Molecular pharmacology of adenosine transport in *Trypanosoma brucei*: P1/P2 revisited

Federico Geiser¹, Alexandra Lüscher¹, Harry P. de Koning², Thomas Seebeck
and Pascal Mäser

Institute of Cell Biology
University of Bern
Switzerland
Running title: T. brucei adenosine transporters

Corresponding author: name: Pascal Mäser
address: Institute of Cell Biology
Baltzerstrasse 4
CH-3012 Bern
Switzerland
tel. +41 31 631 4673
fax +41 31 631 4684
e-mail pascal.maeser@izb.unibe.ch

Number of: text pages
tables 1
figures 7
references 34
words in Abstract 237
words in Introduction 612
words in Discussion 918

Abbreviations: No non-standard abbreviations are used.
Abstract

Trypanosoma brucei spp. are unicellular parasites that cause sleeping sickness in humans and nagana in livestock. Trypanosomes salvage purines from their hosts through a variety of transporters, of which adenosine permeases deserve particular attention due to their role in drug sensitivity. *T. brucei* possess two distinct adenosine transport systems, P1 and P2, the latter of which also mediates cellular uptake of the drugs melarsoprol and pentamidine. Loss or mutation of P2 has been associated with drug resistance and sleeping sickness treatment failures. However, genetic disruption in *T. b. brucei* of the gene encoding P2, *TbAT1*, reduced the susceptibility to melarsoprol and pentamidine only by a factor of about two. Here we show stronger phenotypes of the *tbat1* null mutant with respect to its sensitivity towards toxic adenosine analogs. Compared to parental *TbAT1*+/+ trypanosomes, the *tbat1*-/− mutant is 77-fold less sensitive to tubercidin and 14-fold less sensitive to cordycepin. Resistance is further increased by the addition of inosine, but reverted by adenine. Surprisingly, the *tbat1*-/− mutant grows faster than *TbAT1*+/+ trypanosomes and it overexpresses genes of the *TbNT* cluster encoding P1-type transporters. These unexpected phenotypes show that there are conditions other than drug pressure, under which loss of P2 may confer a selective advantage to bloodstream-form trypanosomes. Overexpression of P1 by trypanosomes after loss of P2 indicates that combinatorial chemotherapy with trypanocidal P1 and P2 substrates may be a promising strategy to prevent drug resistance in sleeping sickness.
Introduction

Human African sleeping sickness is re-emerging in sub-Saharan Africa. The WHO estimates an annual incidence of 400’000, and from certain villages in Angola, the Democratic Republic of Congo, or southern Sudan a prevalence of up to 50% has been reported (Kioy et al., 2004). Sleeping sickness is caused by Trypanosoma brucei gambiense and T. b. rhodesiense, protozoan parasites which are transmitted by the tsetse fly (Glossina spp.). T. brucei spp. evade the mammalian immune system by antigenic variation of their surface glycoproteins and proliferate extracellularly in the blood. In the late stage of the disease the parasites invade the central nervous system, ultimately causing death of the patient. Since there is no perspective for a vaccine, treatment of sleeping sickness relies entirely on chemotherapy. Suramin (introduced 1916) and the diamidine pentamidine (1937) are used for the early stage, melarsoprol (1949) and eflornithine (1977) for the late stage of the disease due to their blood-brain barrier permeability. Pentamidine, melarsoprol, and eflornithine are being donated to the WHO by Aventis. Eflornithine is effective only against West-African but not against East-African sleeping sickness. Melarsoprol, a melamine-based trivalent arsenical, is still the drug of choice for treatment of late-stage sleeping sickness. However, melarsoprol treatment failure rates of 25 to 30% have been reported from Uganda (Legros et al., 1999) and northern Angola (Stanghellini and Josenando, 2001), possibly indicating the spread of drug-resistant trypanosomes.
Molecular mechanisms of drug resistance in *T. brucei* have mainly been studied in laboratory strains selected at suboptimal drug concentrations. Adenosine permeases turned out to play an important role in the uptake of, and resistance to, trypanocides. Carter and Fairlamb differentiated two types of adenosine transport systems, P1 and P2 (Carter and Fairlamb, 1993). P1 was shown to be a broad-specificity purine transporter, while P2 transports only adenine and adenosine (Table 1). Interestingly however, P2 transports also melarsen-based drugs and diamidines (Carter et al., 1995). P2-type adenosine transport was found to be absent or impaired in drug-resistant trypanosomes (Carter and Fairlamb, 1993; Barrett et al., 1995).

P1 is encoded by multiple genes of the *TbNT* family (Table 1). The genes *TbNT2* to *TbNT7* cluster on a single locus. *TbNT2, TbNT5, TbNT6,* and *TbNT7* exhibited P1-type substrate specificities when expressed in *Xenopus laevis* oocytes, while no substrate has been identified for *TbNT3* and *TbNT4* so far (Sanchez et al., 2002). P2 is apparently encoded by a single gene, *TbAT1* (Mäser et al., 1999; Matovu et al., 2003). Trypanosomes selected for melarsoprol resistance harbored point-mutations in *TbAT1* that abolished function (Mäser et al., 1999). Surprisingly, identical point mutations were found in *T. b. gambiense* field isolates (Mäser et al., 1999; Matovu et al., 2001a), and the occurrence of such mutations correlated to some degree with melarsoprol treatment failure (Matovu et al., 2001b).

Recently, a *T. b. brucei tbat1* null mutant was generated by homozygous replacement of the gene (Matovu et al., 2003). *tbat1*−/− trypanosomes had no
detectable P2 activity. They exhibited reduced sensitivity towards melarsen-based arsenicals as well as diamidines, albeit with resistance factors of only about two to three (Matovu et al., 2003). However, the *tbat1* null mutant was 20-fold resistant to the veterinary drug diminazene (Matovu et al., 2003; de Koning et al., 2004a). Melamine-based nitrofurans designed to be P2 substrates were not, or only marginally more toxic to *TbAT1*+/+ than to *tbat1−/−* trypanosomes (Stewart et al., 2004). Here we characterize *tbat1* null trypanosomes with respect to their sensitivity towards adenosine antimetabolites, re-evaluating the P1/P2 model and its implications for antitrypanosomal chemotherapy. Surprising phenotypes regarding cell growth and drug resistance reveal relationships between transport, salvage, and toxicity of adenosine analogs, and they indicate a possible interplay between P1 and P2 purine uptake systems.
Materials and Methods

Cultivation of trypanosomes

All experiments were performed with bloodstream-form trypanosomes. *T. b. brucei* strain BS 221 (synonymous for MiTat 1.2/221 or s427) and its *tbat1*⁻⁻ derivative (Matovu et al., 2003) were cultured at 37 °C in a humidified atmosphere of 5% CO₂ in HMI-9 medium (BioConcept, Allschwil, Switzerland) containing 10% heat-inactivated fetal bovine serum (BioConcept), supplemented according to (Hirumi and Hirumi, 1989) plus 36 mM NaHCO₃ and 100 IU/ml penicillin/streptomycin (BioConcept). Population doubling times were measured in Minimum Essential Medium (MEM, Life Technologies) supplemented with MEM nonessential amino acids, Earle's salts (Life Technologies), 10% heat-inactivated horse serum (slaughterhouse, Basel, Switzerland), 25 mM HEPES, 5.6 mM glucose, 26 mM NaHCO₃, 0.2 mM 2-mercaptoethanol, 2 mM sodium pyruvate, and 0.1 mM hypoxanthine (Baltz et al., 1985).

In vitro drug sensitivity assays

Trypanosomal drug sensitivity was determined with the redox-activated fluorescent dye Alamar-Blue as described (Räz et al., 1997). Briefly, trypanosomes (10³/well) were cultivated in 96-well plates for 70 h in the presence of serial dilutions of compounds. After this growth period 10 µl of Alamar-Blue reagent (Bio-Source, Camarillo CA) were added to each well, and after a further 2 h of incubation fluorescence was measured (Spectramax Gemini fluorimeter,
Molecular Devices Corp., excitation at 536 nm, emission at 588 nm). All assays were performed at least three times, each in triplicate. IC$_{50}$ were determined by nonlinear regression to sigmoid dose-response parameters using the Prism4 (GraphPad) software package. All chemicals were purchased from Fluka Chemie GmbH (Buochs, Switzerland).

Adenosine transport assays

Adenosine transport measurements were carried out as described (de Koning and Jarvis, 1997). Briefly, 10^7 bloodstream-form trypanosomes in 100 µl were mixed with an equal volume of uptake buffer containing 100 nM $[^3]$H]adenosine (NEN, Perkin-Elmer; 65.8 Ci/mmol) and incubated for 10 s at 37 °C. Uptake was stopped by addition of 4 mM ice-cold, unlabeled adenosine and the cells were pelleted by centrifugation through dibutylphthalate : mineral oil (7:1). After flash-freezing in liquid N$_2$, the bottom of each centrifuge tube was cut-off and transferred into liquid scintillation cocktail. All assays were performed three times, each in triplicate.

Gene expression analyses

Total RNA was isolated from cultured trypanosomes by extraction with hot phenol (95 °C, pH 4.5) and chloroform, followed by ethanol precipitation. After DNase treatment (DNA-away, Ambion Biotech), cDNA was synthesized from 1 µg RNA with AMV reverse transcriptase (Roche) and T$_{16}$ primer in a volume of 15 µl. PCR was performed with Taq polymerase (Qiagen) on 3 µl of cDNA.
Negative controls lacking reverse transcriptase were always included. For amplification of *TbNT* subgroup genes (Fig. 5), a forward primer specific to the 5' spliced leader sequence (cgctattattagaacagtttctgtac), which all *T. brucei* mRNAs have in common, was combined with the primer ActinRev (ctgcgtcatttttctacggt) and one of the following: NT2-7Rev (gcrgcaagagagcgttgac), NTIIRev (agggcagaacaaaaatgaagc), NTIIIRev (gcaatccgctttcaaatcg), or NTIVRev (tgtaatggtctcttgaacaggt); annealing temperature was 61 °C, elongation time 80 s. Because of the relatively weak expression of *TbNT* genes, actin primers were added only after 5 performed cycles. Gene-specific primers for figure 7 were NT4Rev (tttacatcaaagtcacacactgtt), and NT6Rev (tagtatgcctgtcttcg); annealing at 55 °C, 60 s elongation for both. For figure 6, genes of the *TbNT2-TbNT7* cluster were amplified with the primers NT2-7fw (ggatgtcggtgatgaatgtgacg) and NT2-7rev (annealing at 55 °C, 80 s elongation).

PCR products (200 ng) were purified (QIAquick PCR purification kit, Qiagen) and sequenced directly in either direction using the same primers as for amplification. Sequencing was performed at the CMPG facility, Zoological Institute Bern.

Sequence alignment and dendrogram

Predicted protein sequences were obtained from the *T. brucei* genome database at http://www.genedb.org (TbNT2, Tb927.2.6150; TbNT3, Tb927.2.6200; TbNT4, Tb927.2.6220; TbNT5, Tb927.2.6240; TbNT6, Tb927.2.6320; TbNT7, Tb927.2.6280; TbNT8.1, Tb11.02.1100) and from GenBank (TbAT1, AAD45278; HsENT1, Q99808). ClustalX (Thompson et al., 1994) was used for multiple
alignment and bootstrap analysis, TreeView (Page, 1996) to display the dendrogram.
Results

Susceptibility of bloodstream form trypanosomes to purine analogs

The sensitivity of *T. b. brucei* 221 bloodstream forms to purine analogs was determined in vitro using the redox-sensitive fluorophore Alamar blue as an indicator of cell viability (Râz et al., 1997). The two adenosine antimetabolites tubercidin (7-deazaadenosine; Fig. 1) and cordycepin (3’-deoxyadenosine; Fig. 1) are known trypanocides (Drew et al., 2003; Williamson, 1972), and indeed both compounds were highly active with IC\(_{50}\) values of 15 nM (Fig. 1). In contrast, 2’,3’-dideoxyadenosine was much less potent with an IC\(_{50}\) of 48 µM (Fig. 1), and the IC\(_{50}\) of 2’,3’-dideoxyinosine was above 50 µM (not shown). Interestingly, 3’-deoxyadenosine and 2’,3’-dideoxyadenosine were about equally active on amastigote forms of *Trypanosoma cruzi* (Nakajima-Shimada et al., 1996). The reason why 3’-deoxyadenosine was over 1000-fold more toxic to *T. b. brucei* bloodstream forms than 2’,3’-dideoxyadenosine probably lies in trypanosomal purine salvage rather than transport, e. g. different substrate specificities of adenosine kinase and deoxyadenosine kinase (Drabikowska et al., 1985).

Genetic disruption of *TbAT1* causes resistance to purine analogs

The same set of sensitivity tests were carried out with *tbat1* knock-out trypanosomes in order to investigate the role of P2 in cellular uptake of these purine analogs. Again, dideoxyadenosine (Fig. 1) and dideoxyinosine (not shown) were hardly active, and they did not show a difference in toxicity between
TbAT1⁺/⁺ and tbat1⁻/⁻ trypanosomes. However, the tbat1⁻/⁻ mutant was 77-fold more resistant to tubercidin and 14-fold more resistant to cordycepin (Fig. 1). This demonstrates that both tubercidin and cordycepin are taken up to a substantial part via TbAT1 in wild-type trypanosomes. To test whether residual uptake in the tbat1⁻/⁻ mutant occurs via P1-type adenosine transporters, the sensitivity tests were repeated in the presence of excess amounts of known P1 and P2 substrates.

Effects of physiological purines on sensitivity to adenosine antimetabolites

Adenosine is a substrate of both transport activities P1 and P2, whereas inosine is imported exclusively by P1 and adenine only by P2 (Table 1). In "wild-type", TbAT1⁺/⁺ trypanosomes, supplementation of the medium with 1 mM adenosine or 1 mM inosine caused a four- to five-fold reduction of tubercidin susceptibility (Fig. 2a). Addition of 1 mM adenine had a much stronger effect, rendering trypanosomes 220-fold less susceptible to tubercidin (Fig. 2a). Effects of excess purines on cordycepin toxicity were less dramatic. Addition of adenosine hardly had an effect, and inosine, if anything, sensitized trypanosomes towards cordycepin (Fig. 2b). Again, excess adenine exerted the most pronounced reduction of sensitivity, increasing the IC₅₀ of cordycepin by a factor of 6 (Fig. 2b).

The same set of experiments was carried out with the tbat1⁻/⁻ null mutant. Again, resistance to tubercidin was further increased upon addition of adenosine or inosine (Fig. 2a), presumably by blocking P1-mediated uptake. Excess
adenine, as expected, did not further increase the resistance of \(tb\text{at}1^{-/-}\) trypanosomes, since adenine is not a P1 substrate (Table 1). Surprisingly, however, adenine even re-sensitized the resistant \(tb\text{at}1^{-/-}\) strain towards adenosine antimetabolites (Fig. 2a). A similar pattern was observed for cordycepin. Addition of excess inosine further increased the resistance of \(tb\text{at}1^{-/-}\) trypanosomes, adenosine only had little effect, and adenine rendered the null mutant hypersensitive to cordycepin (Fig. 2b).

The data are summarized in Fig. 2c. Addition of excess adenosine reduced the sensitivity to adenosine analogs of the \(tb\text{at}1^{-/-}\) mutant and parental \(Tb\text{AT}1^{+/+}\) trypanosomes to a similar extent, leaving the resistance factor R unchanged (R equals \(IC_{50}\) of \(tb\text{at}1^{-/-}\) divided by \(IC_{50}\) of \(Tb\text{AT}1^{+/+}\)). The same effect was observed for inosine regarding tubercidin toxicity. With cordycepin, however, excess inosine reduced the susceptibility more strongly in \(tb\text{at}1^{-/-}\) than in wild-type trypanosomes. Thus, the resistance factor to cordycepin increased to 130-fold in the presence of inosine, reaching the level of R for tubercidin. This finding is in agreement with the P1/P2 model, and it indicates that P1 also contributes to cordycepin uptake. A puzzling effect was exerted by the P2 substrate adenine which reverted the \(tb\text{at}1^{-/-}\) phenotype, re-sensitizing null mutant trypanosomes towards both tubercidin and cordycepin (Fig. 2c). This effect was not observed with \(Tb\text{AT}1^{+/+}\) trypanosomes, where addition of excess adenine – as expected (Table 1) – reduced the sensitivity towards adenosine analogs. As a consequence, \(tb\text{at}1^{-/-}\) mutants were more sensitive to tubercidin and cordycepin than wild-type trypanosomes in the presence of 1 mM adenine. In addition,
excess adenine slowed-down the growth of *T. brucei* bloodstream forms already in the absence of drugs (data not shown). This phenomenon was observed for parental as well as for *tb*1*−/−* mutant trypanosomes.

Effects of physiological purines on adenosine transport

Adenosine uptake of wild-type *T. brucei* bloodstream forms consists of the inosine-sensitive component P1 and the adenine-sensitive component P2 (Table 1). To characterize adenosine uptake of *tb*1*−/−* cells, transport of 40 nM [³H]adenosine was measured during the linear uptake phase in the presence of increasing concentrations of inosine or adenine. Inosine completely inhibited adenosine transport (Fig. 3), with a *K*ᵢ value of 0.67 ± 0.08 µM (n=3), very similar to values previously reported for the *T. b. brucei* P1 transporter (Carter and Fairlamb, 1993; de Koning and Jarvis, 1999). In contrast, up to 100 µM adenine failed to inhibit [³H]adenosine transport (Fig. 3), indicating that the P2 adenosine transport activity had been deleted in *tb*1 null mutant.

*tb*1*−/−* trypanosomes grow faster than their parental strain

The *tb*1*−/−* mutant had not shown any growth defect (Matovu et al., 2003), as might be expected given (i) the large number of purine transporters encoded in the genome of *T. brucei* (Mäser et al., 2003; de Koning et al., 2005) and (ii) the fact that the purine source in standard culture medium is hypoxanthine and not adenosine (Baltz et al., 1985). Surprisingly, however, we observed here that *tb*1*−/−* trypanosomes grew even faster than their *TbAT1*+/+ parents. To quantify
growth, \textit{tbat1}-/- and its parental strain were propagated in vitro and the population doubling times were calculated from linear regression of the log-transformed growth curves. Under all conditions tested, \textit{tbat1} null trypanosomes grew slightly but reproducibly faster than their parental strain (Fig. 4). The difference was more pronounced at limiting serum concentrations; at 5\%, the population doubling times were 13.3 ± 3.6 h for wildtype and 10.8 ± 2.3 h for \textit{tbat1}-/- trypanosomes (\(p = 0.012\) for significant difference in a two-tailed t-test). This means that, starting from a mixed population consisting of equal parts \textit{tbat1}-/- and \textit{TbAT1}+/+ trypanosomes, the null mutants would outgrow wild-type cells by a factor of 10 within 8 days. However, it must be noted that such in vitro analysis does not necessarily extrapolate to the situation in a natural host.

Expression analysis of trypanosomal \textit{ENT} genes

To investigate eventual secondary effects of \textit{TbAT1} disruption, we measured expression levels of other trypanosomal nucleoside transporter genes in parental \textit{TbAT1}+/+ and in \textit{tbat1}-/- bloodstream form trypanosomes. Fig. 5a shows members of the equilibrative nucleoside transporter family from \textit{T. brucei} (the \textit{ENT} family; Pfam PF01733, TC 2.A.57). More trypanosomal \textit{ENT} genes are emerging as the genome sequencing initiative approaches completion. As apparent from the similarity dendrogram of a multiple alignment, the majority of trypanosomal nucleoside transporters cluster into different subgroups (Fig. 5a; see also Table 1). Expression levels of each subgroup were measured in a semi-quantitative way, by performing reverse-transcriptase (RT) PCR in the presence of a forward
primer of the *T. brucei* spliced mRNA leader sequence (Walder et al., 1986) and two different reverse primers, one specific for actin and one for the *ENT* group of interest. These latter primers were chosen from perfectly conserved regions within the respective genes in order to amplify all members of a particular group. For one singleton gene, Tb09.160.5480, expression was not detectable. For two subgroups, III and IV, expression was confirmed but did not vary between parental and *tbat1*^{−/−} trypanosomes (Fig. 5b). The large subgroup I, however, was expressed more strongly in *tbat1*^{−/−} trypanosomes than in their parents as determined by comparison to the internal actin control (Fig. 5b). This finding was confirmed by three independent RT-PCR experiments and also by Northern blot analysis (data not shown). The six genes in this group, *TbNT2* to *TbNT7*, are all located within 9 kb on chromosome 2 of *T. brucei* (Sanchez et al., 2002). *TbNT2*, *TbNT5*, *TbNT6*, and *TbNT7* are P1-type transporters of slightly varying substrate specificities, the substrates of *TbNT3* and *TbNT4* are unknown (Sanchez et al., 2002).

Expression analysis within the *TbNT* gene cluster

Expression of individual genes within the *TbNT* cluster on chromosome 2 was again investigated by RT-PCR. mRNA isolated from *T. brucei* bloodstream forms was reverse-transcribed and amplified by PCR as described above. The resulting products were then sequenced directly, in order to avoid eventual bias introduced by cloning. Single nucleotide polymorphisms became apparent in the electropherogram of the sequencing products terminated with fluorescent
dideoxynucleotides. This method was highly reproducible and allowed distinction between individual TbNT genes (Fig. 6). Of the five genes in the TbNT cluster, TbNT2 appeared to be predominantly expressed as apparent from positions where it differs from the rest. Expression of TbNT3, TbNT4, TbNT5, and TbNT7, on the other hand, was not detectable in wild-type, TbAT1+/+ trypanosomes (Fig. 6). TbNT3, TbNT5, and TbNT7 were not expressed in tbat1-/- cells either. However, judging from the polymorphic positions outlined in Fig. 6, a weak TbNT4 signal was detectable in the null mutant. The signal of TbNT6 relative to the other genes in the cluster appeared to be stronger in the mutant as well. We therefore investigated expression of TbNT4 and TbNT6 by semi-quantitative RT-PCR using gene-specific primers. As shown in Figure 7, the two genes were indeed overexpressed in the tbat1-/- mutant.
Discussion

The P1/P2 model for uptake of adenosine and antitrypanosomal drugs in *T. brucei* was proposed based on phenotypic observations without knowledge of the underlying genes (Carter and Fairlamb, 1993). A number of adenosine transporters have since been cloned from *T. brucei* and functionally characterized (Sanchez et al., 1999; Mäser et al., 1999; Sanchez et al., 2002; Sanchez et al., 2004). All of them also transported either adenine or inosine (Table 1); hence, the P1/P2 model still holds. Here we used a *T. brucei* mutant homozygously disrupted in the adenosine transporter gene *TbAT1* to further validate the P1/P2 model. One prediction is that P2 null trypanosomes should be resistant to melarsoprol but not to adenosine analogs (since of all trypanosomal adenosine transporters only P2 is permeable to melarsoprol). Surprisingly however, the opposite was observed for *tbat1*–/– trypanosomes: They were markedly resistant to the adenosine antimetabolites tubercidin (77-fold more; Fig. 1) and cordycepin (14-fold more; Fig. 1), while their susceptibility to melarsoprol only decreased by a factor of two to three (Matovu et al., 2003). The mild phenotype towards melarsoprol can be explained by the presence of adenosine-independent import pathways (Matovu et al., 2003), the nature of which is unknown. The strong phenotype towards tubercidin and cordycepin indicates that among the comparably large number of adenosine transporters in *T. brucei* (Table 1), TbAT1 constitutes the principal route of import for these adenosine analogs. This is further illustrated by the finding that of the physiological purines tested, adenine exerted the maximal protection of wild-type trypanosomes from
tubercidin or cordycepin (Fig. 2). At the same time, adenine re-sensitized \(tbat1^{-/-} \) mutants to adenosine antimetabolites, which led to the paradoxical situation that in the presence of adenine, \(tbat1^{-/-} \) mutants were more sensitive to tubercidin and cordycepin than parental \(TbAT1^{+/+} \) trypanosomes (Fig. 2c). This surprising effect cannot be explained by the P1/P2 model; we are currently investigating the physiological effects of excess adenine to growth of \(T. brucei \).

The fact that the alleviating effect of excess inosine on toxicity of tubercidin and cordycepin was much stronger for \(tbat1^{-/-} \) than for \(TbAT1^{+/+} \) trypanosomes indicated that P1-mediated import of the adenosine analogs only became relevant in the absence of TbAT1 (Fig. 2a and 2b). In the presence of 1 mM inosine, \(tbat1 \) null cells were 130-fold resistant to tubercidin and 112-fold to cordycepin (Fig. 2c). Thus the surprising drug resistance phenotype of \(tbat1^{-/-} \) trypanosomes is, at least in part, explainable by different affinities of P1- and P2-type transporters towards adenosine analogs. One caveat with drug sensitivity experiments is, that it cannot be distinguished whether excess purines reduce the toxicity of adenosine analogs by competing with cellular uptake or by competing at their intracellular target. Surprisingly, though, RNAi experiments indicated that tubercidin targets glycolysis in \(T. brucei \) rather than purine salvage (Drew et al., 2003). Competition with import is in agreement with measurements of transport kinetics of \(^3\text{H}\)adenosine, where \(K_i \) values for adenosine analogs differed substantially between experiments performed in the presence of excess adenine to block P2, or excess inosine to block P1 (de Koning and Jarvis, 1999). This study, carried out before the cloning of trypanosomal adenosine
transporters, already indicated that tubercidin (K_i of 78 µM) and cordycepin (K_i of 210 µM) are not high-affinity P1 substrates (de Koning and Jarvis, 1999).

A second reason for the stronger effect inosine had in the $tbat1^{-/-}$ mutant compared to wild-type in decreasing the susceptibility to adenosine analogs, could be the fact that $tbat1^{-/-}$ trypanosomes overexpressed genes of the $TbNT$ cluster (Fig. 5). $TbNT4$ and particularly $TbNT6$ showed higher mRNA levels in $tbat1^{-/-}$ than in $TbAT1^{+/+}$ trypanosomes (Fig. 7). While $TbNT6$ is a P1-type adenosine permease as determined by functional expression in Xenopus oocytes, no substrate was identified for $TbNT4$ (Sanchez et al., 2002). The subcellular localizations of $TbNT4$ and $TbNT6$ are unknown. The finding that deletion of one trypanosomal ENT may lead to overexpression of other members of the same family complicates the assessment of individual transporters' contributions to drug susceptibility by molecular genetics. Whether overexpression of $TbNT$ genes also occurs in P2 loss-of-function $T. brucei$ spp. field isolates remains to be investigated. If so, this might be exploited for drug targeting towards melarsoprol-resistant trypanosomes. However, Carter and Fairlamb observed 3-fold lower P1-type adenosine uptake rates in P2-deficient, melarsoprol-resistant trypanosomes than in their parental, drug-sensitive strain (Carter and Fairlamb, 1993). Changes in adenosine transport have also been described from procyclic, tsetse fly midgut-form $T. brucei$, where adenosine uptake rates strongly increased upon purine starvation (de Koning et al., 2000). Whether such effects are caused by changes in expression levels of adenosine transporter genes is unknown.
A further unexpected finding was that \textit{tbat1}^- trypanosomes grew faster than parental \textit{TbAT1}^+/+ cells at limiting serum concentrations (Fig. 4). Whether this was a consequence of overexpression of \textit{TbNT} genes can at present only be speculated. The finding that \textit{tbat1}^- trypanosomes grew faster than their \textit{TbAT1}^+/+ parents indicates that there are conditions other than chemotherapy where loss of P2 confers a selective advantage to bloodstream-form trypanosomes. This may have implications for the stability of drug resistance in the absence of drug pressure, which is remarkably high for African trypanosomes. In summary, the P1/P2 model is still valid but received some new twists. In particular, P1 and P2 may be functionally linked such that overexpression of the former compensates for lack of the latter. If this also happens in field isolates, combination of trypanocidal P1 and P2 substrates will be a good strategy towards drug cocktails of minimal propensity for resistance by loss of import.
Acknowledgments

We are grateful to Pinar Önal and Erwin Studer for technical assistance, and to Reto Brun for help with cultivation of trypanosomes.
References

Footnotes

This work was supported by the Swiss National Science Foundation (SNF professorship grant #631-066150 to P.M., SNF research grant #3100-067225 to T.S.) and COST-B16 project #C00.0042 (to T.S.).

Reprint request should be made to P.M.

1 Both authors contributed equally.

2 Institute of Biomedical and Life Sciences, University of Glasgow, UK
Legends for figures

Figure 1 Sensitivity of *T. brucei* to purine analogs.
TbAT1+/+ (filled circles) and *tbat1*+/− (open circles) bloodstream-form trypanosomes were incubated for 72 h with the adenosine analogs tubercidin (red), cordycepin (green), and dideoxyadenosine (blue). Cell number and viability was measured by fluorescence of the redox-activated dye Alamar blue and expressed as percentage of untreated controls. Error bars (standard deviations) are shown in only one direction for sake of readability.

Figure 2 Effects of competitors on sensitivity to purine analogs.
Drug sensitivity assays for tubercidin (a) and cordycepin (b) were carried out with parental *TbAT1*+/+ trypanosomes (white bars) and the *tbat1*+/− mutant (black bars) in the presence of 1 mM purine competitors (Ado, adenosine; Ino, inosine; Ade, adenine). In (c) the resulting resistance factors (IC50 [*TbAT1*+/+] / IC50 [*tbat1*+/−]) are summarized (light bars, tubercidin; dark bars, cordycepin). Asterisks indicate significant differences between *tbat1*+/− and *TbAT1*+/+ (*p < 0.05 in a two-tailed t-test; for cordycepin plus adenine, p was 0.057).

Figure 3 Adenosine transport in *tbat1*+/− trypanosomes
[^3H]Adenosine transport of bloodstream-form *tbat1*+/− *T. brucei* was measured in increasing concentrations of inosine (white squares) or adenine (black squares). The adenine-sensitive component of adenosine transport (P2) is absent from the *tbat1* null mutant.
Figure 4 Growth of *TbAT1*+/+ and *tbat1*−/− trypanosomes.

Bloodstream-form trypanosomes (*TbAT1*+/+, white bars; *tbat1*−/−, black bars) were propagated in vitro at different serum concentrations. At 5%, the *tbat1* null mutant grew significantly faster than its parental strain (p = 0.012, n = 20).

Figure 5 Expression levels of *TbNT* family members.

a) Dendrogram of *T. brucei* ENT protein sequences. Different subgroups are indicated by brackets and roman numbers. Numbers in italics are the positive percentiles of 1000 rounds of bootstrapping. Human HsENT1 is included for reference. b) Semi-quantitative RT-PCR of *TbNT* subgroup genes with primers complementary to conserved sequences within each group. Actin (lower band) served as an internal control. Aliquots were removed after the indicated numbers of cycles.

Figure 6 Concomitant expression of almost identical *TbNT* genes.

Expression of *TbNT2* to *TbNT7* was monitored in parallel by direct sequencing of RT-PCR products with a primer binding to a perfectly conserved region. The six genes are highly similar, here a region is depicted where they diverge (asterisk, identical base in all six genes; colon, identical in five genes; dot, identical in four genes). Bases that are not detectable in *TbAT1*+/+ cDNA are typed in small letters and underlined. The most informative positions are shaded in grey; (1) SNPs unique to *TbNT2*; (2) SNPs unique to *TbNT3, TbNT4, TbNT5* or *TbNT7,*...
respectively (3) positions indicating overexpression of \(TbNT4 \) and \(TbNT6 \) in \(tbat1^{-/-} \) cells.

Figure 7 \(TbNT4 \) and \(TbNT6 \) are overexpressed in the \(tbat1 \) null mutant. \(TbNT4 \) and \(TbNT6 \) mRNA levels were measured by semi-quantitative RT-PCR using actin as an internal control (lower band). After the indicated numbers of cycles, aliquots were removed from the reaction. Expression of \(TbNT4 \) was not detectable in \(TbAT1^{+/+} \) cells.
Table 1 Pharmacological characteristics of trypanosomal adenosine transport systems.

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genes</td>
<td>TbNT2, TbNT5, TbNT6, TbNT7, TbNT10</td>
<td>TbAT1</td>
<td>1-4</td>
</tr>
<tr>
<td>Substrates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) Physiological</td>
<td>adenosine, inosine, guanosine, 2'-deoxyadenosine</td>
<td>adenine, adenosine, 2'-deoxyadenosine</td>
<td>5, 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Purine analogs</td>
<td>formycin A, formycin B</td>
<td>tubercidin, cordycepin</td>
<td>6, 7, this work</td>
</tr>
<tr>
<td>c) Trypanocides</td>
<td>melarsoprol, pentamidine, diminazene</td>
<td></td>
<td>5, 8, 9</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>flavone, silibinin</td>
<td>both are insensitive to NBMPR and dilazep</td>
<td>7</td>
</tr>
</tbody>
</table>

References: 1, Sanchez et al. (1999); 2, Máser et al. (1999); 3, Sanchez et al. (2002); 4, Sanchez et al. (2004); 5, Carter and Fairlamb (1993); 6, de Koning and Jarvis (1999); 7, Máser et al. (2001); 8, Carter et al. (1995); 9, de Koning et al. (2004b).