelled collagen. The culture medium was changed daily.

Tunicamycin treatment: Hepatocytes were treated with 0.1 µg/ml tunicamycin or vehicle (0.1% methanol) by supplementing the culture medium for designated periods on Days 1-3 for Western blot, and for 48 hours for immunohistochemical studies. In preliminary experiments, a tunicamycin concentration of 1 µg/ml caused morphologic alterations in sandwich-cultured rat hepatocytes after 24 hours. Based on preliminary experiments, a 10-fold lower concentration of tunicamycin (0.1µg/ml) was selected for investigation in this study. This concentration is well below that employed in other studies with Madin-Darby canine kidney (MDCK) cells (Fernandez et al., 2002).

Deglycosylation of Mrp2: Sandwich-cultured rat hepatocytes on Day 0 and Day 4 were lysed in 1x Complete® protease inhibitor cocktail in 0.5% sodium dodecyl sulfate (SDS)/0.5 mM ethylenediaminetetracetic acid (EDTA). The lysate was incubated with PNGase F according to the manufacturer’s instructions with slight modification for either 20 min or 40 min at 37°C and then loaded onto a 4-12% Bis-Tris gel for Western blot analysis.
CDF disposition assessed by microscopy: Hepatocytes were preincubated in Hank’s Balanced salt solution (HBSS) at 37°C for 10 min. Subsequently, cells were incubated with 10 µM CDF diacetate at 37°C for 10 min, and rinsed 3 times with 3 ml HBSS to remove extracellular substrate prior to viewing with an Axiovert 100TV inverted microscope (Zeiss, Thornwood, NY).

Biliary excretion measurements: Biliary excretion measurements were carried out in sandwich-cultured rat hepatocytes from Day 1 to Day 4 as described previously (Chandra et al., 2001). Briefly, sandwich-cultured rat hepatocytes were rinsed twice with HBSS ± Ca^{2+} and incubated with the same buffer for 10 min at 37°C. Subsequently, the cells were incubated with 10 µM CDF diacetate in HBSS for 10 min and then washed 3 times with 3 ml of ice cold HBSS. Hepatocytes were lysed with 2 ml of 1% Triton X-100 in PBS for 20 min at room temperature. CDF concentrations were analyzed by a Bio-Tek microplate fluorescence reader. The biliary excretion index (BEI), calculated using B-CLEAR™ technology (Qualyst, Inc., Research Triangle Park, NC), was determined by dividing the difference in CDF accumulation in hepatocytes preincubated in HBSS [cells + bile canaliculi] and hepatocytes preincubated in Ca^{2+}-free HBSS (cells) by CDF accumulation in hepatocytes preincubated in HBSS (cells + bile) (Liu et al., 1999a). The CDF biliary clearance (Cl_{bile}) was determined based on the following equation:

\[
Cl_{bile} = \frac{\text{Accumulation (cell + bile)} - \text{Accumulation (cell)}}{\text{Incubation time} \times \text{Incubation medium concentration of CDF}} \times 100 \%
\]
Sample preparation for Western blot: The method for the preparation of total cellular membranes and cytosolic fractions from sandwich-cultured rat hepatocytes was adapted from Almquist et al (Almquist et al., 1995). Sandwich-cultured rat hepatocytes in 60 mm dishes on Day 0 or Day 4 were washed with cold 1x PBS (Phosphate Buffered Saline, Sigma), harvested, snap frozen in liquid nitrogen and stored at -80 °C for subsequent use. Frozen cells were thawed and suspended in membrane preparation buffer (10 mM pH 7.6 Tris-HCl, 1.5 mM MgCl$_2$, 10 mM KCl, 1 mM EDTA) plus Complete® protease inhibitors. Cells were homogenized (80 vigorous strokes, in cold homogenizer), and disrupted with a sonic dismembranator (Model 100, Fisher; 4 x 15 s bursts with 15 s intervals on ice). Homogenate was spun at 800 x g at 4 °C for 20 min to remove nuclei and unbroken cells. The supernatant was then spun at 130,000 x g at 4 °C for 60 min. The separated total cellular membrane pellet and supernatant (cytosol) were snap frozen in liquid nitrogen and stored at -80 °C for Western blot analysis. Whole cell lysate from sandwich-cultured rat hepatocytes was prepared with 1% SDS/1 mM EDTA.

Western blot: Aliquots containing 50 µg of protein from whole cell lysate, total cellular membranes or cytosol in sample buffer and 50 mM dithiothriol were loaded onto a 10-well 4-12% Bis-Tris gel (Invitrogen, Carsbad, CA). Electrophoresis was carried out in the NOVEX mini-gel system from Invitrogen, at constant voltage (150V) for 2 hours. Proteins were electrophoretically transferred onto PVDF membranes. The blots were blocked overnight at 4°C in 5% dry milk in Tris buffered saline (TBS) containing 0.05% Tween-20 (TBS/Tween, pH 7.4), and incubated with anti-Mrp2 antibody (1:2000) in TBS/Tween for 1 hour at room temperature. After three washes, secondary antibody anti-mouse IgG
(1:1000) in TBS/Tween was incubated with the blots for 1 hour at room temperature. Mrp2 was detected using the LumiGlo chemiluminesce reagent kit. Membranes were stripped and reprobed with mouse anti-actin antibody (1:2000) and secondary antibody anti-mouse IgG (1:10000). Densitometric analysis was performed using Quantity One version 4.40 software (Bio-Rad, Hercules, CA), and all data were normalized for actin.

Immunohistochemical assay: Sandwich-cultured rat hepatocytes were fixed with ice-cold acetone for 10 min at 4°C and air-dried. Small sections were excised and stored at -80°C. Samples were rehydrated with cold blocking buffer [PBS containing 5% goat normal serum and 1% bovine serum albumin (BSA)] for 40 min at room temperature. Fixed sandwich-cultured rat hepatocytes were incubated with different primary antibodies, mouse IgG or rabbit serum in PBS containing 1% BSA at room temperature for 1 h. The primary antibodies were either mouse monoclonal anti-Mrp2 alone (1:400) or mouse monoclonal anti-Mrp2 (1:400) plus rabbit polyclonal anti-calreticulin (1:600) or rabbit anti-Mrp2 serum (1:600) plus mouse monoclonal anti-Golgi (1:600). Samples were washed 3 times with PBS for 10 min and incubated with fluorescence-conjugated goat anti-mouse IgG (1:150–200) and or fluorescence-conjugated goat anti-rabbit IgG (1:200) in PBS containing 1% BSA for 1 hour at room temperature. After washing 3 times with PBS for 10 min, the fluorescent images were obtained with a Leica TCS-NT inverted confocal microscope (Leica, Heidelberg, Germany).
Results

Mrp2 expression in sandwich-cultured rat hepatocytes: The expression of Mrp2 protein was determined by Western blot analysis of total cell lysates from Day 0 through Day 4 in sandwich-cultured rat hepatocytes (Figure 1). Mrp2 protein levels appeared to remain constant during the 4-day culture period, although the molecular weight of Mrp2 increased during culture by ~10 kD from ~190 kD (Day 0) to ~200 kD (Day 4). The band representing Mrp2 was ~190 kD in Day 0 hepatocytes, which was similar to the molecular weight of Mrp2 in freshly isolated rat liver (Figure 7).

Localization and function of Mrp2 in sandwich-cultured rat hepatocytes: Day 4 sandwich-cultured rat hepatocytes exhibited distinct canalicular and basolateral domains, as evidenced by the immunofluorescent localization of canalicular Mrp2 and basolateral Mrp3 (Figure 2A). In the left panel, the image from one section of Day 4 sandwich-cultured rat hepatocytes clearly showed that Mrp2 localized to the tubular structures of the bile canaliculi (green), whereas the staining pattern of Mrp3 revealed fluorescence in the basolateral membrane (red). In some areas, the red staining (Mrp3) appeared underneath the green staining (Mrp2), but they were not co-localized. The right panel of Figure 2A represents an image from another section of Day 4 sandwich-cultured rat hepatocytes that clearly reveals the intensive canalicular networks. Despite the fact that Mrp2 protein levels were relatively consistent from Day 0 through Day 4 in culture, Mrp2 was not localized properly to the canalicular domain early in culture. Immunofluorescent localization of Mrp2 detected by confocal microscopy (Figure 2B) indicated that on Day 1, Mrp2 was localized intracellularly. Over time in culture, Mrp2 progressively translocated to the
canalicular domain, and by Day 4, Mrp2 was localized almost exclusively to this site. To investigate the localization of Mrp2 after hepatocyte isolation, total cellular membranes and cytosolic fractions were prepared by ultracentrifugation and analyzed by Western blot. Most Mrp2 in Day 0 cells was found in the total cellular membrane fraction with molecular weight ~190 kD; only trace amounts of Mrp2 were detected in cytosol. In Day 4 cells, all the Mrp2 was found in the total cellular membrane fraction with molecular weight ~200 kD (Figure 3). Disposition of the Mrp2 substrate CDF in sandwich-cultured rat hepatocytes over the same culture period confirmed the progressive localization of Mrp2 to the canalicular domain (Figure 4). Due to Mrp2 internalization after hepatocyte isolation, CDF fluorescence was localized predominantly within the cell at Day 0. As canalicular networks gradually formed over time in culture, CDF excretion into canalicular networks increased; fluorescence was localized primarily to the canalicular networks by Day 4. The combined cellular + bile canalicular accumulation of CDF on Day 1 was 846.1 ± 98.4 pmol/mg protein, and was 491.9 ± 28.1 pmol/mg protein on Day 4. In contrast, the cellular accumulation of CDF decreased from 815.8 ± 116.4 pmol/mg protein on Day 1 to 351.3 ± 1.0 pmol/mg protein on Day 4. Due to negligible biliary excretion of CDF on Day 1 and Day 2, the BEI and Clbile of CDF in sandwich-cultured rat hepatocytes were approximately zero, but increased to ~30% and ~11 ml/min/kg by Day 4, respectively (Table 1).

Glycosylation of Mrp2 protein: Treatment of sandwich-cultured rat hepatocytes with tunicamycin for 56 hours (from Day 1 to Day 4) resulted in a reduction in the intensity of the 200 kD Mrp2 protein band and an increase in the 180 kD band (Figure 5). As shown in Figure 6, the shift in molecular weight from 200 kD to 180 kD was proportional to
treatment time with tunicamycin. Densitometric analysis of these data suggested that the half-life of the ~200 kD Mrp2 protein was ~ 45 hours in sandwich-cultured rat hepatocytes.

Day 0 and Day 4 sandwich-cultured rat hepatocytes were lysed with protease inhibitor cocktail and treated with or without PNGase F in order to deglycosylate Mrp2 protein. Samples from fresh rat liver were used as a control. The molecular weight of Mrp2 in Day 0 hepatocytes and fresh liver was ~190 kD, but decreased to 180 kD after PNGase F treatment. Incubation of Day 4 hepatocyte lysate with PGNase F caused the Mrp2 protein band at 200 kD to split into two bands: a 190 kD band which is less glycosylated, and a 180 kD band which is nonglycosylated (Figure 7A). All Mrp2 protein became nonglycosylated (~180kD) after a 40-min incubation with PNGase F (Figure 7B); the molecular weight of nonglycosylated Mrp2 was consistent with data collected from Sf9 cells (data not shown).

Mrp2 trafficking to the canalicular domain: After treatment of sandwich-cultured rat hepatocytes with tunicamycin, immunohistochemical localization of Mrp2 protein was determined by confocal microscopy. On Day 4, Mrp2 was localized predominantly to the canalicular domain. Treatment with tunicamycin for 24 hours (from Day 3 to Day 4) resulted in partial relocalization of Mrp2 to the perinuclear region (Figure 8, top panel). Tunicamycin treatment for 48 hours (from Day 2 to Day 4) resulted in almost complete internalization of Mrp2 compared to vehicle treatment (Figure 8, bottom panel). Immunofluorescence analysis of the cells treated with tunicamycin for 48 hours demonstrated co-localization of Mrp2 (green) with calreticulin, a standard endoplasmic reticulum marker (red) (overlap is shown in yellow; Figure 9, top panel); minimal overlap
in Mrp2 (green) and Golgi (red) staining was observed (Figure 9, bottom panel). This study suggested that nonglycosylated Mrp2 most likely was retained inside the endoplasmic reticulum rather than the Golgi.
Discussion

Sandwich-cultured rat hepatocytes maintain a more physiologically normal morphology with a higher level of transport protein expression and function compared to hepatocytes cultured in a conventional configuration (Liu et al., 1998). The sandwich configuration facilitates repolarization of the cells necessary for the formation of canalicular networks (LeCluyse et al., 1994). In the present study, Mrp2 protein levels, as determined by Western blot analysis, remained constant over 4 days in culture; however, the molecular weight of the Mrp2 band increased by ~10kD.

The constant level of Mrp2 protein over the four days in culture represents a balance between the degradation of existing Mrp2 and the synthesis of new Mrp2 in sandwich-cultured rat hepatocytes. After disruption of cell polarity by collagenase treatment during hepatocyte isolation, the apical membrane containing Mrp2 is rapidly endocytosed (Roelofsen et al., 1995). Mrp2 in fresh liver and Day 0 sandwich-cultured rat hepatocytes was partially glycosylated, and was glycosylated further over days in culture, resulting in an increase in the molecular weight of Mrp2 by ~10 kD. In Day 0 or fresh liver, the molecular weight of Mrp2 decreased from ~190 kD to ~180 kD after treatment with PNGase F, yielding nonglycosylated Mrp2. These results indicated that Mrp2 in fresh liver and Day 0 hepatocytes was glycosylated. Mrp2 was glycosylated further over 4 days in culture, producing a band at ~200 kD. Deglycosylation of Mrp2 from Day 4 hepatocytes by PNGase F resulted in a band with the same ~180 kD molecular weight as that of Day 0 cells treated with PNGase F. The ~180 kD Mrp2 protein was not glycosylated, and was the
same molecular weight as Mrp2 protein expressed in Sf9 cells, which do not glycosylate large membrane proteins (Germann et al., 1990).

Day 0 hepatocytes had low levels of glycosylation, similar to that of fresh liver. It appears that low levels of Mrp2 glycosylation are enough to traffic Mrp2 to the canalicular membrane under physiological conditions. Further glycosylation of Mrp2 in sandwich-cultured rat hepatocytes may be important in trafficking this protein to the canalicular membrane. Using immunofluorescence confocal microscopy, it appears that Mrp2 was internalized initially (Day 1) and then gradually localized to the canalicular domain (Day 4). Western blot analysis suggested that after internalization, Mrp2 was still in the cellular membrane fraction (Figure 3). The time required for localization may be associated with the time required to glycosylate the protein and translocate it through the cell. By Day 4, canalicular networks were formed (Figure 4), and Mrp2 had increased in molecular weight by ~10 kD, consistent with glycosylation of the protein.

Subsequent experiments demonstrated that the localization of Mrp2 affects its transport function. CDF diacetate, which exhibits weak fluorescence, rapidly diffuses across the cell membrane of hepatocytes and is hydrolyzed by intracellular esterases in the cytoplasm to a highly fluorescent product, CDF (Zamek-Gliszczynski et al., 2003). CDF is a high affinity substrate for Mrp2 (Liu et al., 1999b), and is transported efficiently into the canalicular lumen. Images of cells loaded with CDF obtained at different times in culture demonstrated that most of the fluorescence was retained inside the cell prior to Day 2. By Day 4, however, almost all of the fluorescence was concentrated in the sealed canalicular networks.
via transport by Mrp2. Cellular accumulation of CDF also was decreased on Day 4 relative to Day 1 most likely due to increased basolateral excretion of CDF by Mrp3, which was upregulated over days in culture (Zhang P, 2001). The biliary excretion index of CDF was measurable by Day 3, indicating that at least a portion of the Mrp2 was localized to the canalicular domain and functional. Based on these results, sandwich-cultured rat hepatocytes should be cultured as specified for at least 3 days to ensure both proper Mrp2 localization and transport assessment.

To further examine the relationship between glycosylation and localization of Mrp2, the time course of changes in Mrp2 localization after tunicamycin treatment was examined in sandwich-cultured rat hepatocytes. Mrp2 immunofluorescence images demonstrated that treatment with tunicamycin for 48 hours caused Mrp2 to concentrate and localize around the nuclear membrane, with some fluorescence localized in a diffuse manner inside the hepatocytes. Based on Western blot analysis, the glycosylated Mrp2 at ~200 kD gradually disappeared and a ~180 kD nonglycosylated Mrp2 band gradually appeared. Immunofluorescence studies revealed that Mrp2 co-localized with the endoplasmic reticulum, suggesting that nonglycosylated Mrp2 following tunicamycin treatment was trapped in the endoplasmic reticulum (Figure 9), consistent with the hypothesis that the nonglycosylated form of Mrp2 could not traffic to the canalicular membrane. Parodi et al. (Parodi, 1999) observed that only correctly folded and glycosylated proteins exit the endoplasmic reticulum to the Golgi complex. Proteins retained within the endoplasmic reticulum are subject to degradation by proteases. Thus, if Mrp2 was not promptly glycosylated, the protein may be retained within the endoplasmic reticulum and subject to
degradation by proteasomes (Keitel et al., 2000). Based on Western blot analysis, a very small band (~40 kD, data not shown) did appear after 48 hours of tunicamycin treatment, but not in vehicle-treated cells, supporting the hypothesis that Mrp2 was degraded when glycosylation was inhibited by tunicamycin. The immunofluorescent images of Mrp2 after 48 hours of tunicamycin treatment were decreased in intensity compared with vehicle treatment, consistent with the observation that the total amount of Mrp2 protein after tunicamycin treatment was less than that in vehicle-treated cells.

Since tunicamycin does not hydrolyze the existing glycosylated groups on Mrp2, but rather prevents new protein from being glycosylated, the ~180 kD band most likely represents newly synthesized protein. However, we cannot exclude the possibility that internalized ~190 kD Mrp2 was deglycosylated and degraded to ~180 kD, due to normal degradation processes in the cell. The protein synthesis inhibitor, cycloheximide, was utilized to inhibit Mrp2 synthesis, but the results were inconclusive since incubation for ≥48 hours with 10 μg/ml of cycloheximide caused toxicity in the hepatocytes. Lower concentrations of cycloheximide did not appear to inhibit Mrp2 protein synthesis completely. Since there was no newly glycosylated Mrp2 that could appear in this system due to the presence of tunicamycin in the culture medium, the half-life of the glycosylated Mrp2 protein was estimated to be ~45 h. However, due to the poor separation of the 200 kD and 180 kD bands in some blots (Figure 6A), it is possible that the band at ~180 kD may partially overlap with the band at ~200 kD. Thus, this half-life of Mrp2 may be an overestimate of the true half-life.
Several factors influence the trafficking and localization of transport proteins. One of these factors, protein glycosylation, has been shown to be crucial for the correct trafficking of many membrane transporters (Lee et al., 2003). Mutations causing amino acid sequence changes in human MRP2 result in Dubin-Johnson syndrome, a condition characterized by impaired bilirubin secretion into bile (Keitel et al., 2000). This mutation results in defective folding of MRP2 within hepatocytes, and therefore, impairs MRP2 localization and function. In one patient with Dubin-Johnson syndrome, deletion of two amino acids in the sequence of MRP2 resulted in a mutant protein that was more sensitive to endoglycosidase H digestion, and this patient subsequently expressed a less glycosylated form of MRP2. In this case, MRP2 was trapped in the endoplasmic reticulum and was unable to traffic to the apical membrane. Several other mutations found in Dubin-Johnson syndrome patients result in both glycosylated and nonglycosylated forms of MRP2. The glycosylated MRP2 mutant could correctly traffic to the apical cell membrane of hepatocytes while the nonglycosylated mutant exhibited deficient maturation and impaired sorting (Hashimoto et al., 2002). These studies suggest that MRP2 glycosylation is an important determinant of MRP2 trafficking and function in humans. Under sandwich-cultured conditions, Mrp2 appears to require more extensive glycosylation to traffic to the canalicular membrane. No clear evidence at this point has elucidated the physiological role of more extensive glycosylation of Mrp2, but it may play a role in certain pathological conditions, such as cholestasis. Despite the above observations with MRP2, glycosylation is not necessarily required for all transport proteins to properly localize to their respective membranes and function optimally. Nonglycosylated rabbit Mrp2 functioned properly in membrane vesicles from Mrp2-transfected Sf9 cells (van Aubel et al., 1998), and studies
performed with different glycosylated forms of P-glycoprotein and Mrp1 have demonstrated that glycosylation has no effect on the transport activity of these proteins (Cai et al., 2001; Urbatsch et al., 2001). In addition to glycosylation of MRP2, radixin, a member of a protein family responsible for the cross linking of actin filaments and integral membrane proteins (Tsukita and Yonemura, 1999), recently was reported to be involved in Mrp2 trafficking. Radixin deficiency resulted in selective loss of Mrp2 from the bile canalicular membrane, suggesting that radixin also may be involved in correct Mrp2 localization (Kikuchi et al., 2002). The relationship between radixin and Mrp2 in sandwich-cultured hepatocytes is the subject of ongoing studies in our laboratory.

In summary, Mrp2 in rat hepatocytes is internalized after isolation at Day 0. In order for the internalized ~190 kD Mrp2 to be trafficked to the correct domain in sandwich-cultured rat hepatocytes, both re-establishment of the canalicular network and more extensive glycosylation of the Mrp2 protein appear to be required. The time course of glycosylation correlates with the time course of canalicular Mrp2 localization. Mrp2 transport function correlated with the localization of Mrp2 to the canalicular domain in sandwich-cultured rat hepatocytes. These data suggest that glycosylation plays an important role in the canalicular sorting of this protein in sandwich-cultured hepatocytes.
Acknowledgements

The technical assistance of Pamela Amos Terry is gratefully acknowledged.
Reference

Konno T, Ebihara T, Hisaeda K, Uchiumi T, Nakamura T, Shirakusa T, Kuwano M and
Wada M (2003) Identification of domains participating in the substrate specificity
and subcellular localization of the multidrug resistance proteins MRP1 and MRP2.
J Biol Chem **278**:22908-17.

LeCluyse EL, Audus KL and Hochman JH (1994) Formation of extensive canalicular
networks by rat hepatocytes cultured in collagen-sandwich configuration. _Am J
Physiol_ **266**:C1764-74.

functional activity of Oatp1, an organic anion transporter. _Am J Physiol
Gastrointest Liver Physiol_ **285**:G371-81.

EL (1998) Partial maintenance of taurocholate uptake by adult rat hepatocytes

Liu X, Chism JP, LeCluyse EL, Brouwer KR and Brouwer KL (1999a) Correlation of
biliary excretion in sandwich-cultured rat hepatocytes and in vivo in rats. _Drug
Metab Dispos_ **27**:637-44.

Liu X, LeCluyse EL, Brouwer KR, Gan LS, Lemasters JJ, Stieger B, Meier PJ and
Brouwer KL (1999b) Biliary excretion in primary rat hepatocytes cultured in a

Liu X, LeCluyse EL, Brouwer KR, Lightfoot RM, Lee JI and Brouwer KL (1999c) Use of
Ca2+ modulation to evaluate biliary excretion in sandwich-cultured rat hepatocytes.
J Pharmacol Exp Ther **289**:1592-9.

M and Sugiyama Y (2000) Characterization of inducible nature of MRP3 in rat
liver. _Am J Physiol Gastrointest Liver Physiol_ **278**:G438-46.

Parodi AJ (1999) Reglucosylation of glycoproteins and quality control of glycoprotein
folding in the endoplasmic reticulum of yeast cells. _Biochim Biophys Acta
1426_:287-95.

sinusoidal and canalicular organic anion transport systems in primary cultured rat
hepatocytes. _Hepatology_ **33**:776-82.

Redistribution of canalicular organic anion transport activity in isolated and
cultured rat hepatocytes. _Hepatology_ **21**:1649-57.

Urbatsch IL, Wilke-Mounts S, Gimi K and Senior AE (2001) Purification and
characterization of N-glycosylation mutant mouse and human P-glycoproteins
expressed in Pichia pastoris cells. _Arch Biochem Biophys_ **388**:171-7.

van Aubel RA, van Kuijck MA, Koenderink JB, Deen PM, van Os CH and Russel FG
(1998) Adenosine triphosphate-dependent transport of anionic conjugates by the
rabbit multidrug resistance-associated protein Mrp2 expressed in insect cells. _Mol
Pharmacol_ **53**:1062-7.

Zamek-Gliszczynski MJ, Xiong H, Patel NJ, Turncliff RZ, Pollack GM and Brouwer KL
(2003) Pharmacokinetics of (5 and 6)-carboxy-2',7'-dichlorofluorescein and its
diacetate promoiety in the liver. _J Pharmacol Exp Ther_ **304**:801-9.
Footnotes

a) This research was supported by grant RO1 GM41935 from the National Institutes of Health.

This work was presented in part at the American Association of Pharmaceutical Scientists Annual Meeting, Denver, Colorado, Oct., 2001.

b) To whom should be sent reprint requests:

Kim L. R. Brouwer, Pharm.D., Ph.D.

School of Pharmacy

CB# 7360, Kerr Hall

University of North Carolina at Chapel Hill

Chapel Hill, NC 27599-7360
Figure Legends

Figure 1: Representative Western blot of Mrp2 protein in sandwich-cultured rat hepatocytes over time in culture. Actin was used as the internal control. The molecular weight increased from ~190 kD on Day 0 to ~200 kD on Day 4 in culture.

Figure 2: Confocal microscopy images revealing immunofluorescent localization of (A) Mrp2 (green) on the canalicular domain and Mrp3 (red) on the basolateral domain in Day 4 sandwich-cultured rat hepatocytes, and (B) Mrp2 in sandwich-cultured rat hepatocytes over time in culture. The duration of culture time before the cells were fixed and incubated with anti-Mrp2 antibody is indicated in each panel.

Figure 3: Mrp2 protein in total cellular membranes and cytosol from Day 0 and Day 4 hepatocytes was detected by Western blot. Most of the Mrp2 in Day 0 cells was detected in total cellular membranes with only a weak band in the cytosolic fraction from Day 0 cells. Mrp2 protein was only detected in total cellular membranes from Day 4 cells.

Figure 4: CDF disposition in sandwich-cultured rat hepatocytes measured by fluorescence microscopy over time in culture. The duration of culture time before addition of CDF is indicated in each panel. CDF fluorescence was localized in the canalicular networks by Day 4.

Figure 5: Representative Western blot of Mrp2 protein in Day 0, Day 4, and 0.1 µg/ml tunicamycin-treated Day 4 sandwich-cultured rat hepatocytes. Lane 1 (~180 kD): Day 4
hepatocytes treated with 0.1µg/ml tunicamycin (T) from Day 1 to Day 4; Lane 2: Day 4 hepatocytes (~200 kD) treated with vehicle; Lane 3: Day 0 hepatocytes (~190 kD). Treatment with tunicamycin caused the Mrp2 protein band at ~200 kD to disappear and the Mrp2 protein band at ~180 kD to increase.

Figure 6: (A) Representative Western blot of Mrp2 protein in vehicle and 0.1 µg/ml tunicamycin-treated Day 4 sandwich-cultured rat hepatocytes (B=no vehicle, V=vehicle, T=tunicamycin). Treatment time is indicated in each lane. Tunicamycin blocked Mrp2 glycosylation causing the Mrp2 band at ~200 kD to gradually disappear. (B) Time course of changes in Mrp2 protein in sandwich-cultured rat hepatocytes measured by densitometry in the presence of tunicamycin (●, ~200 kD band; ○, ~180 kD band) (Mean ± SEM, n=4).

Figure 7: Representative Western blot of Mrp2 protein in Day 0 and Day 4 sandwich-cultured rat hepatocytes, and fresh liver, with or without PNGase F (PNG) treatment for (A) 20 min or (B) 40 min. Treatment with PNGase F for 20 min split the 200 kD band in Day 4 hepatocytes into ~190 kD and ~180 kD bands. Treatment with PNGase F for 40 min totally shifted the ~200 kD band from Day 4 hepatocytes into a ~180 kD band.

Figure 8: Confocal microscopy images revealing immunofluorescent localization of Mrp2 in Day 4 sandwich-cultured rat hepatocytes. The cells were treated with vehicle (V) or 0.1 µg/ml of tunicamycin (T) for 24 or 48 hours before they were fixed and incubated with anti-Mrp2 antibody.
Figure 9: Co-staining of Mrp2 with endoplasmic reticulum marker (top panel) and co-staining of Mrp2 with Golgi (bottom panel) in Day 4 sandwich-cultured rat hepatocytes treated with 0.1 µg/ml tunicamycin for 48 hours. Top panel: Mouse anti-Mrp2 (1:400) and rabbit anti-endoplasmic reticulum marker (1:600) were used to detect Mrp2 (green) and endoplasmic reticulum marker (red); co-localization of Mrp2 and endoplasmic reticulum marker was observed. Bottom panel: Rabbit anti-Mrp2 (1:600) and mouse anti-Golgi (1:600) were used to detect Mrp2 (green) and Golgi (red). No co-localization was observed.
Table 1: Accumulation of CDF in Sandwich-Cultured Rat Hepatocytes

<table>
<thead>
<tr>
<th>Day</th>
<th>CDF accumulation in cell + bile (pmol/mg protein)</th>
<th>CDF accumulation in cell (pmol/mg protein)</th>
<th>BEI (%)</th>
<th>Cl bile (ml/min/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>846.1 ± 98.4</td>
<td>815.8 ± 116.4</td>
<td>1</td>
<td>5.2 ± 5.2</td>
</tr>
<tr>
<td>2</td>
<td>614.5 ± 152.9</td>
<td>643.4 ± 124.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>479.9 ± 16.9</td>
<td>458.1 ± 4.1</td>
<td>4.7</td>
<td>1.7 ± 1.7</td>
</tr>
<tr>
<td>4</td>
<td>491.9 ± 28.1</td>
<td>351.3 ± 1.0</td>
<td>28.1</td>
<td>11.3 ± 2.2</td>
</tr>
</tbody>
</table>

(mean ± SD)
Figure 1
<table>
<thead>
<tr>
<th></th>
<th>Cytosol</th>
<th>Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3
Figure 4
Figure 5
Figure 6A
Figure 6B

Mrp2 Protein
(Fraction of Vehicle Treatment, mean ± SEM)

Treatment Time (h)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0 20 40 60

Mrp2 at 180kD

Mrp2 at 200kD
Figure 7A
Figure 8
Figure 9