MUTATIONS OF A CONSERVED LYSINE RESIDUE IN THE N-TERMINAL DOMAIN OF α7 NICOTINIC RECEPTORS AFFECT GATING AND BINDING OF NICOTINIC AGONISTS

Manuel Criado, José Mulet, José A. Bernal, Susana Gerber, Salvador Sala, and Francisco Sala

From the Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-C.S.I.C., Apartado 18, 03550-Sant Joan d’Alacant, Alicante, Spain
Running title: Nicotinic receptor binding and gating properties

Author for correspondence:

Francisco Sala
Instituto de Neurociencias de Alicante
Universidad Miguel Hernández-C.S.I.C.
Apartado 18
03550-Sant Joan d’Alacant, Alicante, Spain.
Tel +34- 965-919491
Fax +34- 965-919484
E-Mail: fsala@umh.es

Number of text pages: 15
Number of tables: 2
Number of figures: 7
Number of references 40
Number of words in the Abstract 250
Number of words in the Introduction 487
Number of words in the Discussion 1452

Abbreviations: nAChR, nicotinic acetylcholine receptor; GABAAR, γ-aminobutiric acid receptor; AChBP, acetylcholine binding protein; ACh, acetylcholine; α-Bgt, α-bungarotoxin; DMPP, dimethylphenylpiperazinium; MLA, methyllycaconitine; DHβE, dihydro-β-erythroidine; dTC, d-tubocurarine.
ABSTRACT

Activation of nicotinic acetylcholine receptors is initiated by binding of agonists and, as a consequence, specific domains transmit the chemical signal to the channel gate through a sequence of conformational changes. Recent high resolution structural data from a snail acetylcholine binding protein have shown that the side chain of a lysine residue, located in the β-strand β7 and strictly conserved in α subunits of nicotinic receptors, systematically moves upon agonist binding, suggesting that it might be involved in both binding and gating. To test this hypothesis in neuronal nicotinic receptors, Lys-145 was substituted by other amino acids in the α7 nicotinic receptor, and expression levels and electrophysiological responses for several nicotinic agonists and antagonists were determined. Substitutions of Lys-145 showed a variety of functional effects: a) strong reductions in the functional responses to acetylcholine, nicotine and dimethylphenylpiperazinium, the latter becoming an antagonist; b) increases in the agonist EC50 values (up to 80-fold with acetylcholine); c) heterogeneous behavior of the different agonists, epibatidine and cytisine being the ones less affected by the substitutions; d) decreases of agonist affinities for the desensitized receptors; and e) small changes in the affinity of nicotinic antagonists. It is concluded that the presence of a polar or positively charged side chain at this position improves the gating function with acetylcholine and nicotine. Though, the lysine side chain seems to be necessary for retaining the binding properties of acetylcholine. The results are compatible with the involvement of Lys-145 in the early steps of channel activation by acetylcholine.
Nicotinic acetylcholine receptors (nAChR) mediate fast synaptic transmission in nerve and muscle cells, and are members of the Cys-loop family of ligand-gated ion channels, which includes 5-HT₃, γ-aminobutyric acid (GABAₐR) and glycine receptors (Lester et al., 2004). Such receptors are allosteric proteins as the signal generated at the binding-site region must be transmitted to the channel gate located some distance away and this involves a more than local conformational change. Site-directed mutagenesis has been useful in identifying several residues and domains involved in the mechanisms of coupling agonist binding to channel gating, but the precise molecular mechanisms underlying channel activation remain mainly unclear. Unwin and co-workers have proposed a model of activation in which the interaction of the agonist with the binding site generates a 15° clockwise rotation of the α subunits which is transmitted to the gate through rearrangements of several extracellular structures, mainly loops 2 and 7 (Cys-loop) and the M2-M3 linker (Miyazawa et al., 2003; Unwin, 2005). This hypothesis is supported by functional data obtained in several Cys-loop receptors, such as GABAₐRs (Sigel et al., 1999; Bera et al., 2002; Kash et al., 2003), glycine receptors (Rajendra et al., 1995; Lynch et al., 1997; Absalom et al., 2003; Schofield et al., 2003) and nAChRs (Grosman et al., 2000a; Chakrapani et al., 2004), including the neuronal subtype (Campos-Caro et al., 1996; Sala et al., 2005). Of particular interest is the analysis of linear free energy relationships based on muscle nAChR single-channel data, which suggests that during gating dozens of residues are organized into rigid-body gating domains which move asynchronously proceeding like a ‘conformational wave’ (Grosman et al., 2000b; Auerbach, 2005).

The crystal structure of a snail acetylcholine binding protein (AChBP) has been resolved and offers new insights into the molecular mechanisms involved in binding and coupling of nAChRs (Brejc et al., 2001). For instance, a conserved lysine residue at the β-strand β7 (equivalent to Lys-145 in the bovine α7 subunit) has been located close to both the Cys-loop and the binding segment C, the latter containing several aromatic residues involved in binding of nicotinic agonists and antagonists (Galzi et al., 1991; Brejc et al., 2001). Moreover, the crystallographic data has also shown that, upon binding of nicotinic agonists to AChBP, the side chain of such a lysine residue moves systematically to form a hydrogen bond to the hydroxyl group of the conserved Tyr-185 at the binding segment C.
MOLPHARM/2005/015446

(Celie et al., 2004). Because of its crucial position, it is suggested that Lys-145 could play an important role in both binding and gating of nAChRs. We have checked this hypothesis by constructing α7 receptors mutated at position 145 and analyzing their whole-cell responses to several nicotinic ligands. This report shows that mutations of amino acid Lys-145 result in large and ligand-dependent changes in both efficacy and potency of several nicotinic agonists and antagonists, supporting a key role of this residue in both binding and its transduction into channel activation of nAChR in a ligand-dependent manner.
MATERIALS AND METHODS

Generation of mutants of the bovine α7 subunit - The bovine α7 cDNA (Garcia-Guzman et al., 1995) was cloned in a derivative of the pSP64T vector (Krieg and Melton, 1984) containing part of the pBluescript polylinker. The appropriate DNA cassettes were generated by PCR (25 cycles at 94°C for 10 s, 60°C for 30 s, 72°C for 45 s) and used to substitute original segments of the α7 subunit, by performing restriction enzyme digestions. For this purpose silent mutations were introduced to generate two restriction enzyme sites useful for mutant construction: an AatII site corresponding to amino acids D 138 and V 139 and a BamHI site involving amino acids G147 and S148. To generate the mutants we annealed single-stranded oligonucleotides with the desired sequences and proper single strand ends which could be easily ligated to the ends generated by the restriction enzymes mentioned above.

Oocyte expression. Capped mRNA was synthesized in vitro using SP6 RNA polymerase, the mMMESSAGEmMACHINE kit (Ambion, Texas) and the pSP64T derivative mentioned above. Defolliculated Xenopus leavis oocytes were injected with 5 ng of total cRNA in 50 nl of sterile water. All experiments were performed within 3-4 days after cRNA injection. Wild-type α7 mRNA was injected into oocytes from the same frog every time a mutant was tested. Consequently, mutant expression was expressed as a percentage of wild-type α7 expression observed in the same experiment.

[^125I]-α-bungarotoxin (α-Bgt) binding assays. Specific surface expression of[^125I]-α-Bgt (Amersham Biosciences, Madrid) binding sites was tested with 5 nM[^125I]-α-Bgt as described (Garcia-Guzman et al., 1994). Briefly, oocytes were incubated with 5 nM[^125I]-α-Bgt for 2 h at 18°C. At the end of the incubation, unbound[^125I]-α-Bgt was removed, oocytes were washed and bound radioactivity was counted. Nonspecific binding was determined using noninoculated oocytes. For displacements experiments, oocytes were preincubated with increasing concentrations of agonists during 15 min followed by incubation with 1 nM[^125I]-α-Bgt, always in the presence of agonists. After 2h oocytes were treated as above.
Electrophysiological recordings. Electrophysiological recordings were done as previously described (Garcia-Guzman et al., 1994; Campos-Caro et al., 1997; Sala et al., 2002). Briefly, oocytes were located in a chamber (0.9 ml of volume) and perfused by gravity with a modified frog Ringer containing (in mM): 82.5 NaCl, 2.5 KCl, 2.5 BaCl₂, 1 MgCl₂ and 5 HEPES (pH 7.4). Perfusion rate was 12-15 ml/min. Agonists were applied through a gravity-driven pipette with an internal diameter of 1.2 mm and located close to the animal hemisphere of the oocyte. The velocity of application was 18-22 ml min⁻¹. The solution exchange rate followed an exponential time course with τ = 90 ± 5 ms. Holding potential was usually -80 mV. Most experiments were done using 30 μM epibatidine as the control response. Currents were filtered at 50 Hz with a low pass 8-pole Bessel filter, sampled at 100-500 Hz and stored on hard disk for later analysis. Data acquisition and agonist application were controlled by a DigiData 1200 interface driven by PClamp 6.0 software (Axon Instruments, Foster City, CA). All experiments were done at room temperature (22 ºC).

Data analysis. Current amplitudes were measured at the peak inward current, and no correction for desensitization or solution exchange rate were made because our control results are very close to those reported after correction (Papke and Porter Papke, 2002). Although they would not be true values, it was assumed that estimates of maximal responses and potency of agonists can be compared in a pairwise basis by null methods (Colquhoun, 1998). Unless otherwise indicated, current amplitudes upon stimulation with different concentrations of the agonists studied were first normalized to their internal control obtained with 30 μM epibatidine, which yielded near maximal responses in all receptors. Although the magnitude of the control currents was usually stable, sometimes they rundown slowly along the experiment; thus, percentages of the control currents were calculated over the interpolated control current. Data analysis was performed with the software package Prism 4.0 (GraphPad, San Diego, CA, U.S.A.). EC₅₀ and maximal current (Iₘₐₓ) values were calculated by non-linear regression analysis using the Hill equation: \(\frac{I}{I_{\text{max}}} = \frac{1}{1 + \left(\frac{EC_{50}}{C}\right)^{n_H}} \), where EC₅₀ is the agonist concentration which elicits the half-maximal response, nₜ is the Hill coefficient, and C is the agonist concentration. Inhibition by antagonists and displacement curves were fitted by the Hill equation with nₜ = -1 obtaining IC₅₀ values, which were converted to Kᵰ values using a variant of the
Cheng-Prusoff equation (Leff and Dougall, 1993). For the sake of overall comparison, estimates of the gating function were normalized to the maximal response to epibatidine in wild type receptors as shown in concentration-response curves and table 2. More precisely, functional expression of the different receptor-agonist pairs was obtained from the I_{max} values extracted from the Hill equation (always referred to the response with 30 μM epibatidine). Then, these values were corrected to account for differences in both the potency of epibatidine and the level of surface expression in the different receptors. Results are presented as means and standard errors.

Chemicals. Unless otherwise indicated all chemicals were purchased from Sigma (St. Louis, MO)
RESULTS

Effect of the mutation K145A on functional responses evoked by acetylcholine. Residue Lys-145, which is close to the Cys-loop of α7 nAChR, was mutated to alanine, a substitution that should cause minimal disruption to the receptor secondary structure. Functional responses were initially tested by recording ionic currents evoked by acetylcholine (ACh), and they were very different from the control. Figure 1A shows a family of ACh-evoked ionic currents in control and K145A receptors. Several changes could be observed in mutant K145A: (1) higher ACh concentrations were needed to evoke functional responses; (2) ionic currents in mutant K145A were much smaller than in control; and (3) decay kinetics were slower even when equipotent ACh concentrations were used. For instance, half-decay times were 117 ± 12 ms (n=13) and 250 ± 74 ms (n=3), in control (1 mM ACh) and mutant K145A (30 mM ACh), respectively. However, because of mutations might affect not only functional responses but also nAChR assembly and/or transport, surface expression of nAChRs was also monitored by measuring α-Bgt binding sites at the external surface of oocytes. Control oocytes expressed 10.9 ± 1.7 fmol of α-Bgt, and the expression of mutant K145A was around 74% of control (table 1). Hereafter, all functional responses of mutants have been corrected for surface expression, as in table 2 and figure 6. Taken all this into account, the functional response of mutant K145A to ACh decreased to 21% of control. The EC$_{50}$ of ACh increased from 38 µM (control) to 1600 µM (mutant K145A). Although from macroscopic concentration-response curves alone it is not possible to deduce for certain how the receptor is affected by the mutation (see discussion), the decrease in maximal currents and the considerable increase in EC$_{50}$ suggest that mutation of Lys-145 has changed both the binding and the gating properties of the mutant nAChRs when ACh was the agonist.

Effect of the mutation K145A on functional responses evoked by other nicotinic agonists. In order to explore whether the effects observed with ACh were shared by other nicotinic agonists, concentration-response curves were obtained with epibatidine, dimethylphenylpiperazinium (DMPP), nicotine and cytisine as agonists. In wild-type receptors all four agonists gave functional responses of magnitude very similar to that of ACh (range 94-111 % with respect to the maximal response evoked
by epibatidine; table 2) and with similar decay kinetics (not shown), although with a wide range of differences in potency, epibatidine being the most potent agonist (EC$_{50}$=1.9 µM), and nicotine the less potent one (EC$_{50}$=101 µM). Figure 2 shows several patterns of change in the pharmacological properties of agonists when activating mutant K145A. Concerning the maximal evoked response, nicotine behaved much like ACh, reducing its effectiveness to 16%. In contrast, epibatidine response was only reduced to 65%, while cytisine conserved most of its effectiveness (91%). Consistently, decay kinetics in mutant K145A remained unchanged when the agonists used were either epibatidine or cytisine (not shown). In contrast, as occurred with ACh, decay kinetics were slowed down in nicotine-evoked responses as half-decay time increased from 68 ± 9 ms (control, 300 µM, n=4) to 165 ± 4 ms (K145A, 3000 µM, n=3). The extents of the changes in potency were also dependent on the agonist used. Epibatidine and nicotine increased their EC$_{50}$ around 4-fold, while the change in the cytisine potency was almost of one order of magnitude.

A special case occurred when using DMPP as agonist. Mutant K145A did not respond with detectable ionic currents upon stimulation with a wide range of DMPP concentrations. To resolve whether DMPP has lost its affinity for these receptors, or only its ability to activate them, an inhibition curve was constructed. Figure 3 shows that when co-applying DMPP with 3 µM epibatidine, ionic currents were inhibited in a DMPP concentration dependent manner. The curve could be fitted by a Hill equation with IC$_{50}$=19 µM, yielding an apparent K$_i$ of 23 µM. These results show the change in the pharmacological profile of DMPP from full agonist to competitive antagonist in mutant K145A, and reinforces the idea that coupling mechanisms are deeply altered for some, but not all, agonists in mutant K145A.

Effect of the mutation K145A on the potency of nicotinic antagonists. To examine whether competitive nicotinic antagonists have changed their properties in mutant K145A, inhibition curves of the α7-selective antagonist methyllycaconitine (MLA), dihydro-β-erythroidine (DHβE) and d-tubocurarine (dTC) were obtained in wild-type and mutant K145A nAChRs. When these antagonists were co-applied with 3 µM epibatidine, responses were inhibited in a concentration dependent manner in both receptors (figure 4). However, the potencies of all antagonists were higher in mutant K145A,
especially with dTC. Values of IC$_{50}$ for MLA were 1.2 nM and 55 pM in control and mutant K145A, respectively. This represented a 6-fold decrease in the K$_i$ value for MLA in the mutant K145A (from 0.43 nM to 71 pM). The increase in antagonist potency was larger with dTC showing a 15-fold decrease in the K$_i$ value in the mutant K145A (from 2.9 to 0.19 µM). Much moderate figures were obtained with DHβE, as its calculated K$_i$ only decreased from 10 µM to 6.0 µM. In contrast with these results, the non-selective, non-competitive channel blocker mecamylamine did not show any change in its potency (K$_i$ values of 5.8 and 7.2 µM in control and mutant K145A receptors, respectively; data not shown).

Changes in desensitization paralleled those of activation in mutant K145A. The decreases in maximal currents observed with ACh and nicotine could be caused by impaired gating as pointed out above, but could also be due to an enhancement of agonist-induced desensitization, especially in systems where the solution exchange time course is similar to that of desensitization. Thus, desensitization over a range of agonist concentrations was examined. Figure 5A shows the responses of wild-type and mutant K145A receptors to 3 µM epibatidine when previously exposed to 3-min incubation periods with different ACh concentrations. Control responses were inhibited by the pre-exposure of increasing ACh concentrations with an IC$_{50}$=4.0 µM (figure 5B). In mutant K145A, the ACh desensitization curve was shifted to the right by more than one order of magnitude (IC$_{50}$=185 µM). This is in quantitative agreement with the shift observed in the concentration-response curve of ACh, and suggests that the affinities of active and desensitized conformations in mutant K145A for ACh have changed similarly. Moreover, these data rule out that decreases in peak currents might have been due to agonist-induced fast desensitization which would have appeared in mutant K145A as a new feature. When nicotine was used as the desensitizing agonist, a right shift of the curves was also observed (figure 5C). An increase in IC$_{50}$ from 4.0 to 15 µM was again in fair agreement with the shift observed in the activation curve. Quantitatively similar results were obtained with epibatidine and cytisine in mutant K145A (not shown).

A complementary approach to study the affinity of agonists for the desensitized conformations of the receptors is by means of obtaining α-Bgt displacement experiments. In such conditions a
mixture of resting, active and desensitized states are supposed to be at equilibrium, although a higher proportion of the desensitized states is expected because of the continuous exposure to the agonists. Figure 6 shows the displacement curves of 1 nM \(\alpha \)-Bgt by acetylcholine and epibatidine in both control and mutant receptors. Higher concentrations of both agonists were needed to compete with the toxin in the mutant K145A, so a shift to the right was observed in both displacement curves. Data were fitted by the Hill equation with negative slope and the values of IC\(_{50}\) were used to calculate the corresponding Kᵢ values. It should be pointed out that \(\alpha \)-Bgt affinity was slightly higher in mutant K145A, as Kᵢ changed from 1.4 to 0.56 nM (data not shown). Calculation of the acetylcholine Kᵢ yielded values of 6.5 and 149 \(\mu \)M in control and mutant K145A, respectively. Such a 23-fold decrease in the apparent affinity of acetylcholine for these prevalently desensitized conformations is in agreement with previous results. For epibatidine, the effect of the mutation was smaller, as only a 9-fold change in the calculated Kᵢ was obtained (0.15 and 1.4 \(\mu \)M in control and mutant K145A, respectively).

Other substitutions at position 145 show diverse effects on binding and gating. To examine more closely the effects of the residues at position 145, three other mutants were constructed and analyzed as above. These were mutants K145Q, K145R which conserved the positive charge of lysine, and K145E which reversed the positive charge. All mutants were well expressed in oocytes (table 1) but gave rise to different degrees of functional expression. Figure 7 shows a family of ACh-evoked ionic currents in each of these three mutant receptors. Note that, in order to estimate the gating function, the magnitude of the currents should be corrected for the level of surface expression of each mutant. Thus, it could be observed that mutant K145E showed smaller currents which were associated to slower desensitization kinetics, as occurred with mutant K145A. Data in table 2 show the varied effects of these substitutions on binding and gating once the respective level of surface expression has been considered. When compared with control, the mutant K145R showed reductions in the maximal currents for all five agonists tested. However, when the agonists were epibatidine, cytisine or ACh, the magnitude of these currents was comparable to those obtained in control receptors (58-67%). With nicotine and DMPP the functional response decayed to around 32% of control. Nevertheless, the more
striking feature of mutant K145R was the right-shift of ACh concentration-response curve (and to less extent the one for DMPP) by almost two orders of magnitude, changing its EC$_{50}$ from 38 μM to 3.1 mM for ACh (from 12 μM to 223 μM for DMPP). These results are in contrast with those obtained with the other agonists with only 3 to 5-fold increases in the EC$_{50}$ values. Affinities of nicotinic antagonists, DHβE and dTC, were also explored in mutant K145R. Like in mutant K145A, the affinity of both antagonists slightly increased as calculated K$_i$ values decreased 3-fold for DHβE and 4-fold for dTC (data not shown).

Results obtained in mutant K145Q show that the maximal responses decreased similarly for all agonists (40-50% of control) except for DMPP, which showed a relative efficacy of only 7%. Moreover, the concentration-response curves in this mutant are the less changed with respect to the control. Finally, in mutant K145E maximal responses decreased for ACh (7%), nicotine (3%) and DMPP (<1%) resembling the results obtained in mutant K145A. The most changed EC$_{50}$ was again that of ACh (27-fold increase). Like in other mutants, the secondary amines epibatidine and cytisine were the agonists less affected in both their EC$_{50}$ and magnitude of responses. It should be noted that Hill coefficients showed large variations among the different mutants and different agonists, which are not expected to be derived from changes in gating alone. This lack of correlation would be explained if mutations would also affect binding cooperativity, though there is no unequivocal evidence of this. Concerning the decay kinetics, the same pattern shown by mutant K145A was observed, i.e.: when equipotent agonist concentrations were compared, decay kinetics were similar for agonists whose functional response are less affected (epibatidine and cytisine, but also ACh in mutants K145R and K145Q), but slowed down when functional responses were strongly reduced as in mutant K145E.
DISCUSSION

The fine molecular mechanisms involved in channel activation of Cys-loop receptors are not well established. However, a model of activation has been proposed in which the interaction of the agonist with the binding site is transmitted to the gate through rearrangements of several extracellular structures including the Cys-loop (Miyazawa et al., 2003; Unwin, 2005). Structural data from the snail AChBP indicated that the residue equivalent to α7 Lys-145 moves towards the hydroxyl group of Tyr-185 upon agonist binding (Celie et al., 2004). In nAChR α subunits, the equivalent tyrosine residue, Tyr-190 in α7 nAChRs, has been shown to be critical for ACh binding, channel gating, and desensitization (Galzi et al., 1991; Sine et al., 1994; Chen et al., 1995). Besides, the mentioned lysine is conserved in α subunits and is located close to the Cys-loop. Because of its strategic location we have tested the hypothesis that Lys-145 in α7 nAChRs might play an important role in binding of nicotinic agonists and/or in the coupling mechanisms involved in channel opening by analyzing functional responses of several mutants.

Conclusions drawn from concentration-response curves are limited by several factors including the number of functional receptors, the presence of desensitization and/or channel block and the binding-gating problem (Colquhoun, 1998). However, these concerns have been addressed in this study. First, the magnitudes of the functional responses were normalized by the levels of surface expression. Second, currents evoked upon continuous application of high agonist concentrations decayed with the same time course, regardless of both the receptor and the agonist studied, except in some cases in which the reduction in maximal responses is accompanied by a slightly slower time course of macroscopic desensitization. This would indicate that the true reductions in both maximal response and potency might be larger than observed, reinforcing our conclusions. Third, current-voltage relationships with 3 mM ACh in wild type and mutant K145A were indistinguishable (data not shown), suggesting that open-channel block is not increased in mutants. Finally, reductions in maximal response could arise from fast entry into a desensitized state that, if it were facilitated in mutants, would remain undetected because of the slow exchange solution rate. According to this
possibility, continuous exposure to low agonist concentrations should produce more desensitization in mutants than in wild type receptors, but the concentration-desensitization curves showed just the opposite effect. Therefore, we have considered maximal response as an efficient indicator of gating mechanisms when comparing different receptor-agonist pairs.

The large reductions in the functional responses measured in mutant nAChRs suggest that the conformational changes involved in gating are impaired by the amino acid substitutions. In mutant K145A, the secondary amines cytisine and epibatidine retained most of their effectiveness, but functional responses with nicotine and ACh were strongly decreased. With DMPP the reduction in gating function was total because this nicotinic ligand lost its ability to activate mutant K145A, but not to inhibit epibatidine responses. When the amino acid substitution was more conservative as in mutant K145R, functional responses to the most affected agonists in mutant K145A (ACh, nicotine and DMPP) were partially restored, suggesting that their coupling mechanisms (but not the ones for cytisine and epibatidine) are favored when a positive charge is present at position 145. This is further supported by the opposite results obtained with the reverse mutant K145E. In this case, the presence of a negative charge strongly impaired the gating function of ACh, nicotine and DMPP, but only affected moderately that of cytisine and epibatidine. Finally, an intermediate situation was found in mutant K145Q. The presence of the glutamine residue might have created a sufficiently polar environment that results in responses similar to the ones shown by mutant K145R for all agonists (except for DMPP).

If a simple kinetic scheme is used to explain the concentration-response data (Colquhoun, 1998), the changes observed in the EC50 values of these agonists in mutant K145A are somewhat larger than predicted by a selective effect on gating mechanisms. Considering that most of the deviations are not large and also the limitations of our experimental setup, it is difficult to draw conclusions about potential changes in agonist binding properties. As an exception, the increase in the EC50 of ACh in mutant K145A was 42-fold. Such an effect largely exceeds what would be expected from a gating modification alone, suggesting that binding properties of ACh have been changed as well. This was further confirmed in mutant K145R, since the gating function of ACh was rather unaffected, but the increase in EC50 was the largest (>80-fold). These results suggested that the
interaction of ACh (but not of other ligands) with the binding site is extremely dependent on Lys-145. According to data from AChBP, the interaction between Lys-145 and Tyr-190 would affect the ligand affinity through a readjustment of the Tyr-190 side chain (Celie et al., 2004). This seems to be true for ACh because large shifts on the concentration-response and desensitization curves were observed upon substitution of Lys-145. In contrast, we have not detected large shifts on the nicotine curves. The discrepancy could be partly explained if, as occurred in AChBP, the Tyr-190 side chain would interact with the carbons of the choline group of ACh, but not with those of nicotine (Celie et al., 2004). Consistently, all checked competitive antagonists showed increases in their affinity suggesting again that Lys-145 influences the interaction of ligands with the binding site.

Thus, Lys-145 could play a role in both binding and gating of homomeric nAChRs, as reported for some other residues located at the extracellular domain of a variety of Cys-loop receptors (Galzi et al., 1991;Chen et al., 1995;Sine et al., 2002;Grutter et al., 2003;Beene et al., 2004;Newell et al., 2004). An interaction between Lys-145 and the binding segments may be an initial trigger for ion channel activation, transducing a change into the neighboring Cys-loop which is an important part of the channel opening mechanism (Chakrapani et al., 2004;Sala et al., 2005). In good agreement with the results shown here, it has been recently reported the effects of mutations of a lysine residue equivalent to Lys-145 on gating of muscle-type nicotinic receptors upon ACh activation (Mukhtasimova et al., 2005). This report shows drastic effects on gating after substitutions on position 145, and proposes that the interaction between the conserved residues Lys-142, Tyr-190 and Asp-200 would initiate the conformational changes leading to channel activation. These authors also report effects on ACh binding though smaller than those presented here. This quantitative difference could be due to the different receptors studied and/or to some assumptions about binding steps made in the analysis of single-channel data (Mukhtasimova et al., 2005)

Interestingly, the analysis of different mutants and several agonists presented here has also revealed significant differences among the agonists used, indicating that the involvement of Lys-145 in binding and/or gating is strongly dependent on the nature of the activating molecule. Particularly, the efficiency of the natural neurotransmitter ACh is strongly affected even by a conservative substitution of Lys-145 and helps to explain why this residue has been conserved in nAChRs. On the
other hand, coupling of binding to gating with the secondary amines epibatidine or cytisine seems to be rather independent of the nature of the side chain at position 142.

Coupling mechanisms in neuronal nAChRs may be specific of agonist, at least in the early rearrangements. According to that, several residues and/or regions of the extracellular domain of α and β subunits have been identified in neuronal nAChRs as determinants of the sensitivity to agonists like cytisine (Luetje and Patrick, 1991; Figl et al., 1992; Papke and Heinemann, 1994), DMPP (Anand et al., 1998) and nicotine (Hussy et al., 1994). On the other hand, previous works with single-point mutations in the loop 2, the Cys-loop and the M2-M3 linker of α7 nAChRs have shown that coupling mechanisms were equally affected for different nicotinic agonists (Campos-Caro et al., 1996; Sala et al., 2005). The difference between these two sets of results might be due to the precise location of the mutated or swapped residues with respect to the binding domains. In the former group they might be located close to the binding domain and in the latter they are proposed to be parts of the mechanical engagement between extracellular and intramembrane domains (Corringer et al., 2000; Lester et al., 2004; Unwin, 2005). The conserved Lys-145 belongs to the first group and, therefore, it is likely to be involved in pharmacological selectivity, mostly by conditioning the earliest rearrangements involved in the transmission of the ‘conformational wave’ that will result in gate opening. However, at the moment both the high complexity of those indirect interactions and the lack of refined structural data make difficult to establish a clear correlation between the structural and chemical properties of the side chain at position 145 and the resulting pharmacological phenotype.
REFERENCES

FOOTNOTES

* This work was supported by grants from the Ministry of Science and Technology of Spain (BMC2002-00972 and SAF2002-00209), and the Generalitat Valenciana (CTIDIB/2002/138 and GRUPOS03/038).

Author for correspondence: Francisco Sala, Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-C.S.I.C. Apartado 18. 03550-Sant Joan d’Alacant, Alicante, Spain.

E-Mail: fsala@umh.es
FIGURE LEGENDS

Fig. 1. A comparison between the ACh responses of wild-type α7 nAChR and mutant K145A. A, Inward currents obtained upon 1 s stimulation with ACh of wild-type α7 (wt) nAChR and K145A mutants. Traces represent currents obtained at -80 mV with the ACh concentrations indicated on top. B, ACh concentration-response curves of oocytes expressing wild-type α7 (wt, filled circles) nAChR and K145A mutants (open circles) for ACh. Data are normalized to the estimated maximal response to epibatidine in wild type receptors as explained in Methods. Data points represent means ± SEM obtained in 4-7 oocytes from 3 donors. Error bars shown if bigger than symbols. Continuous lines represent fits of data to the Hill equation (see Table 2 for relative I\text{max}, EC\text{50} and Hill coefficient values).
Fig. 2. Pharmacological profile of several nicotinic agonists in wild-type α7 nAChR and mutant K145A. Concentration-response curves of oocytes expressing wild-type α7 (wt, filled circles) nAChRs and mutant K145A (open circles) for epibatidine, nicotine, cytisine and DMPP. Data are normalized to the estimated maximal response to epibatidine in wild type receptors as explained in Methods. Data points represent means ± SEM obtained in 4-8 oocytes from 2-3 donors. Error bars shown if bigger than symbols. Continuous lines represent fits of data to the Hill equation (see Table 2 for relative I_{max}, EC_{50} and Hill coefficient values).
Fig. 3. **DMPP is an antagonist in mutant K145A.** Concentration dependence in the DMPP inhibition of ionic currents evoked by 3 µM epibatidine in oocytes expressing mutant K145A. Data are means ± SEM of 6 oocytes (2 donors). Continuous line represents a fit to the Hill equation (n_H=-1) with an IC_{50} value of 19 µM.
Fig. 4. **Inhibition curves of nicotinic antagonists in wild-type α7 nAChR and mutant K145A.**

A, MLA inhibition of ionic currents evoked by 3 μM epibatidine in oocytes expressing wild-type α7 (wt, filled circles) nAChR and mutant K145A (open circles). Data are means ± SEM of 3-4 oocytes (2 donors). Continuous lines represent fits to the Hill equation (n_H=−1) with IC_{50} values of 1.2 and 0.045 nM (K_i values of 430 and 71 pM) for wild-type and mutant K145A, respectively.

B, DHβE inhibition of ionic currents evoked by 3 μM epibatidine in oocytes expressing wild-type α7 (wt, filled circles) nAChR and mutant K145A (open circles). Data are means ± SEM of 5-6 oocytes (2 donors). Continuous lines represent fits to the Hill equation (n_H=−1) with IC_{50} values of 28 and 4.8 μM (K_i values of 10 and 6.0 μM) for wild-type and mutant K145A, respectively.

C, D-tubocurarine inhibition of ionic currents evoked by 3 μM epibatidine in oocytes expressing wild-type α7 (wt, filled circles) nAChR and mutant K145A (open circles). Data are means ± SEM of 6-9 oocytes (3 donors). Continuous lines represent fits to the Hill equation (n_H=−1) with IC_{50} values of 8.1 and 0.15 μM (K_i values of 2.9 and 0.19 μM) for wild-type and mutant K145A, respectively. Error bars shown if bigger than symbols.
Fig. 5. **Mutant K145A is less sensitive to desensitization by low concentrations of agonists.**

A, Ionic currents evoked by 3 µM epibatidine in two representative oocytes expressing wild-type \(\alpha 7\) nAChR and mutant K145A. Oocytes were exposed during 3 min to the indicated ACh concentration prior to epibatidine stimulation. Time between pulses was 6 min, which allows full recovery from desensitization. Scale bars are 1 s, and 1 or 3 µA, for wild-type or mutant K145A, respectively. B, Concentration-response curves of the epibatidine-evoked fractional current remaining after 3-min ACh exposure in oocytes expressing wild-type \(\alpha 7\) (filled circles) nAChR and mutant K145A (open circles). Data are means ± SEM of 3-6 oocytes (2-3 donors). Continuous lines represent fits to the Hill equation with IC\(_{50}\) values of 4.0 µM (\(n_H=-1.76\)) and 185 µM (\(n_H=-1.82\)) for wild-type and mutant K145A, respectively. C, Concentration-response curves of the epibatidine-evoked fractional current remaining after 3-min nicotine exposure in oocytes expressing wild-type \(\alpha 7\) (filled circles) nAChR and mutant K145A (open circles). Data are means ± SEM of 3-4 oocytes (2 donors). Continuous lines represent fits to the Hill equation with IC\(_{50}\) values of 3.0 µM (\(n_H=-2.0\)) and 15 µM (\(n_H=-2.9\)) for wild-type and mutant K145A, respectively.
Fig. 6. **Binding properties of the desensitized conformation of wild-type α7 nAChR and mutant K145A.**

A. ACh displacement curves of bound α-Bgt from oocyte plasma membranes expressing wild-type α7 (*filled circles*) nAChR and mutant K145A (*open circles*). Data are means ± SEM of 3 experiments (3 donors) with 10-15 oocytes each. Continuous lines represent fits to the Hill equation ($n_H = -1$) with IC$_{50}$ values of 11 µM and 414 µM (K$_i$ values of 6.5 and 149 µM) for wild-type and mutant K145A, respectively.

B. Epibatidine displacement curves of bound α-Bgt from oocyte plasma membranes expressing wild-type α7 (*filled squares*) nAChRs and mutant K145A (*open circles*). Data are means ± SEM of 3 experiments (3 donors) with 10-15 oocytes each. Continuous lines represent fits to the Hill equation ($n_H = -1$) with IC$_{50}$ values of 0.25 µM and 3.9 µM (K$_i$ values of 0.15 and 1.4 µM) for wild-type and mutant K145A, respectively.
Fig. 7. **Functional responses of K145 mutants to ACh.** From top to bottom: inward currents obtained upon 1 s stimulation with ACh of three representative oocytes expressing K145R, K145Q and K145E mutants, respectively. Traces represent currents obtained at -80 mV with the ACh concentrations indicated on top. Scale bars apply to all traces. Note that for proper comparison, current magnitudes should be corrected by the level of surface expression.
Table 1. *Surface and functional expression of wild type (wt) and Lys-145 mutant nAChRs*

Surface expression is given as percentages of the number of α-Bgt binding sites in wild type receptors. Functional expression was measured upon stimulation with 30 µM epibatidine of 22-31 oocytes (5 donors) expressing the different nAChRs. Values shown are mean ± S.E.

<table>
<thead>
<tr>
<th></th>
<th>α7 wt</th>
<th>α7 K145A</th>
<th>α7 K145R</th>
<th>α7 K145Q</th>
<th>α7 K145E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface expression (%)</td>
<td>100 ± 16</td>
<td>74 ± 1</td>
<td>114 ± 15</td>
<td>186 ± 2</td>
<td>318 ± 1</td>
</tr>
<tr>
<td>Functional expression (µA/oocyte)</td>
<td>7.3 ± 0.1</td>
<td>3.4 ± 0.1</td>
<td>4.4 ± 0.1</td>
<td>8.5 ± 0.2</td>
<td>10.6 ± 0.1</td>
</tr>
</tbody>
</table>
Table 2. Pharmacological properties of wild type (wt) and Lys-145 mutant nAChRs

Values shown are parameters ± S.E. obtained by fitting data to the Hill equation. Data were obtained from 4-10 oocytes (at least two donors). I_{max} values are corrected for surface expression and normalized to the estimated maximal response with epibatidine in wild type nAChRs. N.D.: not determined.

<table>
<thead>
<tr>
<th></th>
<th>α7 wt</th>
<th>α7 K145A</th>
<th>α7 K145R</th>
<th>α7 K145Q</th>
<th>α7 K145E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epibatidine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{max} (%)</td>
<td>100 ± 1</td>
<td>65 ± 1</td>
<td>58 ± 1</td>
<td>52 ± 1</td>
<td>40 ± 1</td>
</tr>
<tr>
<td>EC_{50} (µM)</td>
<td>1.9 ± 0.4</td>
<td>6.6 ± 0.7</td>
<td>9.9 ± 1.2</td>
<td>2.8 ± 1.5</td>
<td>6.9 ± 0.7</td>
</tr>
<tr>
<td>n_H</td>
<td>0.9</td>
<td>1.4</td>
<td>1.4</td>
<td>0.9</td>
<td>1.8</td>
</tr>
<tr>
<td>ACh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{max} (%)</td>
<td>102 ± 2</td>
<td>21 ± 1</td>
<td>67 ± 4</td>
<td>67 ± 10</td>
<td>8.0 ± 0.5</td>
</tr>
<tr>
<td>EC_{50} (µM)</td>
<td>38 ± 5</td>
<td>1600 ± 170</td>
<td>3100 ± 610</td>
<td>600 ± 260</td>
<td>1040 ± 140</td>
</tr>
<tr>
<td>n_H</td>
<td>1.3</td>
<td>1.1</td>
<td>1.0</td>
<td>1.1</td>
<td>1.6</td>
</tr>
<tr>
<td>Nicotine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{max} (%)</td>
<td>110 ± 10</td>
<td>16 ± 3</td>
<td>33 ± 2</td>
<td>39 ± 2</td>
<td>3.0 ± 0.2</td>
</tr>
<tr>
<td>EC_{50} (µM)</td>
<td>101 ± 34</td>
<td>470 ± 270</td>
<td>290 ± 40</td>
<td>300 ± 50</td>
<td>240 ± 40</td>
</tr>
<tr>
<td>n_H</td>
<td>1.1</td>
<td>1.0</td>
<td>1.6</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Cytisine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{max} (%)</td>
<td>94 ± 4</td>
<td>88 ± 3</td>
<td>58 ± 8</td>
<td>52 ± 2</td>
<td>46 ± 2</td>
</tr>
<tr>
<td>EC_{50} (µM)</td>
<td>28 ± 4</td>
<td>240 ± 20</td>
<td>93 ± 52</td>
<td>46 ± 7</td>
<td>190 ± 30</td>
</tr>
<tr>
<td>n_H</td>
<td>1.9</td>
<td>1.5</td>
<td>0.9</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>DMPP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{max} (%)</td>
<td>101 ± 6</td>
<td>0</td>
<td>31 ± 6</td>
<td>7 ± 1</td>
<td>0.3 ± 0.1</td>
</tr>
<tr>
<td>EC_{50} (µM)</td>
<td>12 ± 2</td>
<td>N.D.</td>
<td>220 ± 140</td>
<td>5.2 ± 1.7</td>
<td>5.8 ± 2.9</td>
</tr>
<tr>
<td>n_H</td>
<td>1.1</td>
<td>N.D.</td>
<td>0.8</td>
<td>1.2</td>
<td>1.4</td>
</tr>
</tbody>
</table>
FIGURE 1

A

<table>
<thead>
<tr>
<th>[ACh] (mM)</th>
<th>0.01</th>
<th>0.03</th>
<th>0.1</th>
<th>0.3</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
</table>

WT

K145A

2 μA

0.5 s

B

Normalized response (%)

Log [ACh] (μM)

Normalized response (%)

wt

K145A
FIGURE 2

Normalized response (%)

-2 -1 0 1 2 3
Log [Epibatidine] (µM)

-1 0 1 2 3 4
Log [nicotine] (µM)

-1 0 1 2 3 4
Log [cytisine] (µM)

-1 0 1 2 3 4
Log [DMPP] (µM)
FIGURE 4

A

Normalized response

Log [MLA] (nM)

B

Normalized response

Log [DHβE] (μM)

C

Normalized response

Log [dTc] (μM)
FIGURE 7

[ACh] (mM) 0.1 0.3 1 3 10 30
K145R

3 µA 0.5 s

[ACh] (mM) 0.1 0.3 1 3 10
K145Q

[ACh] (mM) 0.1 0.3 1 3 10
K145E