Presynaptic inhibition via a phospholipase C- and phosphatidylinositol bisphosphate-dependent regulation of neuronal Ca\(^{2+}\) channels

Stefan G. Lechner, Simon Hussl, Klaus Schicker, Helmut Drobny, and Stefan Boehm

Department of Pharmacology, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
Running title: Presynaptic inhibition via PLC and PIP$_2$

Corresponding author: Stefan Boehm

Department of Pharmacology, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna Waehringerstrasse 13a, A-1090 Vienna, Austria

Phone: +43 1 42 77 64146; Fax: +43 1 42 77 9641

Email: Stefan.Boehm@meduniwien.ac.at

35 pages,
1 table,
6 figures,
40 references,
250 words in Abstract,
511 words in Introduction,
1655 words in Discussion

Abbreviations: BAPTA-AM, 1,2-bis(2-Aminophenoxy)ethane-N,N,N,N-tetraacetic acid acetoxymethylester; DAG, diacylglycerol; DEDA, 7,7-dimethyl-5,8-eicosadienoic acid; diC8-PIP$_2$, dioctanoyl phosphatidyl-4,5-bisphosphate; GF 109203X, bisindolylmaleimide I; GPCR, G protein-coupled receptor; IC$_{Ca}$, Ca$^{2+}$ current; IP$_3$, inositol trisphosphate; K$_M$ channel, M-type K$^+$ channel; LY 294,002, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one; PIP$_2$, phosphatidylinositol 4,5-bisphosphate; PI3-kinase, phosphatidylinositol 3-kinase; PI4-kinase, phosphatidylinositol 4-kinase; PKC, protein kinase C; PLA$_2$, phospholipase A$_2$; PLC, phospholipase C; PMA, phorbol-12-myristate-13-acetate; PTX, pertussis toxin; SCG, superior cervical ganglion; TTX, tetrodotoxin; U73122, 1-[6-[[17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione; U73343, 1-[6-[[17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-2,5-pyrollidinedione; VACC, voltage-activated Ca$^{2+}$ channel; UK 14304, 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalaminamine.
Abstract

Presynaptic inhibition of transmitter release is commonly mediated by a direct interaction between G protein βγ subunits and voltage-activated Ca^{2+} channels. To search for an alternative pathway, the mechanisms by which presynaptic bradykinin receptors mediate an inhibition of noradrenaline release from rat superior cervical ganglion neurons were investigated. The peptide reduced noradrenaline release triggered by K^{+}-depolarization, but not that evoked by ATP with Ca^{2+} channels being blocked by Cd^{2+}. Bradykinin also reduced Ca^{2+} current amplitudes measured at neuronal somata, and this effect was pertussis toxin-insensitive, voltage-independent and developed slowly within one minute. The inhibition of Ca^{2+} currents was abolished by a phospholipase C inhibitor, but not altered by a phospholipase A_{2} inhibitor, by the depletion of intracellular Ca^{2+} stores, or by the inactivation of protein kinase C or Rho proteins. In whole-cell recordings, the reduction of Ca^{2+} currents was irreversible, but became reversible when 4 mM ATP or 0.2 mM dioctanoyl phosphatidylinositol-4,5-bisphosphate were included in the pipette solution. In contrast, the effect of bradykinin was entirely reversible in perforated-patch recordings, but became irreversible when the resynthesis of phosphatidylinositol-4,5-bisphosphate was blocked. Thus, the inhibition of Ca^{2+} currents by bradykinin involved a consumption of phosphatidylinositol-4,5-bisphosphate by phospholipase C, but no downstream effectors of this enzyme. The reduction of noradrenaline release by bradykinin was also abolished by the inhibition of phospholipase C or of the resynthesis of phosphatidylinositol-4,5-bisphosphate. These results show that the presynaptic inhibition was mediated by a closure of voltage-gated Ca^{2+} channels through depletion of membrane phosphatidylinositol bisphosphates via phospholipase C.
Via changes in the strength of synaptic transmission, the nervous system can adapt to alterations in the environment, a phenomenon that is generally referred to as neuromodulation. In this respect, the modulation of transmitter release via presynaptic receptors is of utmost importance, and a plethora of neuromodulators act via presynaptic G protein-coupled receptors (GPCR). In most, if not all, types of synapses, the activation of GPCRs was found to lead to a presynaptic inhibition of transmitter release, because activated G protein βγ subunits directly interacted with voltage-activated Ca\(^{2+}\) channels (VACCs) and thereby reduced the Ca\(^{2+}\) influx required for vesicle exocytosis (see Stevens, 2004, and references therein). The precise mechanisms underlying the modulation of VACCs via GPCRs have been investigated in greatest detail in sympathetic neurons (Hille, 1994): there, the receptor-dependent activation of G proteins leads to an inhibition of Ca\(^{2+}\) currents (I\(_{\text{Ca}}\)) either via a direct, membrane-delimited and voltage-dependent interaction of G protein βγ subunits with VACCs or via a second messenger system (Hille, 1994; Ikeda and Dunlap, 1999; Elmslie, 2003). In the experiments presented below, we used sympathetic neurons to delineate an example of presynaptic inhibition that relies on the modulation of VACCs through a second messenger system, but independently of a membrane-delimited action of G protein βγ subunits.

In rat superior cervical ganglion (SCG) neurons, a large number of GPCRs including the prototypic α\(_2\)-adrenoceptors mediate the voltage-dependent, membrane-delimited, βγ-mediated inhibition of I\(_{\text{Ca}}\), but only M\(_1\) muscarinic and AT\(_1\) angiotensin receptors were reported to reduce I\(_{\text{Ca}}\) in a voltage-independent manner via diffusible second messengers (Hille et al, 1994; Ikeda and Dunlap, 1999; Elmslie et al, 2003). These two latter receptors also employ second messengers to inhibit M-type K\(^+\) (K\(_{\text{M}}\)) channels (Hille, 1994). The underlying signal cascade remained obscure for decades, but was recently evidenced to involve a phospholipase C (PLC)-dependent regulation of the membrane levels of phosphatidylinositol 4,5-bisphosphates (PIP\(_2\); Suh and Hille, 2002; Zhang et al, 2003; Winks...
et al, 2005). While the present work was in progress, the same signalling pathway was reported to mediate the inhibition of VACCs in SCG neurons via M₁ receptors (Gamper et al, 2004). An inhibition of Kᵥ channels in SCG neurons has also been observed when B₂ bradykinin receptors were activated (Jones et al, 1995), and this effect involved both, reduction of membrane PIP₂ and inositol trisphosphate-dependent increases in intracellular Ca²⁺ (Cruzblanca et al, 1998; Bofill-Cardona et al, 2000; Winks et al, 2005). Most recently, we found that bradykinin also caused a reduction of transmitter release from SCG neurons via presynaptic B₂ receptors and an inhibition of I_Ca (Edelbauer et al, 2005). However, the signalling cascade mediating the modulation of VACCs was not elucidated and it remained obscure whether the inhibition of VACCs also occurred at presynaptic sites and thus was the basis for the reduction of transmitter release. Here, we first demonstrate that the inhibition of presynaptic VACCs is involved in the repression of transmitter release from rat SCG neurons by bradykinin and then provide evidence that the inhibition of both, VACCs and transmitter release, involves a PLC-dependent reduction in membrane PIP₂.
Materials and Methods

Primary cultures of rat superior cervical ganglion neurons

Primary cultures of dissociated SCG neurons from neonatal rats were prepared as described (Boehm, 1999). Ganglia were dissected from 2 to 6 day old Sprague Dawley rat pups which had been killed by decapitation in accordance with the rules of the university animal welfare committee. After incubation in collagenase (1.5 mg/ml; Sigma, Vienna, Austria) and dispase (3.0 mg/ml; Boehringer Mannheim, Vienna, Austria) for 45 min at 36 °C, ganglia were trypsinised (0.25 % trypsin; Worthington, Lakewood, NJ, USA) for 20 min at 36 °C, dissociated by trituration, and resuspended in Dulbecco's modified Eagle's Medium (InVitrogen, Vienna, Austria) containing 2.2 g/l glucose, 10 mg/l insulin, 25000 IU/l penicillin and 25 mg/l streptomycin (InVitrogen), 50 μg/l nerve growth factor (R&D Systems Inc., Minneapolis, MN, USA), and 5% fetal calf serum (InVitrogen). Cells were plated either onto 5 mm discs (about 40,000 cells per disc) for [3H]-noradrenaline release or onto 35 mm culture dishes for electrophysiology. All tissue culture plastic was coated with rat tail collagen (Biomedical Technologies Inc., Stoughton, MA, USA). Cells were kept in a humidified 5% CO₂ atmosphere at 36 °C for up to 7 days, and one half of the medium was exchanged twice during this culture period. One to two days prior to experiments, fresh medium without serum was added.

Determination of [3H]noradrenaline release

The release of [3H]noradrenaline was determined as described before (Boehm, 1999). Cultures were labelled with 0.05 μM [3H]noradrenaline (specific activity 71.7 Ci/mmol) in culture medium supplemented with 1 mM ascorbic acid at 36 °C for 1 h. After labelling, culture discs were transferred to small chambers and superfused with a buffer containing (mM) NaCl (120), KCl (6.0), CaCl₂ (2.0), MgCl₂ (2.0), glucose (20), HEPES (10), fumaric
acid (0.5), Na-pyruvate (5.0), ascorbic acid (0.57), desipramine (0.001), adjusted to pH 7.4 with NaOH. Superfusion was performed at 25 °C at a rate of about 1.0 ml/min. The collection of 4 min superfusate fractions was started after a 60 min washout period. Tritium overflow was evoked during two consecutive stimulation periods (S1 and S2) by the inclusion of either 0.3 mM ATP or 40 mM KCl (NaCl was reduced accordingly to maintain isotonicity) in the buffer for 60 s. Radioactivity released in response to electrical field stimulation from rat sympathetic neurons after labelling with tritiated noradrenaline and under conditions similar to those of the present study had previously been shown to consist predominantly of the authentic transmitter and to contain only small amounts (≤15%) of metabolites (Schwartz and Malik, 1993). Hence, the outflow of tritium measured in this study was assumed to reflect primarily the release of noradrenaline and not that of metabolites. Tetrodotoxin (TTX; 0.1 µM), CdCl₂ (100 µM), and thapsigargin (0.3 µM), if appropriate, were added to the superfusion buffer after 50 min of superfusion (i.e. 10 min prior to the start of sample collection). Bradykinin (1 µM) and UK 14304 (1 µM) were added to the superfusion buffer two minutes, phenylarsine oxide (10 µM) and dithiothreitol (1 mM) four minutes, prior to the second stimulation period. At the end of experiments, the radioactivity remaining in the cells was extracted by immersion of the discs in 1.2 ml 2 % (v/v) perchloric acid followed by sonication. Radioactivity in extracts and collected fractions was determined by liquid scintillation counting (Packard Tri-Carb 2100 TR).

Electrophysiology

I_Ca of sympathetic neurons was determined as described (Boehm et al, 1996). Currents were recorded at room temperature (20-24°C) from single SCG neurons in vitro using an Axopatch 200B amplifier and the Pclamp 6.0 hard- and software (Axon Instruments, Foster City, CA, USA). Currents were low-pass filtered at 5 kHz, digitized at 10 to 50 kHz, and stored on an IBM compatible computer. Traces were analyzed off-line by the Clampfit 8.1 program.
(Axon). Patch electrodes were pulled (Flaming-Brown puller, Sutter Instruments, Novato, CA, USA) from borosilicate glass capillaries (Science Products, Frankfurt/Main, Germany). For perforated-patch recordings, electrodes were front-filled with a solution consisting of (mM) CsCl (130), tetraethylammonium chloride (20), CaCl₂ (0.24), glucose (10), HEPES (10), EGTA (5), adjusted to pH 7.3 with KOH, and were then back-filled with the same solution containing 200 µg/ml amphotericin B (in 0.8 % DMSO) which yielded tip resistances of 2 to 3 MΩ. For whole-cell recordings, electrodes were filled with the solution used for front-filling which additionally contained 2 mM Mg-ATP and 2 mM Na-GTP. Unless stated otherwise, all experiments were performed in the perforated-patch configuration. The external solution contained (mM) NaCl (120), tetraethylammonium chloride (20), KCl (3), MgCl₂ (2), CaCl₂ (5), glucose (20), HEPES (10), adjusted to pH 7.3 with KOH. This combination of solutions results in small liquid junction potentials of about +2 mV which, however, were neglected. In a few experiments, 5 mM Ba²⁺ were used instead of Ca²⁺ as charge carrier. Drugs were applied via a DAD-12 drug application device (Adams & List, Westbury, NY, USA) which permits a complete exchange of solutions surrounding the cells under investigation within less than 100 ms (Boehm, 1999).

Unless stated otherwise, I_Ca was elicited every 15 seconds by 30 ms depolarizations from a holding potential of −80 mV to +10 mV. Leakage currents were corrected for by an on-line leak subtraction protocol which applies four hyperpolarizing pulses prior to the depolarization to +10 mV in order to determine the extent of leakage. The extent of I_Ca inhibition by bradykinin was quantified according to the equation: % inhibition = 100–100×(B₁+B₂)/(C₁+C₂), where B₁ and B₂ are the peak current amplitudes determined 45 and 60 s after the start of bradykinin application and C₁ and C₂ are the amplitudes of control currents measured directly before the bradykinin application. Recovery from inhibition was calculated using the following equation: % recovery = 100×[(W₁+W₂)−(B₁+B₂)]/[(C₁+C₂)−(B₁+B₂)],
where W_1 and W_2 are the current amplitudes measured 135 and 150 s after the start of bradykinin washout (B$_{1,2}$, C$_{1,2}$ and W$_{1,2}$ are indicated in Figure 2 A).

To determine the voltage-dependence of inhibition, currents were elicited by a double-pulse voltage protocol (illustrated in Figure 2 D): cells were clamped at -80 mV; every 15 seconds, a 35 ms depolarization to +10 mV ($I_{Ca,-PP}$) was applied, followed by a 3 s waiting period at -80 mV, a 20 ms prepulse to +80 mV, a 10 ms repolarisation to -80 mV, and finally another 35 ms depolarization to +10 mV ($I_{Ca,+PP}$). Facilitation was calculated as the ratio of I_{Ca} amplitudes measured before and after the prepulse, respectively, by using the equation:

$$\text{prepulse facilitation} = \frac{I_{Ca,+PP}}{I_{Ca,-PP}}.$$

Statistics

All data represent arithmetic means ± s.e.mean; n represents numbers of cultures discs in [3H]noradrenaline release experiments and numbers of single neurons in electrophysiological experiments. Statistical significances between data points were evaluated by the non-parametric Mann-Whitney test.

Materials

(-)[Ring-2,5,6-3H]noradrenaline was obtained from NEN (Vienna, Austria); bradykinin, tetrodotoxin (TTX), pertussis toxin (PTX), 1-[(17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), 1-[(17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-2,5-pyrollidinedione (U73343), thapsigargin, Clostridium difficile toxin B, 7,7-dimethyl-5,8-eicosadienoic acid (DEDA), 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY 294,002), wortmannin, and 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalaminine (UK 14304) from Sigma-Aldrich (Vienna, Austria); phorbol-12-myristate-13-acetate (PMA) and bisindolylmaleimide I (GF 109203X) from Calbiochem (Bad Soden, Germany); 1,2-bis(2-Aminophenoxy)ethane-N,N,N,N-tetraacetic acid
acetoxymethylester (BAPTA-AM) from Molecular Probes (Eugene, Oregon, USA);
dioctanoyl phosphatidyl-4,5-bisphosphate (diC8-PIP2) from Cayman Chemicals (Ann Arbor,
Michigan, USA).
Results

Bradykinin reduces the release of [3H]noradrenaline evoked by K\(^+\), but not that evoked by ATP in the presence of Cd\(^{2+}\).

SCG neurons labelled with [3H]noradrenaline steadily released small amounts of tritium into the superfusion buffer, when excess radioactivity had been removed during a 60 min washout period. The buffer contained 0.1 µM TTX to isolate drug effects that occurred at nerve terminals from those at remote sites, such as axons or neuronal somata, and to thereby prevent the release stimulating action of bradykinin (Boehm and Huck, 1997; Edelbauer et al, 2005). The spontaneous release of radioactivity into the superfusion buffer per 4 min collection period amounted to 1.03 ± 0.19 % of total tritium in the cultures (n = 30) which corresponded to 0.22 ± 0.04 nCi.

Depolarization of SCG neurons by high K\(^+\) concentrations induces the release of previously incorporated [3H]noradrenaline by eliciting transmembrane Ca\(^{2+}\) influx via VACCs which can be abolished by 100 µM Cd\(^{2+}\). Application of 0.3 mM ATP in the continuing presence of 100 µM Cd\(^{2+}\), in contrast, causes Ca\(^{2+}\) entry via P2X receptors and thereby triggers [3H]noradrenaline release independently of VACCs (Boehm, 1999). Exposure to either 40 mM KCl (NaCl was reduced to maintain isotonicity) or 0.3 mM ATP in the continuing presence of Cd\(^{2+}\) during two consecutive periods of stimulation (S1 and S2) caused reproducible increases in tritium release (Figure 1 A) which lacked in the absence of extracellular Ca\(^{2+}\) (not shown, but see Boehm, 1999). When bradykinin (1 µM) was present during the second period of K\(^+\) stimulation (S2), the amount of released tritium was reduced (Figure 1 A). Accordingly, the ratio of the amount of tritium efflux triggered during the two stimulation periods (S2/S1) was decreased from 0.84 ± 0.03 (n = 9) in the absence of the peptide to 0.46 ± 0.06 (n = 9; p < 0.01) in its presence. In contrast, when ATP was used to stimulate tritium efflux, bradykinin failed to cause an inhibition, and the S2/S1 ratio remained
unchanged (0.59 ± 0.04 in the absence (n = 12), and 0.58 ± 0.07 in the presence of bradykinin (n = 9); figure 1 B).

α2-Adrenoceptors are well known to reduce noradrenaline release from sympathetic neurons through an inhibition of VACCs (Boehm and Kubista, 2002), and the α2-adrenergic agonist UK 14304 causes presynaptic inhibition in SCG neurons only when VACCs are involved in excitation-secretion coupling (Boehm and Huck, 1995). In accordance with that observation, 1 µM UK 14304 diminished the S2/S1 ratio of K+-evoked, but not that of ATP-evoked tritium efflux (Figure 1 B). Hence, activation of both, presynaptic bradykinin B2 and α2-adrenergic receptors, only reduced [3H]noradrenaline release, when transmembrane Ca2+ entry occurred via VACCs. Presumably, the presynaptic inhibition of transmitter release was mediated by an inhibition of VACCs.

Bradykinin induces a slow, voltage-independent and PTX-resistant inhibition of I_Ca.

The above results demonstrate that the inhibition of VACCs is the mechanism by which bradykinin reduces sympathetic transmitter release. We therefore investigated the signal cascade by which bradykinin inhibits VACCs. To this end, we first determined some of the basic parameters of the inhibitory action of bradykinin on I_Ca and compared them to those of the α2-adrenergic agonist UK14304. Recently, evidence has been provided that GPCRs may employ different signalling pathways to regulate I_Ca in rat SCG neurons depending on the recording technique (Filippov et al, 2003). Therefore, the initial set of experiments were performed in the whole-cell and perforated-patch configuration. In whole-cell, 1 µM bradykinin reduced I_Ca by 45.04 ± 5.16 % (n=11) and the reduction of current amplitudes was maximal after 45 to 60 s (Figure 2 A). For comparison, UK 14304 (10 µM) reduced whole-cell I_Ca by 47.95 ± 5.23 % (n = 13) and this effect was maximal after <15 s (not shown). In the perforated-patch configuration, the reduction of I_Ca by 1 µM bradykinin was again maximal
after 45 to 60 s and amounted to 44.28 ± 11.2 % (n=8) inhibition (Figure 2 A). In such recordings, UK 14304 reduced I_Ca by 49.87 ± 11.13 % (n = 6) and the effect was maximal after <15 s (not shown). With respect to the recovery from the inhibition by bradykinin, however, there were significant differences between the two recording techniques: during a 150 s washout period, I_Ca only partially recovered from the inhibition in whole-cell recordings (24.95 ± 14.78 % recovery), whereas the inhibition was fully reversible in perforated-patch recordings (102.39 ± 11.85 % recovery; figure 2 A and B). For comparison, the inhibition by UK 14304 was entirely reversible within 30 s in both types of recordings (not shown).

The inhibition of I_Ca in SCG neurons via the membrane-delimited pathway is voltage-dependent and thus decreases the more the cell is depolarized (Hille, 1994). In the present experiments, however, the reduction of I_Ca amplitudes by bradykinin was about the same at voltages between -30 and +50 mV (figure 2 C). The voltage-dependent membrane-delimited inhibition of I_Ca is also characterized by a slowing of activation kinetics which is attenuated by brief depolarizing prepulses, a phenomenon called ‘prepulse facilitation’ (Hille, 1994). The prepulse facilitation of the bradykinin inhibition was assessed by a double pulse protocol and compared with that of the α2-adrenergic inhibition caused by UK 14304. The bradykinin inhibition was neither accompanied by a slowing of activation kinetics nor attenuated by the prepulse (Figure 2 D). Accordingly, the values of prepulse facilitation in the presence of bradykinin were not different from those in the absence of the peptide. In contrast, in the presence of 10 µM UK 14304, a marked prepulse facilitation was observed. The extent of prepulse facilitation in the absence or presence of receptor agonists was not different between whole-cell and perforated-patch recordings (Figure 2 E). When neurons had been treated for 24 hours with 100 ng/ml PTX, the inhibition by UK14304 was completely abolished (0.94 ± 1.18 % inhibition; n = 7), but the inhibition by bradykinin remained unaffected (44.52 ± 6.45 % inhibition; n=7).
PLC, but none of its downstream effector systems, is required for the inhibition of I_{Ca}

In rat SCG neurons, the actions of bradykinin are commonly mediated by $G_{q/11}$ proteins and PLC-β (Haley et al., 2000; Scholze et al., 2002). The inhibition of PLC in SCG neurons by U73122 prevents the formation of inositol phosphates in response to bradykinin, an effect that is not observed with the inactive analogue U73343 (Bofill-Cardona et al., 2000). Here, the inhibition of I_{Ca}, as determined in perforated-patch recordings, was largely attenuated when neurons had been incubated in 3 µM U73122 for 30 min. An equivalent incubation in U73343, however, did not alter the I_{Ca} inhibition by bradykinin (Figure 3).

Via PLC-β, bradykinin triggers the synthesis of inositol trisphosphate (IP$_3$) and diacylglycerol (DAG) which in turn cause Ca$^{2+}$ release from the endoplasmic reticulum and activation of protein kinase C (PKC; Cruzblanca et al., 1998; Scholze et al., 2002), respectively. However, when neurons had been treated with the Ca$^{2+}$ ATPase inhibitor thapsigargin (0.3 µM) for 30 minutes to deplete the intracellular Ca$^{2+}$ stores (Foucart et al., 1995), the peptide reduced I_{Ca} to the same extent as under control conditions (Figure 3). Likewise, in neurons incubated for at least 30 min in 3 µM of the cell permeant Ca$^{2+}$ chelator BAPTA-AM (followed by a 30 min incubation in regular buffer to permit hydrolysis of the acetoxymethylester), bradykinin diminished current amplitudes again by about 50 % (Figure 3). However, these two latter manipulations did abolish the inhibition of I_M by bradykinin (not shown, but see Bofill-Cardona et al., 2000). These results indicate that the I_{Ca} inhibition did not require the release of Ca$^{2+}$ from its stores into the cytosol. To investigate whether Ca$^{2+}$ entry via VACCs was essential, whole-cell recordings were performed with Ba$^{2+}$ instead of Ca$^{2+}$ as charge carrier. In these experiments, bradykinin reduced current amplitudes by only 15.50 ± 3.02 % ($n = 9$) as compared with the 36.37 ± 5.05 % inhibition with Ca$^{2+}$ as charge carrier ($n = 7$; $p < 0.01$). Hence, the flow of Ca$^{2+}$ ions through VACCs was required to permit maximal current inhibition by bradykinin.
Exposure of the neurons to the PKC inhibitor GF 109203X (0.3 µM for 30 min), which abrogates the excitatory actions of bradykinin in SCG neurons (Scholze et al, 2002), failed to alter the reduction of \(I_{\text{Ca}} \). Likewise, a pretreatment with 1µM PMA for 24 hours, which eliminates classical and novel PKC isoforms from SCG neurons (Scholze et al, 2002), did not attenuate the inhibitory action of bradykinin (Figure 3).

In neuroblastoma-glioma hybrid (NG108-15) cells, bradykinin inhibits \(I_{\text{Ca}} \) via the monomeric G proteins Rac1 and/or Cdc42 (Wilk-Blaszcak et al, 1997). To test for a role of this signalling pathway, cultures were treated for at least 6 hours with 50 ng/ml \textit{Clostridium difficile} toxin B, which inactivates members of the Rho protein family, such as Rac1 and Cdc42, by glycosylation (Just et al, 1995). However, the inhibitory action of bradykinin remained unaffected (Figure 3), although the toxin led to a shape change and to detachment of the neurons after prolonged exposure (> 7 h).

The inhibition of \(I_{\text{Ca}} \) in SCG neurons via M₁ muscarinic receptors involves phospholipase A₂ (PLA₂; Liu et al, 2004), and this enzyme has also been reported to mediate cellular effects of bradykinin (Burch and Axelrod, 1987). However, the inhibition of \(I_{\text{Ca}} \) by bradykinin was not altered in the presence of 50 µM 7,7-dimethyl-5,8-eicosadienoic acid (DEDA; Figure 3) which efficiently reduces the enzymatic activity of PLA₂ (Lister et al, 1989).

Recovery from the inhibition of \(I_{\text{Ca}} \) requires lipid kinase activity or intracellular PIP₂.

Since none of the typical downstream effector systems of PLC-β seemed to be involved in the actions of bradykinin, we reasoned that a loss of membrane PIP₂ might be responsible for the reduction of \(I_{\text{Ca}} \). If that was the case, PIP₂ resynthesis should be a prerequisite for the recovery from inhibition, and this requires ATP and lipid kinases, as demonstrated for the recovery of \(K_{\text{M}} \) channels from the inhibition via muscarinic receptors in SCG neurons (Suh and Hille, 2002; Zhang et al, 2003; Winks et al, 2005). Accordingly, we investigated the effects of the lipid kinase inhibitors wortmannin (Nakanishi et al, 1995) and phenylarsine oxide (PAO;
Wiedemann et al., 1996) on the recovery from inhibition in perforated-patch recordings. When bradykinin was applied in the continuous presence of wortmannin (50 µM) or PAO (30 µM), ICa no longer recovered from the inhibition (Figure 4 A, B, and E). To test for unspecific effects of PAO, this agent was incubated and applied together with 1 mM dithiothreitol (DTT) which traps PAO in stable inactive complexes (Schaefer et al., 1994). DTT entirely prevented the inhibitory action of PAO on ICa recovery (Figure 4 C and E). Besides inhibiting phosphatidylinositol 4-kinase (PI4-kinase), wortmannin also inhibits phosphatidylinositol 3-kinase (PI3-kinase; Nakanishi et al., 1995). To verify that the loss of recovery in the presence of wortmannin was not due to the inhibition of PI3-kinase, we investigated the effect of LY 294,002, a selective PI3-kinase inhibitor (Vlahos et al., 1994). Cultures were pretreated with 100 µM LY294002 for 1 hour and then bradykinin was applied in the continuous presence of the inhibitor. Under these conditions, ICa displayed clearcut recovery (Figure 4 D and E).

Since PAO was shown to inhibit PI4-kinase, but not PI5-kinase, activity (Wiedemann et al., 1998), the coincident inhibition of recovery by wortmannin and PAO, but not by LY294002, suggests a major role for PI4-kinase.

The enzyme activity of PI4-kinase requires high intracellular ATP concentrations (Balla, 1998), and the recovery of K-M channels from the inhibition caused by PIP2 depletion depended on the ATP concentration in the intracellular recording solution (Suh and Hille, 2002). When ATP in our pipette solution for whole-cell recordings was raised from the 2 mM standard concentration to 4 mM, the recovery of ICa from the bradykinin inhibition rose from 20 % to >80 % (Figure 5 A). The inner leaflet of the plasma membrane of SCG neurons had been calculated to contain 261 µM PIP2 under resting conditions (Winks et al., 2005). The addition of a similar concentration (200 µM) of the more soluble diC8-PIP2 to the whole-cell intracellular solution also led to a significant increase in recovery (Figure 5 B). Thus, the supply of either PI4-kinase substrate or of the product of phosphatidylinositol-4-phosphate
kinase is sufficient to reestablish the recovery of whole-cell I_{Ca} from the inhibition by bradykinin.

The above manipulations altered the recovery of I_{Ca} from the inhibition by bradykinin. In contrast, the extent of I_{Ca} inhibition caused by the peptide was not significantly changed under any of these conditions (table 1). Hence, a continuous supply of PIP$_2$ to the membrane does not appear to be a prerequisite for the inhibition of I_{Ca} by bradykinin under the present electrophysiological recording conditions.

The inhibition of $[^3\text{H}]$noradrenaline release involves PLC activity and changes in PIP$_2$.

The data shown above indicate that PLC-dependent changes in PIP$_2$ mediate the inhibition of I_{Ca} by bradykinin. Since the inhibition of VACCs was the basis for the inhibition of noradrenaline release (Figure 1), the same mechanisms should also be involved in the reduction of transmitter release by bradykinin. To test for this hypothesis, the inhibition of K$^+$-evoked tritium efflux was investigated in SCG neurons loaded with $[^3\text{H}]$noradrenaline and treated either with the PLC inhibitor U73122 (3 µM) or with its inactive analogue U73343 (3 µM), both for one hour. These two agents cannot be used during the determination of $[^3\text{H}]$noradrenaline release as they cause large increases in spontaneous tritium outflow (Scholze et al, 2002). However, U73122 has been found to block bradykinin effects in SCG neurons mediated by PLC in an irreversible manner (Bofill-Cardona et al, 2000). In U73122-treated cultures, bradykinin (1 µM) failed to diminish the S2/S1 ratio of tritium efflux, but the peptide caused a significant inhibition in cultures treated with U73343 (Figure 6 A). For comparison, the inhibition of $[^3\text{H}]$ efflux by the α_2-adrenergic agonist UK 14304 (1 µM) was also investigated in cultures treated with either U73122 (3 µM) or its inactive analogue. In that case, the results obtained after the two treatment procedures were not different from each
other (Figure 6 A). Hence, only the presynaptic inhibition by bradykinin, but not that by an
α_2-adrenergic agonist, involved an activation of PLC.

To test for a role of PLC products in the inhibition of noradrenaline release by bradykinin,
cultures were continuously superfused with 0.3 μM thapsigargin, a concentration that
abolishes the inhibition of K_M channels by the peptide (Bofill-Cardona et al., 2000). However,
bradykinin reduced K^+-evoked tritium efflux in the presence of thapsigargin to about the same
extent as in its absence (Figure 6 B). Previously, we had found that the inhibition of
noradrenaline release by bradykinin was not attenuated when protein kinase C had been
inhibited (Edelbauer et al., 2005). Hence, there was no evidence for a role of PLC products in
the presynaptic inhibition caused by bradykinin.

To investigate whether changes in PIP$_2$ might be involved in the reduction of
$[^3]H$noradrenaline release by bradykinin, PAO (10 μM) was applied prior to and during the
second K^+ stimulation, either alone or together with bradykinin. PAO per se reduced the
S2/S1 ratio of K^+-evoked tritium efflux and prevented an additional inhibitory effect of
bradykinin (Figure 6 C). The effects of PAO on I_{Ca} were prevented by DTT. Likewise, when
PAO was applied together with 1 mM DTT, it neither caused a significant reduction of K^+-
evoked tritium efflux, nor did it prevent the inhibitory action of bradykinin (Figure 6 C). Once
again, UK 14304 (1 μM) was used instead of bradykinin for comparison, and the inhibitory
effect of the α_2-adrenergic agonist turned out to be additive to that of PAO (Figure 6 C).
Discussion

In SCG and other postganglionic sympathetic neurons, a large number of GPCRs mediate presynaptic inhibition of noradrenaline release, on one hand, and a G protein-dependent inhibition of VACCs, on the other hand. All the receptor subtypes that mediate both effects are linked to VACCs via a membrane-delimited interaction between G protein βγ subunits and Ca\(^{2+}\) channel proteins (Koh and Hille, 1997; Boehm and Kubista, 2002). Most recently, B\(_2\) bradykinin receptors have been added to this list of inhibitory presynaptic receptors (Edelbauer et al, 2005) and the present results demonstrate that the associated signaling cascade is a novel one and definitely distinct from those described before.

Presynaptic P2X receptors of rat SCG neurons are highly Ca\(^{2+}\) permeable and thereby provide a route for transmembrane Ca\(^{2+}\) entry to trigger transmitter release that is independent of VACCs (Boehm, 1999). This type of stimulated noradrenaline release was not altered by bradykinin, nor by an α\(_2\)-adrenergic agonist, but both agents did reduce noradrenaline release elicited by depolarizing K\(^+\) concentrations. This confirms that α\(_2\)-adrenergic receptors mediate a presynaptic inhibition of transmitter release from SCG neurons via an inhibition of VACCs (Boehm and Huck, 1995) and demonstrates that the same signalling mechanism is employed by the inhibitory presynaptic B\(_2\) receptors (Edelbauer et al, 2005). Nevertheless, the signal cascade that linked B\(_2\) receptors to VACCs was clearly different from that of α\(_2\)-adrenoceptors: the reduction of I\(_{Ca}\) by bradykinin was not altered by large depolarizing prepulses, nor by a treatment of the neurons with pertussis toxin, two manipulations that attenuated or abolished the reduction of I\(_{Ca}\) by an α\(_2\)-adrenergic agonist. Hence, bradykinin controls VACCs via mechanisms different from those of α\(_2\)-adrenoceptors which do so through a direct interaction of G protein βγ subunits with channel proteins (Ikeda and Dunlap, 1999; Elmslie et al, 2003).
In sympathetic neurons, bradykinin inhibits not only VACCs, as described here, but also K_M channels (Jones et al, 1995). This latter effect involves PLC-dependent decreases in membrane PIP$_2$ and IP$_3$-dependent increases in intracellular Ca$^{2+}$ (Cruzblanca et al, 1998; Bofill-Cardona et al, 2000; Winks et al, 2005). Only the former mechanism, the decrease in membrane PIP$_2$, was responsible for the bradykinin-dependent inhibition of VACCs as revealed by the following results: (i) The PLC inhibitor U73122 almost abolished the inhibition of I_{Ca}, but the inactive analogue U73343 had no effect. (ii) The depletion of intracellular Ca$^{2+}$ stores by thapsigargin or the chelation of intracellular Ca$^{2+}$ ions by BAPTA failed to alter the bradykinin inhibition of I_{Ca}. Nevertheless, Ca$^{2+}$ influx via VACCs was required for an efficient inhibition of the channels, since Ba$^{2+}$ currents were less affected by the peptide than Ca$^{2+}$ currents. (iii) The inhibition of protein kinase C, whether by GF 109203X or chronic phorbol ester treatment, did not attenuate the inhibitory effect of bradykinin on I_{Ca}. (iv) The inactivation of Rho proteins which mediate the bradykinin inhibition of VACCs in neuroblastoma cells (Wilk-Blaszczak et al, 1997) did not affect the reduction of I_{Ca} in SCG neurons. (v) The inhibition of PLA$_2$ by DEDA failed to alter the I_{Ca} reduction by bradykinin, although this enzyme is involved in the modulation of VACCs in SCG neurons via M$_1$ muscarinic acetylcholine receptors (Liu et al, 2004). Taken together, bradykinin inhibited I_{Ca} via PLC, but independently of downstream effectors or alternative signaling cascades.

The reduction of membrane PIP$_2$ by bradykinin has been demonstrated most recently in SCG neurons (Gamper et al, 2004; Winks et al, 2005). The kinetics of this effect have been studied in detail in neuroblastoma cells (Xu et al, 2003). There, the peptide caused a short (<10 s) transient increase in PIP$_2$ and a subsequent decrease that was maximal after 30 s to one minute. This was followed by a slow resynthesis that brought PIP$_2$ levels back to control within up to 3 minutes. This time course of PIP$_2$ depletion was much slower than the rise in IP$_3$, which was maximal within less than 10 s (Xu et al, 2003). Hence, the kinetics of the
bradykinin-induced changes in membrane PIP$_2$, but not the changes in PLC products, paralleled the time course of the inhibition of I$_{Ca}$ as observed here. In SCG neurons, the concentration of membrane PIP$_2$ is directly correlated with the conductance of K$_M$ channels (Winks et al, 2005), and the time course of K$_M$ channel inhibition by bradykinin (Jones et al, 1995) is almost congruent with the present time course of I$_{Ca}$ inhibition. Recombinant VACCs, in particular P/Q (Wu et al, 2002) and N type (Gamper et al, 2004) channels, were also found to be regulated by the membrane PIP$_2$ concentration. Sympathetic neurons express N-type, rather than P/Q-type, Ca$^{2+}$ channels, and the inhibition of I$_{Ca}$ in sympathetic neurons by LHRH was reported to be PLC-dependent (Wu et al, 2002). In addition, evidence has been presented that activation of M$_1$ muscarinic receptors inhibited VACCs in rat SCG neurons through a depletion of membrane PIP$_2$ (Gamper et al, 2004). Moreover, bradykinin was found to enhance currents through VR$_1$ receptors via a depletion of membrane PIP$_2$ (Chuang et al, 2001). Taken together, there is experimental evidence showing that bradykinin receptors control the membrane levels of PIP$_2$ and that a number of ion channels, including N-type VACCs, are regulated by PIP$_2$. In the present experiments, the recovery of I$_{Ca}$ from the inhibition by bradykinin required replenishment of membrane PIP$_2$ as evidenced by the following results: (i) In whole-cell recordings, high intracellular ATP concentrations were required for full recovery of I$_{Ca}$ and they are necessary for maximal PI4-kinase activity (Balla, 1998). (ii) Independently of the ATP concentration, addition of dic8-PIP$_2$ to the whole-cell intracellular solution enabled the recovery of I$_{Ca}$. (iii) Inhibition of PI4-kinase activity by wortmannin or PAO prevented the recovery of I$_{Ca}$ from the inhibition by bradykinin, which was otherwise seen in perforated patch recordings. Thus, together with the previous observations, the present results indicate that a PLC-induced reduction of membrane PIP$_2$ mediates the bradykinin inhibition of VACCs.

Recently, bradykinin has been reported to inhibit VACCs in SCG neurons only when the resynthesis of PIP$_2$ was blocked (Gamper et al, 2004). In the present experiments, however,
the peptide reduced I_Ca whether lipid kinases were inhibited or not, and the PI4-kinase inhibitors affected only the recovery of I_Ca, but not the extent of inhibition elicited by bradykinin. Although these results are somehow contradictory, they both do confirm that VACCs are controlled by the relation of PIP_2 catalysis and synthesis. Nevertheless, it remains elusive why the efficiency of bradykinin receptors in mediating the depletion of membrane PIP_2 may differ. Causative factors for the observed discrepancies might be: (i) differences in the composition of culture media and sera since growth factors also control membrane PIP_2 (Chuang et al, 2001); (ii) differences in the buffering of the intracellular Ca^{2+} concentration as the PIP_2 synthesis may be altered by changes in intracellular Ca^{2+} (Gamper et al, 2004; Winks et al, 2005); (iii) differences in intracellular Mg^{2+}, millimolar concentrations of which are required for maximal G protein signaling (Suh et al, 2004); (iv) differences in the voltage protocols used to elicit I_Ca since repeated depolarizations are known to reduce membrane PIP_2 (Micheva et al, 2001).

The inhibition of VACCs was found to be a prerequisite for the reduction of transmitter release by bradykinin. Therefore, the PLC-mediated depletion of membrane PIP_2, as involved in the inhibition of I_Ca at neuronal somata, should also play a role in the presynaptic inhibition. In accordance with this expectation, the active PLC inhibitor U73122 abolished the reduction of noradrenaline release by bradykinin without affecting the inhibitory action of the \alpha_2 agonist. However, inhibition of proteinkinase C (Edelbauer et al, 2005) or depletion of intracellular Ca^{2+} stores by thapsigargin left the inhibition of noradrenaline release by bradykinin unaltered. In contrast, inhibition of lipid kinases by PAO reduced noradrenaline release and prevented a further reduction by bradykinin. The \alpha_2 adrenergic agonist, however, did reduce release even in the presence of PAO. All the effects of PAO on noradrenaline release were abolished by DTT which also prevents the inhibition of lipid kinases (Schaefer et al, 1994). These results indicate that not the products of PLC, but rather changes in the substrate, PIP_2, are involved in the presynaptic inhibition by bradykinin. Nevertheless, these
results are not congruent with those obtained for the inhibition of I_{Ca}. PAO did reduce noradrenaline release and prevented a further reduction by bradykinin, two effects not observed with I_{Ca}. Several facts may explain these apparent discrepancies. First, lipid kinases that are inhibited by PAO are not only associated with the plasma membrane (Micheva et al, 2001), but also with vesicle membranes (Wiedemann et al, 1996). Accordingly, the inhibition of both pools of enzymes may contribute to the inhibition of release, but only one pool can be involved in the regulation of I_{Ca}. Second, repeated or prolonged depolarizing stimuli are known to strongly reduce the PIP_{2} contents of presynaptic membranes and its resynthesis is blocked by PAO (Micheva et al, 2001). Therefore, our one minute K^{+} stimulation to trigger noradrenaline release will decrease PIP_{2} in the presynaptic membrane, but the 30 ms depolarizations used to evoke I_{Ca} are unlikely to do so. As a consequence, bradykinin may be able to reduce I_{Ca} through PIP_{2} depletion in current recordings from neuronal somata, but fails to further reduce the PIP_{2} associated with presynaptic VACCs during the stimulation of noradrenaline release. Third, VACCs are highly concentrated at the sites of vesicle exocytosis (Stevens, 2004) and there they are clustered in lipid microdomains (Taverna et al, 2004). It thus appears reasonable to assume that the quantitative relation between membrane PIP_{2} and VACCs is different between neuronal somata and presynaptic nerve terminals. Nevertheless, in both locations bradykinin controls the function of VACCs through PLC-dependent changes in PIP_{2} as indicated by the present results.

In conclusion, our results show that bradykinin inhibits VACCs of sympathetic neurons through a PLC-mediated depletion of membrane PIP_{2} and demonstrate that this effect provides a novel mechanism for the presynaptic inhibition of transmitter release via GPCRs.
References

Gamper N, Reznikov V, Yamada Y, Yang J, Shapiro MS (2004) Phosphotidylinositol 4,5-
bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca\(^{2+}\)

Haley JE, Abogadie FC, Fernandez-Fernandez JM, Dayrell M, Vallis Y, Buckley NJ, Brown
DA (2000) Bradykinin, but not muscarinic, inhibition of M-current in rat sympathetic

Neurosci* **17**: 531-535.

excites rat sympathetic neurons by inhibition of M current through a mechanism involving B2
receptors and G\(\alpha_{q11}\). *Neuron* **14**: 400-405.

Koh DS, Hille B (1997) Modulation by neurotransmitters of catecholamine secretion from
sympathetic ganglion neurons detected by amperometry. *Proc Natl Acad Sci U S A* **94**: 1506-
1511.

Footnotes

This study was supported by the ‘Virologiefonds’ of the Medical University of Vienna and by the Austrian Science Fund (FWF; P15797 and P17611).

Address correspondence to: Stefan Boehm, Department of Pharmacology, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Waehringerstrasse 13a, A-1090 Vienna, Austria; Email: Stefan.Boehm@meduniwien.ac.at
Legends for figures

Legend for figure 1

Inhibition of K⁺-evoked, but not ATP-evoked, noradrenaline release from SCG neurons by bradykinin: comparison with an α₂ adrenergic agonist.

After loading with [³H]noradrenaline, neurons were superfused, and subsequent to a 1 h washout period, 4 min fractions of superfusate were collected. After 68 (S1) and 88 (S2) minutes of superfusion, the cultures were stimulated for 60 s by the presence of either 40 mM K⁺ (Na⁺ was reduced accordingly) or 0.3 mM ATP. When ATP was used as stimulus, the buffer contained 100 µM Cd²⁺ to block VACCs. **A** shows the time course of tritium outflow as percentage of the total radioactivity in the cultures. Bradykinin (1 µM) was present from minute 86 onward in the cultures represented by filled symbols; n = 3. **B** compares the effects of bradykinin (1 µM) and the α₂ agonist UK 14304 (1 µM) on K⁺- and ATP-evoked tritium overflow. The receptor agonists were present as shown for bradykinin in A, and the resulting S2/S1 ratios are shown; n = 6 to 12.

Legend for figure 2

Inhibition of I_{Ca} by bradykinin in whole-cell and perforated-patch recordings: time course and voltage-dependence.

Ca²⁺ currents were elicited once every 15 s by depolarizations from -80 mV to +10 mV (unless indicated otherwise), and bradykinin was present for one minute (as shown in A). Inhibition of peak current amplitudes was calculated as % inhibition = 100–100×(B₁+B₂)/(C₁+C₂), and recovery from the inhibition was calculated as % recovery = 100×[(W₁+W₂)–(B₁+B₂)]/[(C₁+C₂)–(B₁+B₂)]. **A** shows these points in time and the time course of current amplitudes in either whole-cell (n = 11) or perforated-patch (n = 8)
recordings. B shows the quantification of the inhibition and recovery of current amplitudes for the same cells as in A. C displays a current-voltage curve for whole-cell currents evoked by 30 ms depolarizations from -80 mV to the indicated voltages in the absence and presence of 1 µM bradykinin. D depicts the pulse protocol for the determination of current facilitation by depolarizing prepulses and shows the resulting perforated-patch current traces determined in the absence (control) and presence of 1 µM bradykinin. E quantifies the prepulse facilitation in the absence and presence of either 1 µM bradykinin or 10 µM UK 14304 in either whole-cell (n = 6) or perforated-patch (n = 5) recordings. **,* indicate significant differences vs. the corresponding controls at p < 0.01 and p < 0.05, respectively; n.s. indicates no significant difference.

Legend for figure 3

Inhibition of I_{Ca} by bradykinin in perforated-patch recordings: roles of PLC, PKC, PLA_{2}, intracellular Ca^{2+}, and rho proteins.

Ca^{2+} currents were elicited by depolarizations from -80 mV to +10 mV once every 15 s. Bradykinin was present for one minute periods and the inhibition of current amplitudes was calculated as shown in figure 2A. Prior to the recording of currents, neurons had been incubated in 3 µM U734122, 3 µM U73343, 0.3 µM thapsigargin, 3 µM BAPTA-AM (followed by a 30 min incubation in regular buffer), or 0.3 µM GF 109023X, each for 30 min, in 50 ng/ml clostridium difficile toxin B for > 6 h, or in 1 µM PMA for >24 h. Alternatively, the cells remained untreated (control), and bradykinin was applied either alone or together with 50 µM DEDA, which was also present for 5 min prior to the application of bradykinin; n = 5 to 9; *** indicates a significant difference vs. control at p < 0.001; n.s. indicates no significant difference.
Legend for figure 4

Recovery of I_{Ca} from the inhibition by bradykinin in perforated-patch recordings: effects of lipid kinase inhibitors.

Ca^{2+} currents were elicited by depolarizations from -80 mV to +10 mV once every 15 s. Bradykinin was present for one minute periods and the recovery of current amplitudes from the inhibition was calculated as shown in figure 2A. A shows the time course of peak current amplitudes when 50 µM wortmannin were applied prior to bradykinin ($n = 6$). B shows the time course of peak current amplitudes when 30 µM PAO were applied prior to bradykinin ($n = 5$). C shows the time course of peak current amplitudes when 30 µM PAO and 1 mM DTT were applied together prior to bradykinin ($n = 5$). D shows the time course of peak current amplitudes when 100 µM LY 294,002 were applied prior to bradykinin ($n = 5$). E summarizes the extent of recovery under the aforementioned conditions.

Legend for figure 5

Recovery of I_{Ca} from the inhibition by bradykinin in whole-cell recordings: effects of intracellular ATP and dioctanoyl PIP$_2$.

Ca^{2+} currents were elicited by depolarizations from -80 mV to +10 mV once every 15 s. Bradykinin was present for one minute periods and the recovery of current amplitudes from the inhibition was calculated as shown in figure 2A. A shows the time course of peak current amplitudes with 4 mM ATP included in the pipette solution ($n = 8$). B shows the time course of peak current amplitudes with 200 µM dioctanoyl PIP$_2$ (dic8-PIP$_2$) and 1 % DMSO included in the pipette solution ($n = 7$). C shows the time course of peak current amplitudes with only 1 % DMSO included in the pipette solution ($n = 5$). E summarizes the extent of recovery under the aforementioned conditions and with the conventional whole-cell pipette solution (control; $n = 8$); ** indicates a significant difference vs. control at $p < 0.01$; n.s. indicates no significant difference.
Legend for figure 6

Inhibition of K^+-evoked noradrenaline release from SCG neurons by bradykinin: effects of PLC-, Ca$^{2+}$ ATPase-, and lipid kinase-inhibitors.

After loading with [3H]noradrenaline, neurons were superfused, and subsequent to a 1 h washout period, 4 min fractions of superfusate were collected. After 68 (S1) and 88 (S2) minutes of superfusion, the cultures were stimulated for 60 s by the presence of 40 mM K$^+$ (Na$^+$ was reduced accordingly). Results are shown as S2/S1 ratios of stimulated tritium efflux. In A, cultures had been treated with either 3 µM U73122 or 3 µM U73343 during the [3H]noradrenaline uptake period. Bradykinin (1 µM) or UK 14304 (1 µM) were present from minute 86 onward, as shown in figure 1A, or no receptor agonist was added to the superfusion buffer (control); n = 7 to 9. In B, thapsigargin (0.3 µM) was present from minute 50 of superfusion onward. Bradykinin (1 µM) was present from minute 86 onward, as shown in figure 1A, or no receptor agonist was added to the superfusion buffer (control); n = 12. In C, bradykinin (1 µM) or UK 14304 (1 µM) were present for 2 min, PAO (10 µM) and dithiothreitol (1 mM) for 4 min, prior to and during the second K$^+$ stimulation period, either alone or in combination. Alternatively, no drug was added to the superfusion buffer (control); n = 8 to 9.
TABLE 1
Extent of the inhibition of I_{Ca} by bradykinin under conditions that alter the recovery from the inhibition. Experiments were performed as described in the legends for figures 4 and 5.

<table>
<thead>
<tr>
<th>condition</th>
<th>% inhibition</th>
<th>s.e.mean</th>
<th>n</th>
<th>p values</th>
</tr>
</thead>
<tbody>
<tr>
<td>perforated-patch</td>
<td></td>
<td></td>
<td></td>
<td>vs. control</td>
</tr>
<tr>
<td>control</td>
<td>44.28</td>
<td>11.21</td>
<td>6</td>
<td>> 0.29</td>
</tr>
<tr>
<td>50 µM wortmannin</td>
<td>54.60</td>
<td>7.50</td>
<td>6</td>
<td>> 0.17</td>
</tr>
<tr>
<td>30 µM PAO</td>
<td>48.33</td>
<td>3.89</td>
<td>5</td>
<td>> 0.08</td>
</tr>
<tr>
<td>30 µM PAO + 1 mM DTT</td>
<td>54.80</td>
<td>4.63</td>
<td>5</td>
<td>> 0.08</td>
</tr>
<tr>
<td>100 µM LY 294,002</td>
<td>68.85</td>
<td>5.09</td>
<td>5</td>
<td>> 0.08</td>
</tr>
<tr>
<td>whole-cell</td>
<td></td>
<td></td>
<td></td>
<td>vs. 2 mM ATP</td>
</tr>
<tr>
<td>2 mM ATP</td>
<td>49.92</td>
<td>3.53</td>
<td>6</td>
<td>> 0.94</td>
</tr>
<tr>
<td>4 mM ATP</td>
<td>48.58</td>
<td>6.22</td>
<td>8</td>
<td>> 0.64</td>
</tr>
<tr>
<td>200 µM diC8-PIP₂</td>
<td>48.33</td>
<td>3.89</td>
<td>7</td>
<td>> 0.64</td>
</tr>
<tr>
<td>1% DMSO</td>
<td>57.78</td>
<td>5.47</td>
<td>5</td>
<td>> 0.23</td>
</tr>
</tbody>
</table>
Figure 3

% inhibition of I_{Ca}

control 3 μM UT3122 3 μM UT3343 0.3 μM GF109203X 24 h 1 μM PMA 0.3 μM thapsigargin 3 μM BAPTA-AM C. difficile toxin B 50 ng/ml (> 6 h) 50 μM DEDA

*** n.s. n.s. n.s. n.s. n.s. n.s.
Figure 4
Figure 6