Differential activation of adenylate cyclase and receptor internalization
by novel dopamine D₁ receptor agonists*

Jessica P. Ryman-Rasmussen
David E. Nichols
Richard B. Mailman

Departments of Psychiatry, Pharmacology, Neurology and Medicinal Chemistry (RBM)
and Curriculum in Toxicology (JPR; RBM)
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599
and
Department of Medicinal Chemistry and Molecular Pharmacology (DEN)
Purdue University School of Pharmacy
West Lafayette, IN 47907
RUNNING TITLE PAGE:

Running Title:
Functional Selectivity of Dopamine D1 Receptor Agonists

Address all correspondence to:
Dr. Richard B. Mailman
CB #7160
University of North Carolina School of Medicine
Chapel Hill, NC 27599-7160
VOICE: 919-966-2484; FAX: 919-966-9604; EMAIL: Richard_Mailman@med.unc.edu

Number of Text Pages: 12
Number of Tables: 1
Number of Figures: 5
Number of References: 37
Numbers of Words:
 Abstract 242 words (250 limit)
 Introduction 699 words (750 limit)
 Discussion 1644 words (1500 limit)

Non-standard abbreviations:
cAMP adenosine 3',5'-cyclic monophosphate; cyclic AMP
A68930 (1R,3S)-3-phenyl-1-aminomethyl-3,4-dihydro-5,6-dihydroxy-1H-2-benzopyran
A77636 (1R,3S)-3-(1'adamantyl)-1-aminomethyl-3,4-dihydro-5,6-dihydroxy-1H-2-
 benzopyran)
A86929 (5aR,11bS)-4,5,5a,6,7,11b-hexahydro-2-propyl-3-thia-5-azacyclopent-1-ena[c]-
 phenanthrene-9,10-diol
DHX dihydrexidine; (trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydro-
 benzo[a]phenanthridine)
DNS dinapsoline; (8,9-dihydroxy-2,3,7,11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline)
DNX dinoxyline; (8,9-dihydro-1,2,3,11b-tetrahydrochromeno[4,3,2-de]isoquinoline)
EC50 concentration required to get 50% effect in any measured system
GRK G protein-coupled receptor kinase
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
IBMX isobutylmethylxanthine
K0.5 Concentration corrected IC50 (apparent affinity constant) when nH ≠ 1.0.
SCH23390 7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine
SKF38393 7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine
SKF77434 (±)-7,8-Dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine
SKF81297 R(+)-6-Chloro-7,8,9-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine
SKF82957 R(+)-6-Chloro-7,8,9-dihydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-
 benzazepine
SKF82958 6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine
SKF83959 3-methyl-6-chloro-7,8-hydroxy-1-[3-methylphenyl]-2,3,4,5-tetrahydro-JH-
 3-benzazepine
ABSTRACT

Structurally dissimilar dopamine D₁ receptor agonists were compared to dopamine in their ability to activate adenylate cyclase and to internalize hemaglutinin-tagged human D₁ receptors in a stably transfected HEK cell line. Thirteen dopamine D₁ receptor agonists were selected rationally from three different structural classes: rigid fused ring compounds (dihydrexidine, dinapsoline, dinoxyline, apomorphine, and A86929); isochromans (A77636, A68930); and benzazepines (SKF38393, SKF77434, SKF82958, SKF83959, SKF82957, and SKF81297). The working hypothesis was that some agonists have differential effects on adenylate cyclase versus receptor internalization that could be correlated to the structural class of the agonist. First, the affinity for the HA-hD₁ receptor and the intrinsic activity and potency of adenylate cyclase activation were determined for each compound. The internalization time course and internalization efficacy were then determined for each agonist. Surprisingly, internalization efficacy was found to be independent of either agonist structural class or affinity. Only agonists that had both high adenylate cyclase functional potency and high intrinsic activity caused internalization. Additionally, four agonists from two structural classes were identified that were capable of fully activating adenylate cyclase without eliciting an internalization response. This study provides the first extensive characterization of D₁ receptor internalization in response to structurally diverse agonists, and at least for the D₁ receptor, shows that functional selectivity is not predictable by simple structural examination. These data are consistent with the hypothesis that functional selectivity reflects subtle ligand-induced conformational changes as opposed to simple agonist trafficking among discrete receptor active states.
INTRODUCTION

The dopamine receptors are a superfamily of heptahelical G protein-coupled receptors (GPCRs) that have historically been divided into “D1-like” and “D2-like” subfamilies (Kebabian and Calne, 1979; Garau et al., 1978). The dopamine D1 receptor is a member of the “D1-like” subfamily, and couples to adenylate cyclase through the stimulatory G proteins G_s and G_{olf} (Herve et al., 1993). Dopamine D1 receptor agonists that are similarly efficacious to dopamine in activating adenylate cyclase are effective antiparkinson agents (Mailman et al., 2001), and show promise in the treatment of a number of other neuropsychiatric disorders. The effects of these compounds on the regulation of other endpoints of D1 receptor activation are, however, not well understood.

Internalization in response to dopamine is an important early regulatory mechanism that regulates D1 receptor responsiveness. This process has been well studied for dopamine in model cell lines, and is likely mediated by the GRK/arrestin pathway (Kim et al., 2004; Zhang et al., 1999; Tiberi et al., 1996). The D1 receptor is recycled rapidly back to the cell surface after internalization (Vickery and von Zastrow, 1999; Vargas and von Zastrow, 2004). Thus, internalization in response to the endogenous agonist is a mechanism by which the receptor can be rapidly desensitized/resensitized in vitro. Internalization in vivo has also been observed in striatal neurons under hyperdopaminergic conditions in both rats (Dumartin et al., 1998; Dumartin et al., 1998) and humans (Muriel et al., 1999), as well as after administration to rats of the partial agonist SKF 82958 (Dumartin et al., 1998). Thus, D1 receptor internalization is likely to be of important physiological relevance, yet this endpoint remains largely unaddressed for D1 agonists.

Previously, in C-6 glioma cells stably transfected with the macaque D1 receptor, we observed that some D1 agonists from different structural classes were able to mediate both desensitization and down-regulation of D1 receptors, independent of the intrinsic activity of these compounds at adenylate cyclase (Lewis et al., 1998). The disparate effects on down-regulation led to the hypothesis tested herein that structurally dissimilar D1 agonists differentially regulate two early responses of D1 receptor activation:
stimulation of adenylate cyclase and receptor internalization. There is precedence for this hypothesis with other GPRC systems (e.g., Whistler et al., 1999) and some suggestions of this possibility for the D₁ receptor (Lewis et al., 1998; Vargas and von Zastrow, 2004). The ability of a ligand to cause different degrees of activation of signaling pathways initiated by a single receptor isoform has been given various names, including agonist trafficking (Kenakin, 1995) and functional selectivity (Mailman et al., 1998; Mailman and Gay, 2004).

The potential of D₁ agonists as therapeutic agents in a variety of CNS disorders ranging from Parkinson’s disease (Taylor et al., 1991; Mailman and Nichols, 1998) to cognitive deficits (Arnsten et al., 1994; Goldman-Rakic et al., 2004) has led to the design and synthesis of structurally diverse D₁ receptor agonists with variable degrees of ability to activate adenylate cyclase. For the purposes of this work, we have classified these agonists structurally into three major families. The first group of agonists is structurally rigid and includes apomorphine, dihydrexidine, A86929, dinapsoline, and dinoxyline (see Figure 1 for structures). These compounds have fused ring systems, relatively restricted conformational mobility and, with the exception of A86929, no rotatable bonds (Mottola et al., 1996). The second class is the “benzazepines,” from which SKF38393, SKF77434, SKF82958, SKF83959, SKF82957, and SKF81297 were selected (Figure 1). All of the benzazepines have similar stereochemistry, and a necessary phenyl substituent that is conformationally mobile (Mottola et al., 1996; Charifson et al., 1989). The final class of agonists is the isochromans (Figure 1) from which A68930 and A77636 were developed (DeNinno et al., 1991; DeNinno et al., 1990). All three classes of D₁ agonists have docking and activation modes that are relatively similar (Mottola et al., 1996).

This study tested the hypothesis that the ability of D₁ agonists to show functional selectivity in terms of either activating adenylate cyclase or causing agonist-induced internalization will be related to the structural class of the agonist. In addition to testing this hypothesis, this study constitutes the most extensive characterization reported to date of the internalization of the D₁ receptor in response to structurally diverse agonists.
MATERIALS AND METHODS

Materials

Dihydrexidine, dinapsoline, and dinoxyline were synthesized according to previously published procedures (Brewster et al., 1990; Ghosh et al., 1996; Grubbs et al., 2004). The D₁-selective antagonist [³H]SCH23390 was synthesized according to previously published procedures (Wyrick and Mailman, 1985). A68930 and A86929 were gifts from Abbott Laboratories (Chicago IL), and the remaining D₁ agonists, dopamine, A77636, SKF83959, SKF82958, SKF38393, SKF 77434, SKF82957, SKF81927, and apomorphine were purchased from RBI/Sigma (St. Louis, MO), which was also the source of other reagents and materials unless otherwise stated.

Construction and maintenance of the HA-hD₁ HEK stable cell line

The human dopamine D₁ receptor was amplified by PCR from a human cDNA library with a 5' complementary forward primer containing an EcoRI site and a 3' complementary reverse primer containing an XhoI site. The resulting product was cloned into pcDNA3.1 (Invitrogen, Carlsbad, CA). The Quick Change™ kit (Stratagene, La Jolla, CA) was used as directed in conjunction with a mutagenic forward primer to insert the nine-amino acid HA sequence YPYDVPDYA after Met¹. The resulting product was subcloned into the viral vector pLXSN (Clontech, Palo Alto, CA). Twenty micrograms of the resulting HA-hD₁ construct was then transfected into the packaging cell line PA317 and the secreted virus used to infect wild-type HEK cells as previously described (Comstock et al., 1997). Geneticin (Invitrogen) at 0.6 mg/ml was used for selection. HA-hD₁ HEK cells were maintained in DMEM-H, 10% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin, and 0.6 mg/mL geneticin at 37°C and 5% CO₂. Assay plates were coated with 4 µg/mL human fibronectin (Enzyme Research Laboratories Inc., South Bend, IN) at 37°C for 1 h or overnight, followed by addition of polylysine to 0.2 mg/mL for an additional 30 min to prevent cell loss. Coating medium was then aspirated, and cells were immediately plated at a density of 500-1000 cells per mm². Saturation binding with the D₁-selective antagonist, [³H] SCH23390, in membrane homogenates indicated that the assay expression level of HA-hD₁ in this cell line is approximately 4 ± 1 pmol/mg protein with a Kᵢ of 2.4 ± 0.8 nM.
Competition binding experiments

The affinity of the HA-hD₁ receptor for various agonists was determined by competition binding assays. Membrane homogenates of HA-hD₁ HEK cells were prepared as previously described (Lewis et al., 1998). Duplicate wells were incubated with increasing concentrations of agonist and with 1 nM [³H]SCH23390 in 50 mM HEPES, 4 mM MgCl₂, 0.01% ascorbic acid pH 7.4. Yohimbine and propranolol (50 nM) were included to block α- and β-adrenergic receptors. Nonspecific binding was determined by parallel incubations with 1 µM SCH23390 (Machida et al., 1992). Reactions were incubated for 15 min at 37 ºC. Binding reactions were terminated by rapid filtration onto 96 well filter plates (Perkin Elmer, Wellesley, MA), and washed with several volumes of ice-cold incubation buffer in the cell harvester. Microscint 20™ (Perkin Elmer) scintillation fluid was then added to each well, and plates were counted for tritium on a Top Count (Packard/Perkin Elmer). Data were fit to a one-site competition model using Prism versions 3 & 4 (GraphPad Software, San Diego CA), and K₀.5 values for each agonist were calculated using the Cheng-Prusoff equation (Cheng and Prusoff, 1973).

Adenylate cyclase experiments

Adenylate cyclase activation by agonists was measured in whole HA-hD₁ HEK cells rather than membranes to make the parallel with the internalization as physiologically unconfounded as possible. Twenty-four-well plates of confluent HA-hD₁ HEK cells were equilibrated in L15 medium with 20 mM HEPES and 0.01% ascorbic acid (pH 7.4) for 1 h in a circulating water bath at 30 ºC. Plates were rapidly cooled on ice and an equal volume of cold medium [containing agonist (at twice the desired final concentration of 10⁻¹² to 10⁻⁴ M), along with IBMX (1 mM), propranolol and yohimbine (100 nM each to block endogenous adrenergic receptors)] was then added to triplicate wells. IBMX was used to inhibit PDE based on prior work from our lab on its validity in this assay (Schulz and Mailman, 1984). Duplicate wells that contained the highest concentration of D₁ agonist also had SCH23390 added to a final concentration of 50 µM. Plates were returned to the water bath for exactly 15 min (for which time, cAMP response remains linear, data not shown). At the end of the incubation period, wells were
washed once on ice with cold PBS, and the reactions quenched with 0.1 N HCl. The cAMP content in an aliquot from each well was measured in duplicate by a competition radioimmunoassay with \(^{125}\text{I}\)-cAMP-sucTME as previously described (Harper and Brooker, 1975). Data were expressed relative to the percentage of maximal dopamine-mediated production of cAMP and were then fit to a sigmoidal dose-response curve and EC50s calculated using Prism software (Ver. 3 & 4, GraphPad Inc., San Diego CA).

Internalization experiments

Twenty-four well plates of 1 d post-confluent HA-hD\(_1\) HEK cells were adapted to treatment medium (L15 medium, 20 mM HEPES, 0.01% ascorbic acid pH 7.4) for 1 h. One plate per treatment time point was used. Each plate contained control wells for no drug (N=6), drug plus antagonist (N=2 per drug), and drug alone (N=4 per drug). Dopamine or agonist was added to a final concentration of 10 µM. For wells containing drug plus antagonist, the final antagonist concentration (SCH23390 or butaclamol) was 50 µM. Propranolol and yohimbine (50 nM) again were included in all wells to block endogenous adrenergic receptors. Plates were incubated for 0 to 120 min in a 37 ºC water bath, rapidly cooled on ice, and fixed in 4% paraformaldehyde buffered with 0.1N sodium phosphate prior to analysis for cell surface receptors by radioimmunoassay. Control studies also were done in which the HA-hD\(_1\) receptors were pre-labeled with the HA.11 primary antibody prior to agonist treatment and fixation. This experiment yielded results similar to the studies above, and the data are not shown.

Radioimmunoassay for cell surface HA-hD\(_1\)

A protocol based on that of Brinson and Harden (2001) was followed. All wells were blocked for 30 min in DMEM-H containing 50 mM HEPES, 10% heat-inactivated FBS, and 0.01% sodium azide at 37 ºC and 5% CO\(_2\) in the cell culture incubator. Primary antibody to HA.11 (mouse raw acytes, Covance, Inc.) then was added at a 1000-fold dilution to all wells, except for two “no drug” wells that allowed estimation of background binding of radioactive, secondary antibody. Plates were returned to the incubator for 2 h. Wells were rinsed twice with PBS, and a radioactive secondary antibody (\(^{125}\text{I}\)-Rabbit Anti-Mouse, Perkin-Elmer Life Sciences) was added at a 500-fold
dilution to all wells, after which plates were returned to the incubator for an additional 2 h. Cells then were washed twice with PBS, solubilized overnight in 1 N NaOH, transferred to borosilicate test tubes, and radioactivity quantified on a LKB 1209 RackBeta (Wallac/Perkin Elmer, Wellesley, MA). Data were expressed as a percentage of untreated controls.

Data analyses

Affinity data were fit first to a sigmoidal model of variable slope. \(K_{0.5} \) values were calculated from the IC50s using the bimolecular competitive model from Cheng and Prusoff (1973). The data presented represent the means (± SEM) of three to five independent experiments. The data then were resolved assuming a two-site model, to yield a \(K_{D_{(high)}} \) and \(K_{D_{(low)}} \) and percent of sites in each state. The data for adenylate cyclase also were fit to a sigmoidal dose-response curve (variable slope). Intrinsic activity data for adenylate cyclase are expressed as the percentage of cAMP produced at the highest concentration of agonist used relative to dopamine. Intrinsic activity data for internalization are expressed as the percentage of remaining cell surface receptors relative to dopamine-treated cells 2 h after agonist treatment. All values are the means and standard errors of 2-5 independent experiments. All of the analyses of these dose-response data were performed using Prism Ver. 3 or 4 (GraphPad, Inc, San Diego CA).

Differences between more than two groups were subjected to analysis of variance (ANOVA). Significant ANOVA results were followed by a post-hoc Tukey test. Systat software (version 6.0.1, Systat Software Inc., Point Richmond, CA) was used for all statistical analysis.

RESULTS

Affinity of structurally distinct ligands for the HA-hD\(_1\) receptor

The affinity of the D\(_1\) agonists was determined for the HA-hD\(_1\) receptor by competition binding with \[^{3}H\]SCH23390 (Figure 2 and Table 1). This cell line had a receptor density of 4 ± 1 pmol of receptor per mg of membrane protein and a \(K_{D} \) \[^{3}H\]SCH23390 of 2.4 ± 0.8 nM (data not shown). Dopamine had an affinity of ~300 nM,
and apomorphine and the benzazepine SKF38393 also were of relatively low affinity. The other rigid agonists had higher affinity for the HA-hD₁ receptor (8-70 nM), as did the remaining benzazepines (SKF83959: 3 nM to SKF77434: ~50 nM). The isochroman agonists A77636 and A68930 both had high affinity (~2-4 nM). The data from ligands with shallow Hill slopes (<0.8) also were resolved using a two-site analysis. Several correlations were examined, and there seemed to relationship neither between the affinity of the high affinity site and intrinsic activity in the functional assays, nor in the spread of the high and low affinity sites and intrinsic activity.

Adenylate cyclase functional potency and intrinsic activity

The ability of these agonists to activate adenylate cyclase through the HA-hD₁ receptor then was examined (Table 1 and Figure 3). Full dose-response curves for adenylate cyclase activation were obtained for all agonists. Dopamine exhibited very high functional potency in this cell line (about 20 nM) that was inhibited by the D₁-selective antagonist, SCH23390. Adenylate cyclase activation by the highest concentration of all agonists was also inhibited by SCH23390, confirming that this response was mediated by the HA-hD₁ receptor. All of the rigid agonists exhibited high intrinsic activity for adenylate cyclase activation (> 80%), with potencies ranging from 2 nM (A77636) to 37 nM (apomorphine). As expected, there was no correlation between adenylate cyclase potency and intrinsic activity for agonists of this class. Intrinsic activity for the benzazepines ranged from ~40% (SKF83959) to ca. 85% (SKF82958), with potency from less than 1 nM (SKF82957) to 11 nM (SKF38393). Not surprisingly, there also was no correlation between functional potency and efficacy for the benzazepines. The two isochromans tested, A77636 and A68930, both had high intrinsic activity (>90%) and high potency (low nM range).

Internalization intrinsic activity

D₁ agonists from different structural classes were then screened for their ability to cause the HA-hD₁ receptor to internalize (Figures 4 and 5). Internalization for all agonists that caused this response was blocked by SCH23390 (data not shown), indicating that this effect was a direct consequence of D₁ receptor binding. The rigid agonists varied in the
degree and time course of receptor internalization. Dinapsoline and A86929 caused internalization of the receptor to an extent similar to that observed with dopamine. The internalization response, however, was slower than dopamine for A86929 and more rapid than dopamine for dinapsoline. The extent of internalization of the receptor in response to dinoxyline was significantly greater than that observed for dopamine (p<0.01), and occurred on a faster time scale than that observed with any other agonist. No internalization of HA-hD₁ was observed in response to apomorphine. The benzazepine compounds also varied in receptor internalization efficacy. Neither SKF83959, SKF82957, SKF38393, nor SKF77434 caused internalization of HA-hD₁. Internalization in response to two benzazepine agonists, SKF82958 and SKF81297, was observed. In both cases, the efficacy was similar to that of dopamine (p>0.05) and followed a similar time course. The isochromans A77636 and A68930 both caused internalization of the HA-hD₁ receptor to an extent significantly greater than that observed with dopamine (p<0.01). These agonists did, however, follow an internalization time course similar to that of dopamine.

DISCUSSION

This study has provided the broadest comparison to date of the molecular pharmacology of structurally diverse dopamine D₁ agonists. All of the structurally rigid compounds and the isochromans (Figure 1) had high intrinsic activity in stimulating adenylate cyclase. Not unexpectedly, there was no correlation between agonist intrinsic activity and adenylate cyclase potency, with EC50’s covering over two orders of magnitude. Similarly, there was also no apparent correlation between functional potency and efficacy (versus adenylate cyclase) for the benzazepine agonists. Most of the compounds in this class had low or moderate efficacy (e.g. SKF83959 or SKF38393). The exception, SKF82958, was nearly a full agonist, as reported previously (Watts et al., 1995). This dissociation between agonist functional potency and intrinsic activity (i.e., for adenylate cyclase activation) for D₁ agonists is consistent with, and extends, previously published results (Lewis et al., 1998).
An assumption often made based on classical pharmacological dogma is that strong agonists almost invariably have low affinity. We believe this notion is at odds with the concept of “functional selectivity” as can be seen from the current data. DNS, DHX, DNX, A86929, A68930, and A77636 are all full agonists, equal in intrinsic activity to dopamine in all systems studied to date, even in those with reduced receptor reserve (e.g., see Watts et al., 1995). Because these six ligands and dopamine have identical V_max’s, the EC50’s directly reflect the EC50/V_max ratios. Yet these six compounds have affinities and potencies that vary over a more than 30-fold range (even wider if dopamine is included). Examination of the data for partial agonists from the phenylbenzazepine family shows that they also cover about the same range of affinity and potency as the full agonists. Thus, whether full or partial agonist, all of these synthetic ligands are of relatively high affinity, contrary to what classical principles sometimes teach. As novel ligands are discovered for many receptors, more data are being published showing that functional activity is not correlated to ligand affinity. It would seem, therefore, that the parsimonious conclusion is that binding dynamics can result in a broad landscape of resulting receptor conformational changes that may (or may not) activate different signaling pathways in a differential fashion. Such data underscore why we believe that the acceptance of the concept of functional selectivity (or whatever name the field ultimately adopts) is long overdue.

Of greater interest was the relationship between agonist functional potency and the ability to cause receptor internalization. Some agonists were unable to cause internalization of the HA-hD1 receptor, even when internalization was observed with other agonists of similar structural features. Thus, apomorphine, despite having relatively high intrinsic activity in stimulating cyclase, failed to cause receptor internalization, whereas all of the other rigid agonists (e.g. dinapsoline, A86929, and dinoxyline) elicited an internalization response of similar or greater magnitude than observed with dopamine. The benzazepines SKF38393 and SKF77434, as well as SKF82957 and SKF83959, also failed to cause receptor internalization, whereas the other two members of this structural class (e.g. SKF82958 and SKF81297) had internalization efficacies similar to that of dopamine.
One of the surprising findings of this study was that internalization seemed to be almost a digital, rather than graded response (i.e., one either saw internalization to the same extent as dopamine, or one did not). This observation led to the hypothesis that the apparent inability of some of these agonists to cause D₁ receptor internalization was due to the fact that the HA-hD₁ receptor could rapidly recycle back to the cell surface, even in the presence of agonist. Such an effect would result in no apparent internalization because the cell surface radioimmunoassay was performed on HA-hD₁ fixed after agonist exposure. We addressed this possibility by performing experiments in which the HA-hD₁ receptor was pre-labeled with the HA.11 primary antibody prior to agonist treatment and fixation. This manipulation had no effect on the internalization efficacy of these agonists, however, thus ruling out this alternate hypothesis.

Another concern was that the apparent high receptor reserve in this expression system (e.g., evidenced by the relatively high receptor density, and by the high functional potency for stimulating adenylate cyclase) might be an interpretational confound. Yet as summarized in Table 1, the agonists used offered a broad range of intrinsic activities versus adenylate cyclase, indicating that despite the postulated high receptor reserve, it was still possible to discriminate full and partial agonists, at least at adenylate cyclase. Additionally, all of the agonists tested in this assay system that caused D₁ receptor internalization exhibited an internalization efficacy that was equivalent to or greater than that of dopamine. These results indicate that the postulated high receptor reserve did not hinder our ability to detect agonist-specific differences in receptor internalization. Furthermore, the observed dissociation between the adenylate cyclase activity and internalization efficacy of an agonist also speak against a role for cAMP and PKA in mediating D₁ receptor internalization.

Specifically, apomorphine had intrinsic activity for stimulating adenylate cyclase that was identical to SKF81297 and SKF82958, yet these two benzazepines caused full internalization whereas apomorphine caused none. It should be noted that the high D₁ intrinsic activity we report for apomorphine in vitro (in addition to its well-known D₂ agonism) is consistent with the fact that it causes profound antiparkinson effects in vivo, a characteristic of full, but not partial D₁ agonists (Taylor et al., 1991; Mailman et al., 2001). Another interesting finding in this study was the identification of three agonists...
from two different structural classes that were more efficacious than dopamine in causing internalization of the HA-hD₁ receptor. The rigid agonist, dinoxyline, as well as both of the isochromans, A86929 and A68930, caused greater internalization than did dopamine, for reasons that are not obvious.

One of the initial hypotheses of this study was that dopamine D₁ receptor agonists from the same structural class might have similar efficacy and/or time courses for causing D₁ receptor internalization. One of the rationales underlying this hypothesis was as follows. Although all of these agonists dock to a very similar pharmacophore (Mottola et al., 1996), we expected that subtle differences among the structural families would cause differences in functional selectivity. These data, however, clearly show that D₁ receptor internalization is not directly related to agonist structure or affinity for the D₁ receptor. Although there was no direct relationship to either intrinsic activity or functional potency (both assessed by activation of adenylate cyclase), our data suggest that together these factors may somehow be related to whether or not a ligand can cause internalization of the D₁ receptor.

Although these interesting results clearly demonstrate functional selectivity at the dopamine D₁ receptor, they raise questions about the underlying mechanisms of differential activation of adenylate cyclase versus receptor internalization. G protein activation is the first step at which such discrimination could occur. Only agonists with both relatively high affinity and potency at adenylate cyclase activation were able to mediate an internalization response. Specifically, all “internalizing” agonists displayed adenylate cyclase functional potency of at least 15 nM and intrinsic activity of at least 90%. Internalization was not observed for agonists with high potency, but low intrinsic activity [e.g., SKF83959 (5.6 nM and 42% intrinsic activity)], or low potency but high intrinsic activity [e.g., apomorphine (37 nM and 86% intrinsic activity)]. Superficially, these findings suggest that differences in the ability of the agonist-receptor complex to couple efficiently to a stimulatory G protein may be an important mechanism underlying functional discrimination by D₁ agonists. Nevertheless, the lack of a graded response for the partial agonists (i.e., at adenylate cyclase) suggests that the underlying mechanism is likely to be more complex.
Indeed, functional discrimination may be independent of G protein activation. The δ and κ opioid receptors, for example, activate inhibitory G proteins with similar potency and efficacy in response to etorphine in HEK cells, but the κ receptor fails to cause an internalization response, a fact attributed to sequence differences in the receptor C-termini that regulate internalization (Chu et al., 1997). Alternately, the ability of the agonist-receptor complex to regulate both the extent of G protein activation and downstream events may prove important in regulating differential activation of adenylate cyclase and internalization. Dopamine has previously been observed to cause D₁ receptor internalization in this cell line through a dynamin-dependent mechanism that implicates involvement of the GRK/arrestin/clathrin pathway (Vickery and von Zastrow, 1999). Such an operative mechanism would be consistent with a requirement for Gₛ activation, since GRKs phosphorylate only the activated form of GPCRs (Ferguson et al., 1996). Additionally, this mechanism requires that cellular GRKs be able to bind to, and phosphorylate, the agonist-occupied form of the receptor, and that cellular arrestins also be able to bind. The promiscuity of GRK phosphorylation and arrestin binding would be consistent with one cellular mechanism by which internalization of the receptor could be regulated in response to a number of structurally diverse agonists. This same mechanism also offers a means to explain why small perturbations in agonist structure, as observed with the benzazepines, could inhibit internalization, even when activation of a stimulatory G protein is present. These possibilities are worthy of future study, noting of course that in many systems G_OLF, rather than Gₛ, may be the important mediator of D₁ activity (Herve et al., 1993; Corvol et al., 2001).

To summarize, these experiments screened a number of agonists from three different structural families and identified D₁ agonists that activate adenylate cyclase but do not cause receptor internalization. These effects were independent of agonist structural class and agonist affinity, and indicated a role for efficient and potent mobilization of a stimulatory G protein. The data also suggest that a similar internalization mechanism underlies these results (possibly one mediated by cellular GRKs/arrestin), but do not rule out the possibility that these effects may be due to differential G protein coupling. This study also constitutes the most extensive characterization reported to date of D₁ receptor internalization in response to structurally diverse agonists.
ACKNOWLEDGMENTS

We would like to thank Dr. Amy Jassen for constructing the HA tagged hD1 receptor, and Dr. Robert Nicholas and Samuel Wolff for advice on constructing the HA-hD1 HEK cell line.
REFERENCES

Arnsten AF, Cai JX, Murphy BL and Goldman-Rakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. *Psychopharmacology (Berl)* 116:143-151.

Cheng Y and Prusoff WH (1973) Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50 per cent inhibition (I_50) of an enzymatic reaction. *Biochem Pharmacol* 22:3099-3108.

Mailman RB, Nichols DE, Lewis MM, Blake BL and Lawler CP (1998) Functional Effects of Novel Dopamine Ligands: Dihydrexidine and Parkinson's Disease as a
First Step, in *Dopamine Receptor Subtypes: From Basic Science to Clinical Application* (Jenner P and Demirdemar R eds) pp 64-83, IOS Stockton Press.

FOOTNOTES

This work was supported by NIH research grants NS39036 (RBM), MH040537 (RBM), MH042705 (DEN), and training grant ES007126.

Reprint requests should be sent to Dr. Richard B. Mailman; CB#7160, University of North Carolina, School of Medicine; Chapel Hill, NC 27599-7160, Richard_mailman@med.unc.edu.

Richard B. Mailman and David E. Nichols have a significant financial interest in DarPharma, Inc., the company currently holding license rights to dihydrexidine, dinapsoline, and dinoxyline. All opinions are those of the authors, and do not represent the University of North Carolina, Purdue University, or DarPharma, Inc.
FIGURE LEGENDS

Figure 1. Dopamine and D₁ agonists used in this study. The rigid agonists (top), the benzazepines (bottom), and the isochromans (right) are grouped in boxes (dotted lines).

Figure 2. Affinities of ligands from different structural classes for the HA-hD₁ receptor. Membrane homogenates of HA-hD₁ HEK cells were incubated with the D₁-selective antagonist, [³H]SCH23390, and increasing concentration of agonist. Data were fit to a one-site competition curve. Displacement curves are from one experiment that is representative of two independent experiments. Rigid agonists (A and B); benzazepine agonists (B and C); isochroman agonists (E). K₀.₅ values are listed in Table 1.

Figure 3. Functional effects of agonists at adenylate cyclase at the HA-hD₁ receptor in whole HEK cells. HA-hD₁ HEK cells were incubated with increasing concentrations of agonist in the presence of 500 µM IBMX, a phosphodiesterase inhibitor, and 50 nM (S)-propranolol and yohimbine (to antagonize endogenous adrenergic receptors). Data were fit to a variable slope sigmoidal dose response curve. Curves are from one experiment that is representative of two or three independent experiments. The SEMs in this study were less than 5% of the means. Rigid agonists (A and B); benzazepine agonists (C and D); isochroman agonists (E). EC 50 values are listed in Table 1.

Figure 4. Internalization time course of dopamine relative to other structurally dissimilar D₁ agonists. Rigid agonists (A and B), benzazepine agonists, (C and D), isochroman agonists (E). HA-hD₁ HEK cells were treated with 10 µM agonist for 0 to 120 min. Cells were fixed and remaining cell surface HA.11 determined by radioimmunoassay. Data were expressed as a percentage of vehicle-treated controls at all time points. Data are the means and standard errors of three to five independent experiments except for SKF 82957 (n = 2).
Figure 5. Cell surface receptors remaining 2 h after agonist treatment. Data were expressed as a percentage of vehicle-treated controls at all time points. Data are the means and standard errors of three to five independent experiments, with the exception of SKF82957 (n = 2) and are shown relative to dopamine. Data were compared using a one-way ANOVA with a post-hoc Tukey test. Panel A: non-internalizing agonists. Internalization of HA-hD1 is significant for dopamine compared with all other agonists (*p<0.001). Panel B: agonists that cause internalization similar to that observed with dopamine (p>0.05). Panel C: agonists of higher internalization efficacy than dopamine. Internalization of all compounds is significantly greater than that observed with dopamine (p<0.01).
Table 1. Summary of pharmacological properties of structurally dissimilar D₁ agonists.

<table>
<thead>
<tr>
<th>Ligand</th>
<th>$K_{0.5}$ (nM)</th>
<th>η_H</th>
<th>K_D (High) (nM)</th>
<th>R_{high} (%)</th>
<th>K_D (Low) (nM)</th>
<th>R_{low} (%)</th>
<th>EC50 (nM)</th>
<th>Intrinsic activity</th>
<th>Intrinsic activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>dopamine</td>
<td>300 ± 120</td>
<td>-0.45 ± 0.04</td>
<td>19 ± 0.30 46 ± 3.0</td>
<td>2100 ± 38 44 ± 3.0</td>
<td>23 ± 18</td>
<td></td>
<td>23 ± 18</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>apomorphine</td>
<td>240 ± 76</td>
<td>-0.85 ± 0.04</td>
<td>0.49 ± 0.03 7.6 ± 2.0</td>
<td>240 ± 2.0 92 ± 2.0</td>
<td>37 ± 3</td>
<td>86 ± 4</td>
<td>37 ± 3</td>
<td>86 ± 4</td>
<td>0.0</td>
</tr>
<tr>
<td>dinapsoline</td>
<td>48 ± 5.0</td>
<td>-0.46 ± 0.05</td>
<td>1.4 ± 0.03 43 ± 6.0</td>
<td>140 ± 3.6 57 ± 6.0</td>
<td>4.0 ± 3.0</td>
<td>100 ± 18</td>
<td>4.0 ± 3.0</td>
<td>100 ± 18</td>
<td>106 ± 3</td>
</tr>
<tr>
<td>dinoxyline</td>
<td>16 ± 9.3</td>
<td>-0.40 ± 0.05</td>
<td>0.12 ± 0.01 44 ± 4.0</td>
<td>30 ± 0.46 56 ± 4.0</td>
<td>4.0 ± 3.0</td>
<td>102 ± 14</td>
<td>4.0 ± 3.0</td>
<td>102 ± 14</td>
<td>118 ± 2</td>
</tr>
<tr>
<td>dihydrexidine</td>
<td>71 ± 8.5</td>
<td>-0.63 ± 0.09</td>
<td>0.06 ± 0.01 21 ± 3.0</td>
<td>25 ± 0.20 79 ± 3.0</td>
<td>15 ± 0.5</td>
<td>96 ± 8</td>
<td>15 ± 0.5</td>
<td>96 ± 8</td>
<td>110 ± 5</td>
</tr>
<tr>
<td>A86929</td>
<td>7.8 ± 1.5</td>
<td>-0.68 ± 0.06</td>
<td>2.5 ± 0.03 68 ± 7.0</td>
<td>110 ± 4.2 32 ± 7.0</td>
<td>2.3 ± 0.5</td>
<td>91 ± 15</td>
<td>2.3 ± 0.5</td>
<td>91 ± 15</td>
<td>108 ± 3</td>
</tr>
<tr>
<td>SKF38393</td>
<td>240 ± 140</td>
<td>-0.63 ± 0.05</td>
<td>14 ± 0.39 48 ± 11</td>
<td>370 ± 11 52 ± 11</td>
<td>13 ± 1.0</td>
<td>67 ± 1</td>
<td>13 ± 1.0</td>
<td>67 ± 1</td>
<td>0.0</td>
</tr>
<tr>
<td>SKF77434</td>
<td>52 ± 2</td>
<td>-0.75 ± 0.07</td>
<td>0.79 ± 0.04 18 ± 6.0</td>
<td>45 ± 0.63 82 ± 6.0</td>
<td>11 ± 2.0</td>
<td>46 ± 12</td>
<td>11 ± 2.0</td>
<td>46 ± 12</td>
<td>0.0</td>
</tr>
<tr>
<td>SKF83959</td>
<td>2.7 ± 0.7</td>
<td>-0.94 ± 0.10</td>
<td>NA</td>
<td>NA</td>
<td>5.6 ± 0.6</td>
<td>42 ± 3</td>
<td>5.6 ± 0.6</td>
<td>42 ± 3</td>
<td>0.0</td>
</tr>
<tr>
<td>SKF82957</td>
<td>2.5 ± 0.3</td>
<td>-1.00 ± 0.09</td>
<td>NA</td>
<td>NA</td>
<td>0.8 ± 0.6</td>
<td>55 ± 9</td>
<td>0.8 ± 0.6</td>
<td>55 ± 9</td>
<td>0.0</td>
</tr>
<tr>
<td>SKF81297</td>
<td>10 ± 1</td>
<td>-0.654 ± 0.05</td>
<td>1.8 ± 0.12 42 ± 8.0</td>
<td>36 ± 0.59 58 ± 8.0</td>
<td>2.6 ± 1.2</td>
<td>89 ± 11</td>
<td>2.6 ± 1.2</td>
<td>89 ± 11</td>
<td>105 ± 3</td>
</tr>
<tr>
<td>SKF82958</td>
<td>6.5 ± 0.2</td>
<td>-0.73 ± 0.05</td>
<td>1.2 ± 0.03 46 ± 14</td>
<td>14 ± 0.31 54 ± 14</td>
<td>3.0 ± 2.6</td>
<td>86 ± 12</td>
<td>3.0 ± 2.6</td>
<td>86 ± 12</td>
<td>105 ± 3</td>
</tr>
<tr>
<td>A77636</td>
<td>3.8 ± 1.3</td>
<td>-1.01 ± 0.07</td>
<td>NA</td>
<td>NA</td>
<td>5.3 ± 2.0</td>
<td>99 ± 7.0</td>
<td>5.3 ± 2.0</td>
<td>99 ± 7.0</td>
<td>118 ± 2</td>
</tr>
<tr>
<td>A68930</td>
<td>2.4 ± 0.2</td>
<td>-0.78 ± 0.05</td>
<td>0.90 ± 0.01 73 ± 0.07</td>
<td>18 ± 0.49 27 ± 0.02</td>
<td>0.3 ± 0.1</td>
<td>97 ± 3</td>
<td>0.3 ± 0.1</td>
<td>97 ± 3</td>
<td>124 ± 2</td>
</tr>
</tbody>
</table>

Intrinsic activity data are expressed relative to dopamine. See Methods for details of analysis.

NA: Not applicable ($\eta_H = 1$).