Malaria parasites are rapidly killed by dantrolene derivatives specific for PSAC

Myungsa Kang, Godfrey Lisk, Stephen Hollingworth, Stephen M. Baylor,

and Sanjay A. Desai

The Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland (M.K., G.L., S.A.D); and Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania (S.H., S.M.B.).
Running title: Dantrolene analogs specific for PSAC

Address correspondence to: Sanjay A. Desai, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Room 3W-01, 12735 Twinbrook Parkway, Rockville, MD, 20852 USA. Email: sdesai@niaid.nih.gov; telephone (301) 435-7552; fax (301) 402-2201.

Text pages: 23
Tables: 0
Figures: 5
References: 34
Abstract: 234 words
Introduction: 549 words
Discussion: 1,090 words

Abbreviations: PSAC, plasmodial surface anion channel; SR, sarcoplasmic reticulum; MOD-1, modulation of locomotion chloride channel in C. elegans; P_s, sorbitol permeability; NPPB, 5-nitro-2-(3-phenylpropylamino)benzoic acid.
ABSTRACT

Dantrolene was recently identified as a novel inhibitor of the plasmodial surface anion channel (PSAC), an unusual ion channel on *P. falciparum*-infected human red blood cells. Because dantrolene is used clinically, has a high therapeutic index, and has desirable chemical synthetic properties, it may be a lead compound for antimalarial development. However, dantrolene derivatives would need to preferentially interact with PSAC over the sarcoplastic reticulum (SR) Ca$^{++}$ release channel to avoid unwanted side effects from antimalarial therapy. Furthermore, dantrolene’s modest affinity for PSAC (K_m of 1.2 μM) requires improvement. Here, we tested 164 derivatives of dantrolene to examine if these hurdles can be surmounted. A simple screen for PSAC block defined the minimal scaffold needed and identified compounds with \geq 5-fold higher affinity. Single-channel patch-clamp recordings on infected human red blood cells (RBCs) with two derivatives also revealed increased blocking affinity and indicated that it results from slower unbinding from a site on PSAC’s extracellular face. We tested these derivatives in a frog skeletal muscle contractility assay and found that, in contrast to dantrolene, they had little or no effect on SR Ca$^{++}$ release. Finally, these blockers kill *in vitro* parasite cultures at lower concentrations than dantrolene, consistent with an essential role for PSAC. Because, as a class, these derivatives fulfil the requirements for drug leads and can be studied with simple screening technology, more extensive medicinal chemistry is warranted to explore antimalarial development.
Introduction

The plasmodial surface anion channel (PSAC) may be an ideal target for the development of antimalarial drugs because it is located on the host erythrocyte membrane (Desai et al., 2000), has an unusual pharmacological profile (Lisk et al., submitted), and is conserved on parasite isolates from around the world (Alkhalil et al., 2004). Although PSAC’s precise physiological role is unknown, a role in nutrient acquisition for the intracellular parasite is likely (Desai et al., 2000) because this ion channel is highly permeable to purines, amino acids, vitamins, and other nutrients needed for parasite growth (Kirk et al., 1994; Ginsburg, 1994; Desai, 2004).

While the molecular mechanism and location of the parasite-induced increased permeability were only recently identified (Desai et al., 2000), its potential value as a target for antimalarial development has been under consideration for much longer. Early studies recognized that most PSAC inhibitors kill parasites under in vitro culture conditions (Kutner et al., 1987; Cabantchik et al., 1983; Kirk et al., 1993). The major issues that should be addressed if these findings are to be successfully translated into clinically useful antimalarial drugs include 1) a demonstrated essential role of PSAC for the intraerythrocytic parasite, 2) verification that growth inhibition results from action specifically on PSAC rather than on other parasite targets, 3) a clear understanding of how candidate antimalarial compounds inhibit permeation through PSAC, 4) robust inhibitory activity under physiological conditions at concentrations achieved in the human bloodstream, and 5) lack of effect on human anion channels and other essential activities. Little progress has been made on any of these major hurdles. Indeed, some
may only be addressed after the definitive identification of PSAC’s gene(s) (Desai, 2004).

Despite these uncertainties, PSAC remains an attractive target for antimalarial development. Most programs aimed at identifying clinically useful compounds begin with known inhibitors and use medicinal chemistry approaches to search for derivatives with higher affinity and specificity for the target. Several groups have taken this approach for PSAC with some success. In one study (Kirk and Horner, 1995), 16 derivatives of 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) were tested for their activities against PSAC and compared to those against carrier-mediated transport in uninfected human RBCs, revealing compounds with improved but incomplete specificity for PSAC. Another study used derivatives of furosemide and achieved marked improvements in affinity for PSAC (Staines et al., 2004). Finally, the antiplasmodial activity of some chalcones was linked to inhibition of PSAC through another study of derivative compounds (Go et al., 2004). Unfortunately, neither the mechanisms of PSAC inhibition by these agents nor how derivatives achieve their improved activities have been explored.

We recently found that dantrolene, a clinically used ion channel blocker with a high therapeutic index, unexpectedly inhibits PSAC (Lisk et al., submitted). This prompted us to search for derivatives that may be useful antimalarial compounds. We tested 164 dantrolene derivatives and identified compounds with both improved affinity and specificity for PSAC. Recordings from single channel molecules indicate that improved affinity results primarily from the slower unbinding of high affinity derivatives from a common extracellular site on PSAC. These compounds were also found to have
dramatically less activity against sarcoplasmic reticulum (SR) Ca\(^{++}\) release channels, the human target of dantrolene. Because these derivatives also kill malaria parasites under \textit{in vitro} conditions, further investigation of their antimalarial actions is warranted.

Materials and Methods

Screen of dantrolene derivatives. \textit{P. falciparum} (Indo 1 isolate) parasites were cultured, harvested by the percoll-sorbitol method (Aley et al., 1984), and suspended in 150 mM NaCl, 20 mM Na-HEPES, 0.1 mg/mL BSA, pH 7.4 before use in screening 164 dantrolene derivatives (purchased from Chembridge Corp., San Diego, CA). Each compound was prepared as a 1 mg/ml DMSO stock solution and evaluated at a final concentration of 4.2 \(\mu\)g/mL by addition to sorbitol lysis buffer (280 mM sorbitol, 20 mM Na-HEPES, 0.1 mg/mL BSA, pH 7.4). Lysis of trophozoite-stage infected RBCs in these solutions was then followed at a hematocrit of approximately 0.2\%. Transmittance of 700 nm light through this RBC suspension was measured at 20 and 60 minutes to estimate fractional osmotic lysis due to PSAC-mediated uptake of sorbitol (Wagner et al., 2003). Comparison to control suspensions with DMSO or 200 \(\mu\)M furosemide, which produce negligible and near-complete PSAC block respectively, was used to calculate \%PSAC block for each compound. Continuous recording of transmittance changes was also used to follow the kinetics of lysis with certain compounds.

Electrophysiology. Cell-attached single channel and whole-cell recordings on infected RBCs were performed as previously described (Desai et al., 2000) with bath and pipette solutions of 1000 mM choline-Cl, 115 mM NaCl, 20 mM Na-HEPES, 10 mM
MgCl₂, 5 mM CaCl₂, pH 7.4. Seal resistances were > 100 GΩ. Channel blockers, when present, were added to both compartments. Data were filtered at 5 kHz and digitized at 100 kHz.

Open and closed durations were measured as described (Lisk et al., submitted). Blocked channel events that resulted from the action of dantrolene or its derivatives were readily distinguished from PSAC’s intrinsic closings, which are significantly shorter with mean durations of less than 1 ms (Alkhalil et al., 2004). Channel dwell durations were determined by fitting to the probability density functions for one open and four closed exponentially decaying states as described (Desai, 2005; Sigworth and Sine, 1987). Closed dwell durations were adequately fitted by constraining the time constants for the three states intrinsic to PSAC and determining the least-squares best estimate for a single time constant imposed by each inhibitor. 7,000 to 90,000 events each from three separate single channel recordings were used to determine the mean dwell durations for each inhibitor.

Growth inhibition. Synchronous parasite cultures at 1% ring-stage parasitemia were seeded at 2% hematocrit with or without channel inhibitors in RPMI 1640 supplemented with 3.6 mg/L hypoxanthine and 2% pooled human serum. Cultures were incubated at 37 °C under 5% O₂, 5% CO₂, 90% N₂ for 48 h with medium exchange at 24 h. At 48 h, the cultures were washed in the same medium without inhibitor or hypoxanthine, and grown for an additional 24 h with 2.1 µCi/mL 3H-hypoxanthine. Incorporation of this label into parasite DNA and RNA, a marker of parasite growth (Chulay et al., 1983), was quantified by harvest onto filter paper and β-scintillation counting.
Frog skeletal muscle contractility. Bundles of 1-4 intact twitch fibers were isolated by manual dissection from *R. papiens* leg muscles and mounted at a sarcomere length of 3 to 3.5 µm in Ringer’s solution (120 mM NaCl, 2.5 mM KCl, 1.8 mM CaCl₂, 5 mM PIPES, pH 7.1) at 16 °C. The combined twitch response to a supra-threshold electrical shock applied by an external source was recorded with a tension transducer attached to one tendon end of the bundle (Baylor and Hollingworth, 2003).

Results

Screen for higher affinity derivatives. The dantrolene molecule consists of a 2-(4-nitrophenyl)furan group (red scaffold, Fig. 1B) linked to hydantoin. Because high concentrations of hydantoin fail to inhibit PSAC-mediated transport (Lisk et al., submitted), we speculated that the 2-(4-nitrophenyl)furan group is responsible for PSAC inhibition. We tested this hypothesis with 164 compounds that contain this group in a modified osmotic lysis assay that tracks PSAC-mediated uptake of the sugar alcohol, sorbitol (Wagner et al., 2003). Each compound was evaluated at 20 and 60 minutes after addition of sorbitol (Fig. 1A) to permit identification of both modest and high affinity PSAC inhibitors: in this endpoint assay, inhibition of cell lysis for short durations can be achieved by weak antagonists, but prolonged inhibition requires higher affinity. The sigmoidal shape of the profile in Fig. 1A reflects this dual stringency of our assay graphically.

Compounds selected from chemically unbiased small molecule libraries have a ≤ 1% probability of inhibiting PSAC (S. Desai, unpublished observations). In contrast, we
found that a high 46% of compounds containing the 2-(4-nitrophenyl)furan group significantly inhibited lysis by ≥ 50% at the 20 min measurement, confirming that this group is responsible for PSAC inhibition. Addition of various substituents on different parts of this scaffold significantly affected the affinity of these compounds for PSAC. We selected two high affinity compounds, NPF-1 (2-butyl-5-imino-6-[[5-(4-nitrophenyl)-2-furylmethylene]-5,6-dihydro-7H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-7-one) and NPF-2 (5-imino-6-[[5-(2-methyl-4-nitrophenyl)-2-furylmethylene]-2-(trifluoromethyl)-5,6-dihydro-7H-[1,3,4]thiadiazolo[3,2-a]pyrimidin-7-one) (Fig. 1B), for further study; in the osmotic lysis assay, these compounds exhibited dose responses with K_m values of 200-400 nM, significantly stronger inhibition than seen with dantrolene (Fig. 1C).

Electrophysiological studies with NPF-1 and NPF-2. We used both single-channel and whole-cell patch-clamp to measure the effects of these dantrolene derivatives on PSAC-mediated Cl⁻ transport. In these experiments, Cl⁻ currents were significantly inhibited by NPF-1 and by NPF-2 (Fig. 2A and Fig. 2B) at concentrations similar to those used in the sorbitol uptake assay (Fig. 1C). Furthermore, both patch-clamp configurations revealed significantly greater levels of inhibition by these new inhibitors than by dantrolene, indicating that our simple screen did achieve improved affinity for PSAC. Thus, NPF-1 and NPF-2 produce parallel effects on sorbitol and Cl⁻ transport in infected RBCs.

The scaffold these derivatives share with dantrolene suggests that this class of antagonists inhibits PSAC through a similar mechanism (Lisk et al., submitted). To study how they achieve their higher affinity, we analyzed the durations of single channel
openings and closings recorded with each inhibitor. Neither dantrolene nor the higher affinity derivatives had any effect on the channel’s mean open duration (Fig. 3A), consistent with a binding site that does not involve direct blockade of the permeation pore. Instead, both dantrolene and the two derivatives added a population of long closings to our single channel recordings. The mean duration of these imposed closings were, however, significantly longer for the derivatives than for dantrolene (Fig. 3B). Because the ~ 4-fold increase in these block durations approximates the 3- to 5-fold higher affinity measured in our sorbitol-mediated lysis assay (Fig. 1C), these single channel studies indicate that these derivatives achieve their increased inhibitory effects primarily through slowed unbinding from a common site on the PSAC molecule. Experiments with dantrolene have revealed that this site is on PSAC’s extracellular face (Lisk et al., submitted).

Effects on parasite growth. In our model, PSAC functions as the first step in a sequential diffusive pathway of nutrient acquisition by the intraerythrocytic parasite (Desai et al., 2000). Here, the high affinity inhibitors may be lead compounds for future antimalarials that starve the intracellular parasite of nutrients present in plasma. Consistent with this proposed role, we found that both dantrolene and the higher affinity derivatives quickly killed *in vitro* parasite cultures (Fig. 4). As also predicted by our model, we found that increased affinity of channel block correlated with killing at lower concentrations. Although qualitative concordance between affinity for channel block and growth inhibition is expected, precise correlations are not necessarily expected because of the non-linear relationship between nutrient uptake and growth, and because of potential off-target effects of these compounds.
Specificity of derivatives for PSAC. Although previous studies identified a number of PSAC antagonists (Kirk et al., 1994; Kirk et al., 1993; Kutner et al., 1987; Staines et al., 2004), none were acceptable candidates for antimalarial development because of lack of specificity: each of those compounds also inhibits human channels or transporters, producing unacceptable side-effects if administered for malaria (Pasvol, 2001). Do the new PSAC antagonists identified here also suffer from poor specificity? Historically, dantrolene has been thought to be specific for muscle SR Ca\(^{++}\) release, offering some basis for optimism. Neither dantrolene, NPF-1, or NPF-2 inhibited CIC-1 (Jentsch et al., 2002), MOD-1 (Ranganathan et al., 2000), or the endogenous Ca\(^{+}\)-activated Cl\(^{-}\) channels on Xenopus oocytes (not shown), suggesting that toxic side-effects from nonspecific inhibition of other anion channels are unlikely. We then examined whether these derivatives block SR Ca\(^{++}\) release in a frog skeletal muscle contractility assay. In intact muscle fibers, dantrolene markedly decreased peak twitch tension without affecting the kinetics of the contraction (Figs. 5A and 5B), consistent with its known block of SR Ca\(^{++}\) release and no effect on the actin-myosin machinery. In contrast, NPF-1 had little or no measurable effect on either the peak tension reached or the kinetics of contraction, indicating that it does not significantly block SR Ca\(^{++}\) release. In other experiments, fibers continued to twitch normally in NPF-1 for \(> 4\) h, indicating that the many processes required for excitation-contraction coupling are not compromised by this PSAC antagonist. In similar experiments, NPF-2 had no significant immediate effect on contractility, again suggesting a reduced ability to block SR Ca\(^{++}\) release. However, on a longer time scale (\(>30\) min), NPF-2 abruptly abolished the twitch. The mechanism underlying this adverse effect was not investigated, but is probably not directly related to
Ca++ release. Rather, the abrupt and complete loss of the twitch suggests a sudden inability to generate an action potential. An alternative explanation, low membrane permeability of *NPF-2* producing delayed inhibition of SR Ca++ release channels, cannot be formally excluded, but is less likely because this should produce twitches of gradually decreasing strength rather than the observed abrupt loss.

Discussion

The aim of this study was to evaluate whether dantrolene is a suitable lead compound for the development of novel antimalarial drugs that target PSAC. PSAC offers a number of advantages over other parasite targets. Maybe most importantly, it is a well-defined target that can be studied with multiple functional assays. Indeed, functional uptake studies performed more than 50 years ago provided evidence for PSAC’s existence (Overman, 1948). Over the years, numerous laboratories have used isotope flux (Kirk et al., 1994; Upston and Gero, 1995; Homewood and Neame, 1974), osmotic fragility (Ginsburg et al., 1985), and fluorescent assays (Cabantchik et al., 1983) to quantify and characterize its permeability properties and to identify inhibitors. The addition of single channel and whole-cell patch-clamp measurements to this armamentarium represent two recent advances (Desai et al., 2000); these have already provided fundamental new insights into PSAC’s function (Alkhalil et al., 2004; Cohn et al., 2003). We know of no other parasite target with this diverse collection of available functional assays.

Another important advantage of PSAC over other parasite targets is its location on the surface of infected RBCs. Not only does this location nullify parasite resistance mechanisms based on extrusion of antimalarial drugs from their site of action (Lisk et al.,
submitted), it reduces constraints on the size and nature of acceptable lead compounds. For example, a major reason for favoring low molecular weight compounds is their greater accessibility to intracellular targets (Lipinski et al., 2001). Given the extracellular location of the dantrolene binding site, it may even be possible to retain PSAC block after conjugating the active 2-(4-nitrophenyl)furan group to an impermeant high molecular weight adjunct. Such a bulky conjugate would probably need intravenous administration, but it would not produce toxic effects through interactions with intracellular targets.

How does dantrolene compare to other PSAC antagonists as a lead compound for antimalarial development? Although its affinity (K_m of 1.2 µM) is similar to the long known inhibitors NPPB and furosemide, it is less plagued by activity against other targets. NPPB inhibits many other anion channels (Diener and Rummel, 1989; Wangemann et al., 1986; Reddy and Quinton, 2002) as well as cyclooxygenase (Breuer and Skorecki, 1989) and would not therefore be an appropriate lead compound. Although furosemide also inhibits many diverse channels and carriers, it is still used clinically as a loop diuretic, achieving adequate therapeutic specificity due to active concentration at its site of action (Brater, 1998). Thus, furosemide derivatives would either need to have other modes of excretion or have no action against renal transporters to be candidates for therapeutic use against PSAC. Dantrolene avoids many of these problems because it has known activity against only one type of mammalian channel. Here, we further improved on its relative specificity for PSAC by engineering out activity against this other channel.

We found that significantly higher concentrations of dantrolene and its derivatives were required to kill parasites than to block PSAC in both our osmotic lysis and patch-
clamp assays (compare Fig. 4 to Fig. 1B). A number of factors may contribute to this discrepancy. First, nutrient uptake via PSAC in the enriched RPMI culture medium presumably occurs at rates greater than needed to sustain parasite growth. Whether this uptake is more limiting under in vivo conditions, especially in malnourished children most frequently afflicted with malaria, has remained entirely unexplored. Second, these new PSAC antagonists, like some previously characterized agents, are significantly adsorbed by serum lipids and proteins, reducing their effective concentration in our in vitro growth experiments. Finally, preliminary experiments suggest that certain nutrient solutes present in our culture adversely affect these antagonists’ affinity for the channel (S. Desai, unpublished observation). Drug development starting with these and other PSAC antagonists will need to critically consider these and other factors to maximize therapeutic efficacy against malaria.

It remains debated how many ion channels the intracellular parasite induces on its host membrane. Some workers believe that organic and inorganic solutes enter the infected RBC through two unrelated channels (Ginsburg and Stein, 2004; Huber et al., 2004; Verloo et al., 2004). Although furosemide inhibits sorbitol, lactate, and Cl transport with identical affinities (Alkhalil et al., 2004), it has been argued that furosemide is non-specific and that its affinity is not sufficient to exclude models with two separate channels. Our findings with dantrolene and its derivatives provide new and quantitative evidence against these models. Not only do dantrolene, NPF-1, and NPF-2 produce parallel effects on sorbitol and Cl transport, but there is good agreement between their relative affinities for inhibition of osmotic lysis in sorbitol (Fig. 1C) and their relative durations of inhibition in single PSAC recordings (Fig. 3B). In light of the
high specificity of *NPF*-1 and *NPF*-2 for inhibiting transport in infected RBCs, we believe the only reasonable model is a single type of channel that mediates the increased uptake of both organic and inorganic solutes. If this more conservative model is correct, PSAC’s value as an antimalarial target should be further increased.

Our study is the first to examine the sub-molecular site of action of a class of PSAC antagonists. Our electrophysiological studies determined that the binding site of dantrolene and its derivatives is on the extracellular face of PSAC and that it involves electrostatic interactions with charged residues (Lisk et al., submitted). Because the levels of inhibition of both single channels and whole-cell currents were not affected by membrane potential (Fig. 2 and other analyses, not shown), the binding site cannot be buried within the membrane’s electric field. Finally, our single channel studies reveal that *NPF*-1 and *NPF*-2 achieve their improved affinity by having slower off rate constants from the dantrolene binding site. Similar biophysical insights into the mechanism of action of these and other PSAC antagonists should play an important role in guiding future drug development against this important target.

NPF-1 represents the first ion channel antagonist specific for PSAC. It binds with sub-micromolar affinity to an extracellular site on this unusual parasite ion channel, disallowing parasite resistance mechanisms based on extrusion of drug from the infected RBC. These new PSAC antagonists markedly reduce parasite burdens under *in vitro* conditions, consistent with the proposed role of PSAC in nutrient acquisition (Desai et al., 2000). Finally, the *in vitro* concentrations required are lower than the plasma dantrolene concentrations achieved in standard muscle relaxant therapy (Flewelling et al., 1983), suggesting that these compounds have adequate affinity for PSAC to be clinically
useful. Additional improvements in activity should be facilitated by the ease of chemical syntheses around the 2-(4-nitrophenyl)furan scaffold and the simple screening assays described here.
References

Lipinski CA, Lombardo F, Dominy BW and Feeney PJ (2001) Experimental and
computational approaches to estimate solubility and permeability in drug discovery

Overman RR (1948) Reversible cellular permeability alterations in disease. In vivo
studies on sodium, potassium and chloride concentrations in erythrocytes of the

357:408-410.

Ranganathan R, Cannon SC and Horvitz HR (2000) MOD-1 is a serotonin-gated chloride

Reddy MM and Quinton PM (2002) Effect of anion transport blockers on CFTR in the

Sigworth FJ and Sine SM (1987) Data transformations for improved display and fitting of
single-channel dwell time histograms. Biophys J 52:1047-1054.

(2004) Furosemide analogues as potent inhibitors of the new permeability pathways of

Upston JM and Gero AM (1995) Parasite-induced permeation of nucleosides in

and De Jonge HR (2004) Plasmodium falciparum-activated chloride channels are

Wagner MA, Andemariam B and Desai SA (2003) A two-compartment model of osmotic
lysis in Plasmodium falciparum-infected erythrocytes. Biophys J 84:116-123.

Wangemann P, Wittner M, Di SA, Englert HC, Lang HJ, Schlatter E and Greger R
(1986) Cl−-channel blockers in the thick ascending limb of the loop of Henle. Structure
FOOTNOTES

This work was supported by NIAID intramural funds to S.A.D. and by a National Institutes of Health grant to S.M.B. (NS 17620).

Please send reprint requests to Sanjay A. Desai, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Room 3W-01, 12735 Twinbrook Parkway, Rockville, MD, 20852 USA.

The authors declare that they have no competing financial interests.
Figure Legends

Fig. 1. Identification of high affinity dantrolene derivatives. A, 164 derivatives were tested with a two-point osmotic lysis measurement. Each symbol represents the average of 2-5 measurements for a single compound. % PSAC block was determined relative to control measurements without inhibitor and with 200 uM furosemide, which abolishes PSAC-mediated lysis in the time-frame of this experiment (Wagner et al., 2003). Values for NPF-1 and NPF-2 are shown in red. B, structures of dantrolene, NPF-1, and NPF-2. The common scaffold of these derivatives is shown in red. C, sorbitol permeabilities, P_S, at a range of NPF-1 and NPF-2 concentrations (closed and open circles, respectively), normalized to the permeability without inhibitor. Solid lines represent least squares best fits to $y = K_m/(K_m + x)$ with K_m of 0.24 and 0.40 µM for NPF-1 and NPF-2, respectively. Dotted line represents the level of inhibition seen with dantrolene (K_m of 1.2 µM; Lisk et al., submitted).

Fig. 2. Single PSAC and whole-cell patch-clamp recordings. A, recordings from infected RBC patches each with one functional PSAC molecule without (top trace) or with 5 µM dantrolene, 5 µM NPF-2, 1 µM NPF-2, or 1 µM NPF-1 (second to bottom traces, respectively). Dashed red lines represent closed channel levels. Membrane potential, -100 mV. Notice the long closed events imposed by low concentrations of NPF-1 and NPF-2. B, whole-cell recordings without inhibitor (left group of traces) or with 10 µM dantrolene, 1 µM NPF-2, or 1 µM NPF-1 (second, third, and fourth groups of traces, respectively). In each
group, traces reflect current responses to voltage pulses from -100 mV to +100 mV in 10 mV increments. Dashed red line represents the zero current level. Horizontal and vertical scale bars represent 137 ms/ 2.7 pA in A and 50 ms/ 2000 pA in B.

Fig. 3. Single channel open (A) and block (B) durations in the presence of inhibitors. Bars represent the mean ± S.E.M. for three single channel recordings each with 5-20 µM dantrolene or 0.5-2.5 µM NPF-1 or NPF-2. Dotted line in A represents PSAC’s mean open duration without inhibitors. NPF-1 and NPF-2 achieve their greater PSAC inhibitory effects relative to dantrolene through longer block durations without a significant change in the mean open duration. As expected for simple inhibition at a site distinct from the channel pore, mean block durations did not vary with inhibitor concentration (not shown).

Fig. 4. Malaria parasites are killed by NPF-1 and NPF-2. Parasites were grown for 48 h in the presence of indicated concentrations (µM) of dantrolene or its derivatives and assayed for parasite survival. Each bar represents the mean ± S.E.M. of three measurements and was compared to DMSO controls without channel blockers (black bar). Notice that significantly less NPF-1 or NPF-2 is needed to kill parasites, consistent with their increased affinities for PSAC.

Fig. 5. Specificity for PSAC. A, comparison of NPF-1 to dantrolene in a frog skeletal muscle contractility assay. Measurements of peak twitch tension after
electrical stimulation were repeated in the absence or presence of compounds, perfused as indicated (shaded intervals) at 5 µM concentration. Notice that NPF-1 had little or no effect on muscle contraction, whereas dantrolene reduced the peak tension by more than 60%. B, amplitude and kinetics of twitch responses corresponding to data points in A: black trace, no inhibitor (average of four responses, two immediately before and two after exposure to NPF-1); green trace, average response in the presence of NPF-1; red, average response in the presence of dantrolene.