Estrogen: a Mitochondrial Energizer that Keeps on Going

Thomas P. Burris and Venkatesh Krishnan

Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285 (TPB, VK)
Department of Pharmacology and Toxicology, Indiana University School of Medicine,
Indianapolis, IN 46202 (TPB)
ABSTRACT

Estrogens demonstrate vasoprotective activity in many experimental models. These effects have been attributed to beneficial activity of these steroids on lipid metabolism as well as direct effects on the vasculature via modulation of nitric oxide synthase (NOS) and phosphotidylinositol-3 kinase (PI-3 kinase) / Akt signaling pathways. In this issue of Molecular Pharmacology, Stirone et al. present evidence suggesting that 17β-estradiol may also exert vasoprotective effects in cerebral blood vessels via stimulation of mitochondrial energy production capacity and inhibition of reactive oxygen species production. These data not only indicate yet another potential mechanism underlying the vasoprotective effects of estrogens, but also indicate that the estrogen receptor may coordinate gene expression in both the nuclear and mitochondrial genomes.
The estrogen steroid hormones are commonly recognized for their well-characterized role in regulation of female reproductive function. 17β-estradiol and estrone, the predominant estrogens in the human, along with progesterone are essential in control of the menstrual cycle and maintenance of pregnancy. In addition to the classical reproductive actions of estrogens, these ovarian steroids modulate physiological functions in diverse systems such as the musculoskeletal, gastrointestinal, immune, neural, and cardiovascular systems. The varied effects of estrogens are mediated by estrogen receptors expressed in these tissues. The two estrogen receptors, ERα and ERβ, are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors. These intracellular receptors contain DNA-binding domains that recognize specific DNA sequences, known as estrogen response elements, within the promoters of target genes. Docking of the steroid to the carboxy-terminal ligand-binding domain induces a conformational change within the protein that leads to its activation. This conformational change produces novel surfaces on the ligand-binding domain allowing for recruitment of various transcriptional cofactors resulting in activation of target gene transcription and hence, altered cellular and physiological function.

The average life expectancy of women is significantly longer than that of men, a fact that has been attributed to the decreased risk of vascular disease women have during their reproductive years. As ovarian steroid levels decrease during menopause the risk of vascular disease increases to a point where the “protective” effect is completely lost a decade after the onset of menopause. A variety of experimental models established estrogens as critical mediators of this protection and the effect appears to be multifaceted. Estrogens have been demonstrated to inhibit atherosclerosis, an effect that is correlated
with their well-characterized ability to decrease low-density lipoprotein cholesterol and increase high-density lipoprotein cholesterol. In addition, estrogen has direct effects on the vessel wall decreasing vascular resistance via reduced vascular tone, an effect that is mediated through targeting both the endothelial and vascular smooth muscle cells (White, 2002).

Several pathways suggesting vascular effects of estrogen have been extensively studied, and include ER regulation of 1) the nitric oxide synthase (NOS) pathway, 2) norepinephrine (NE) synthesis in the hypothalamus, 3) the Akt pathway via non-genomic action mediated by its interactions with the p85 subunit of phosphatidylinositol-3 kinase (PI-3 kinase) (Martin et al., 2000; Nuedling et al., 2001; Peng et al., 2003; Simoncini et al., 2000). The link between estrogen signaling and nitric oxide levels can be approached by several direct and indirect mechanisms. The best-characterized direct regulation was reported on the NOS III gene, wherein an Sp1 element was shown to mediate the estrogen-mediated increase in NOS III transcription (Kleinert et al., 1998). In addition, it has been shown that estrogen can block the activity of the TNF-α promoter (An et al., 1999) and that chronic TNF-α presence, a hallmark of the post-menopausal status in women, leads to decreased endothelial NO synthase activity which is reversed by the TNF-α blocker Ethanercept® (Arenas et al., 2005). Wyss and colleagues have reported elegant studies evaluating the role of norepinephrine synthesis as measured by the levels of NE metabolite 3-methoxy, 4-hydroxyphenylglycol (MHPG) in the hypothalamus of the spontaneous hypertensive rat (SHR) model (Peng et al., 2003). In an estrogen depleted state they demonstrated an increase in arterial pressure in female SHR animals coincidental with a decrease in MHPG levels. Consistent with this hypothesis, forearm
vasoconstrictor responses to NE were attenuated after estrogen supplementation (Sudhir et al., 1996). Finally, Chin, Liao and colleagues have shown that mice treated with estrogen show increased endothelial NOS (eNOS) activity and decreased vascular leukocyte accumulation, after ischemia, in a reperfusion injury model. This vascular protective effect of estrogen was abolished in the presence of PI-3 kinase or eNOS inhibitors implicating a non-genomic pathway involving direct interaction between the p85 subunit of PI-3 kinase and ERα in the cytoplasm of the endothelial cells ultimately leading to increased eNOS activity (Simoncini et al., 2000).

In this issue of *Molecular Pharmacology*, Stirone et al. describe yet another potential mechanism underlying the observed vasoprotective effects of estrogen. This group previously demonstrated expression of ERα and regulation of the PI-3 kinase / Akt and eNOS pathways by E2 in cerebral blood vessels (Stirone et al., 2005; Stirone et al., 2002). Recent reports indicating expression of ER in mitochondria (Chen et al., 2004a; Chen et al., 2004b; Monje and Boland, 2002; Yang et al., 2004) and evidence implicating mitochondrial dysfunction and reactive oxygen species (ROS) in the etiology of vascular disease (Ballinger, 2005; Ballinger et al., 2000; Lesnefsky et al., 2001; Madamanchi et al., 2005; Ramachandran et al., 2002), led these investigators to examine the role of E2 on mitochondrial function in cerebral blood vessels. Using ovariectomized female rats, it was demonstrated that E2 replacement led to increased expression of key mitochondrial proteins including cytochrome c, and subunits I and IV of cytochrome oxidase (COX). In addition, functional assays of mitochondrial citrate synthase and COX activity indicated that E2 treatment results in significantly increased mitochondrial function. With increased mitochondrial energy capacity comes a concern of an increased ROS
production; however, Stirone et al. show that E2 treatment induces expression of manganese superoxide dismutase and decreases hydrogen peroxide production from isolated cerebral blood vessel mitochondria. Thus, these data suggest that vasoprotection by E2 is, at least in part, mediated by modulation of mitochondrial function, specifically increased capacity for energy production and decreased ROS production.

Many questions remain as to the mechanism by which E2 regulates mitochondrial function. Stirone et al. show that ERα is localized to both the nucleus and mitochondria and coordinates the expression of both nuclear and mitochondrial genes. These effects were clearly ER mediated as the induction of cytochrome c was inhibited by the ER antagonist, ICI 182,780, but were not effected by PI-3 kinase or NOS inhibitors suggesting that the effects are completely independent of E2 modulation of these signaling pathways. One hint of how E2 may be controlling expression of the nuclear encoded mitochondrial genes is the observation of induction of nuclear respiratory factor-1 (NRF-1), a key transcription factor responsible for regulating the expression of an array of nuclear encoded mitochondrial genes. However, it is still unclear whether ER regulates NRF-1 or any of the nuclear encoded mitochondrial genes expression directly. The possibility of regulation of mitochondrial encoded genes by ER is more intriguing. The fact that ERα was found in the mitochondria suggests it may be playing some direct role in regulation of gene expression within the organelle. Limited data indicating the presence of estrogen response elements within the regulatory regions of genes in mitochondrial DNA (mtDNA) (Demonacos et al., 1996) and induction of mitochondrial genes by E2 in addition to subunit I of COX described in the current study supports this possibility (Chen et al., 2004b). However, the role of ER in the mitochondria has been
met with considerable controversy and additional studies will be required to resolve its role within this organelle.

The identification of an additional mechanism potentially mediating vasoprotective effects of estrogen is particularly timely given relatively recent clinical evidence questioning the validity of the protective effect in women. Estrogen therapy (ET) or hormone therapy (HT; combinations of an estrogen(s) and a progestin) are commonly prescribed to perimenopausal and postmenopausal women for a variety of sequelae associated with estrogen deficiency including vasomotor flushes (hot flashes), urogenital atrophy, and decreased bone mineral density. The assumed reduction in vascular disease including coronary heart disease and stroke was generally considered to be an additional benefit of this therapy. However, recent clinical trials have provided results that question the benefits of ET/HT on vascular disease. The Women’s Estrogen for Stroke Trial (WEST) demonstrated that ET does not offer any protection against cerebrovascular disease in women with a history of stroke (Viscoli et al., 2001). A considerably larger study, the Women’s Health Initiative (WHI) was principally designed to assess the effect of ET and HT on coronary heart disease in postmenopausal women. In 2002, the HT (combined conjugated equine estrogens plus medroxyprogesterone) vs placebo component of the trial was unexpectedly discontinued after it was determined that there was an increased incidence of vascular events and breast cancer in the HT group (Rossouw et al., 2002). The overall health risks surpassed the observed benefits noted in the HT group, which included reduced risk of fracture (Rossouw et al., 2002). Later, in 2004, the ET component of the WHI trial was also interrupted based on data indicating increased risk for cerebrovascular events associated with treatment (Anderson et al.,
Based on the outcome of these trials, it has been recommended that HT not be utilized to prevent vascular disease and should only be used for short durations for treatment of menopausal symptoms (www.nhlbi.nih.gov/whi). However, this recent clinical data contradicting experimental data supporting estrogen’s vasoprotective role creates a conundrum.

Why is the overwhelming experimental animal data indicating a vasoprotective role for estrogen at odds with recent clinical data indicating either no beneficial effect or even a detrimental effect? One obvious issue is the identity of the estrogen(s) utilized. Whereas the most commonly utilized estrogen in animal studies is E2, the WHI study used conjugated equine estrogen (CEE), which is the most commonly prescribed estrogen HT component in the United States. CEE contains a number of estrogenic steroids many of which are sulfated esters. Several of the estrogens within CEE are not well characterized in terms of their pharmacology and thus cannot be directly compared to a single estrogenic steroid like E2. Distinct estrogens as well as combinations of estrogens within the CEE mixture may exhibit a unique array of activities. Another key pharmacological difference that may confound the comparison is the type of progestin used in the HT combination. Although progesterone is the primary physiological progestin in humans, the WHI utilized medroxyprogesterone acetate (MPA). Like CEE, MPA was chosen because it is the most prescribed progestin replacement. However, MPA displays unique pharmacological properties including significantly greater activity at the glucocorticoid receptor than progesterone (Bamberger et al., 1999) and the ability to antagonize the beneficial effects of E2 in models of coronary vasospasm and neuroprotection where progesterone exhibited beneficial effects (Miyagawa et al., 1997; Nilsen and Brinton,
2003). Thus, the distinct pharmacological profiles of the various hormone replacement regimens is a plausible explanation for the mystery; however, considerable basic and clinical research is required to resolve this issue.

Even within experimental models where the vasoprotective effects of estrogen are accepted, the precise mechanism is still unclear and likely involves multiple pathways. The observation that mitochondrial function is regulated by E2 adds additional complexity to this field and leaves several fascinating questions to be resolved. The relative contribution of the mitochondrial effects of estrogen to vasoprotection as well as the mechanism by which ER coordinates the regulation of both nuclear and mitochondrial genome are two key areas that will certainly be explored in the future.
REFERENCES


