Suppression of the Phosphorylation of Receptor Tyrosine Phosphatase-α on a Src-independent Site Tyrosine-789 by Reactive Oxygen Species

Qin Hao, Stacey A. Rutherford, Brad Low, and Hua Tang

From the Department of Biochemistry, The University of Texas Health Center at Tyler, Tyler, TX 75708.

a) Running Title: Suppression of RPTPα Phosphorylation on Tyr-789 by ROS

b) Address correspondence to: Hua Tang, PhD., Department of Biochemistry, The University of Texas Health Center at Tyler, 11937 US Highway 271, Tyler, Texas 75708
Tel: 903-877-7938; Fax: 903-877-2881; E-mail: hua.tang@uthct.edu

c) Number of text pages: 27
 Number of figures: 5
 Number of references: 40
 Number of words in the Abstract: 217
 Number of words in the Introduction: 578
 Number of words in the Discussion: 1303

d) The abbreviations used are: PTPs, protein tyrosine phosphatases; RPTPα, receptor protein tyrosine phosphatase-α; ROS, reactive oxygen species; HAECs, human aortic endothelial cells; HUVECs, human umbilical vein endothelial cells; PAO, phenylarsine oxide; PBS, phosphate-buffered saline.
Abstract

Oxidation of receptor protein tyrosine phosphatase-α (RPTPα) is emerging as an important, yet poorly characterized, regulatory mechanism for RPTPα signaling in cells. RPTPα has been shown to be reversibly oxidized and inhibited by reactive oxygen species. However, it is not known whether oxidative stress could regulate the phosphorylation of Tyr-789, a critical tyrosine residue for RPTPα signaling that modulates the function of Grb2 and the activation of Src family kinases. In the present study, we have taken advantage of a phospho-specific antibody against Tyr-789-phosphorylated RPTPα and characterized the phosphorylation of RPTPα Tyr-789 in various cultured cells, including SYF cells lacking all three ubiquitously expressed members (Src, Yes and Fyn) of Src family kinases. We have obtained substantial evidence indicating that the phosphorylation of RPTPα Tyr-789 is regulated predominantly by a Src kinase inhibitor PP1-sensitive but Src/Yes/Fyn-independent tyrosine kinase in cells. We further reported a novel finding that, besides the inhibition of RPTPα’s activity, H2O2 at low to moderate concentrations (50-250 µM) markedly suppressed the phosphorylation of RPTPα Tyr-789 and the association of RPTPα with Grb2 in cultured cells, which may result from inhibition of such a PP1-sensitive but Src/Yes/Fyn-independent tyrosine kinase. Since Tyr-789 plays an important role in RPTPα signaling, our findings may provide new insights into the functional regulation of RPTPα by oxidative stress in cells.
Protein tyrosine phosphorylation is a fundamental mechanism for many signal transduction pathways that control cell growth, differentiation, and motility (Hunter, 1995). Although it is generally agreed that tyrosine phosphorylation is regulated by the equal and balanced actions of protein tyrosine kinases and protein tyrosine phosphatases (PTPs), relatively little is known about the regulation and signal transduction of most PTPs (Neel and Tonks, 1997). The receptor-like PTPα (RPTPα) is a widely expressed transmembrane PTP with a short heavily glycosylated extracellular domain and two tandem cytoplasmic PTP domains (Kaplan et al., 1990). The membrane-proximal domain contains most catalytic activity, whereas the membrane-distal domain is catalytically inactive but has a regulatory role (Blanchetot et al., 2002). Several lines of evidence indicate that RPTPα is a positive regulator of Src family kinases and is required for integrin-mediated cell spreading and migration (Ponniah et al., 1999; Su et al., 1999; Zeng et al., 2003). Overexpression of RPTPα results in Src activation and neoplastic transformation (Zheng et al., 1992). Conversely, deficiency of RPTPα markedly impairs the catalytic activities of Src and Fyn and the integrin signaling (Ponniah et al., 1999; Su et al., 1999). In addition, RPTPα interferes with insulin receptor signaling (Moller et al., 1995) and regulates the Kv1.2 potassium channel upon the activation of m1 muscarinic acetylcholine receptor (Tsai et al., 1999).

RPTPα is phosphorylated on a critical tyrosine (Tyr-789) located at the C-terminus. It has been estimated that about 20% of RPTPα in NIH3T3 cells is phosphorylated on Tyr-789 (den Hertog et al., 1994). The sequence on the C-terminal side of Tyr-789 (Y789ANF) fits the consensus binding site for the SH2 domain of adaptor protein Grb2 and Src family kinases (Songyang et al., 1993). Although Tyr-789 is not involved in the regulation of the intrinsic phosphatase activity of RPTPα (Zheng et al., 2000), a body of evidence indicates that phosphorylation of Tyr-789 negatively regulates Grb2-mediated signaling (den Hertog et al.,
Moreover, phosphorylation of Tyr-789 is required for RPTPα to dephosphorylate a negative regulatory site (Tyr-529 in mammalian Src) in Src C-terminus through a displacement of the phosphorylated Tyr-529 from the Src SH2 domain (Zheng et al., 2000). The regulation of Tyr-789 phosphorylation is not clear, although a previous study showed that Tyr-789 was an autodephosphorylation site and that co-expression of RPTPα with Src enhanced Tyr-789 phosphorylation in 293 cells (den Hertog et al., 1994).

Reactive oxygen species (ROS), such as hydrogen peroxide (H₂O₂), superoxide (O₂⁻), and hydroxyl radical (OH⁻), are constantly produced in human body under physiological and pathophysiological conditions and are involved in the pathogenesis of cardiovascular diseases, cancer and Alzheimer diseases (Dreher and Junod, 1996; Knight, 1997; Madamanchi et al., 2005). PTPs are emerging as important redox sensors in cells. PTPs contain a catalytically essential cysteine residue in the signature active site motif, HCXXGXSR(S/T), which has a low pKa and can be reversibly oxidized by ROS to inactivate PTPs (Rhee et al., 2000). Recent studies have shown that RPTPα can be oxidized and inhibited by H₂O₂ (Blanchetot et al., 2002). However, it is not known whether oxidative stress could regulate the phosphorylation of Tyr-789, a critical residue for RPTPα signaling. In the present study, we have reported a novel finding that H₂O₂ at a low to moderate concentration (50-250 µM) markedly suppresses the phosphorylation of RPTPα Tyr-789 in various cultured cells. Furthermore, our data suggest that inhibition of a Src/Yes/Fyn-independent tyrosine kinase may be involved in the suppression of Tyr-789 phosphorylation by H₂O₂.
Materials and Methods

Reagents. H₂O₂ was from Sigma (St. Louis, MO) and Fisher Scientific (Houston, TX), respectively. Inhibitors for protein kinase C (PKC) and tyrosine kinase were from EMD Calbiochem (San Diego, CA). Reagents for chemiluminescence detection were from Cell Signaling (Beverly, MA).

Antibodies. Antibodies against phospho-RPTPα (Tyr-789) and Tyr-410-phosphorylated p130Crk-associated substrate (p130Cas) were from Cell Signaling (Beverly, MA). Phospho-Src (Tyr-418) and phospho-Abl (Tyr-412) antibodies were from Biosource (Camarillo, CA). RPTPα antibody was from Upstate Signaling Solutions (Charlottesville, VA). Antibodies against Src family kinases (SRC-2) and PKCδ were from Santa Cruz Biotechnology (Santa Cruz, CA).

Cell Culture. Human aortic endothelial cells (HAECs), human umbilical vein endothelial cells (HUVECs), and bovine aortic endothelial cells were from Cambrex Bio Science (Walkersville, MD); they were cultured in EGM-2 or EGM-MV medium and used for experiments within 10 passages. SYF (deficient for Src, Yes, and Fyn) cells and 293 human embryonic kidney cells were from American Type Culture Collection (Manassas VA) and cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum. Murine embryonic E6-RPTPα+/+ and E3-RPTPα−/− fibroblasts (Su et al., 1999) were kindly provided by Dr. Jan Sap (University of Copenhagen, Denmark) and cultured in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum.
Cell Transfection. SrcY529F (Tyr-529 mutation to Phe) (Polte and Hanks, 1997) was kindly provided by Dr. Steven K. Hanks (Vanderbilt University, TN), and v-Src (Wilkerson et al., 1985) was kindly provided by Dr. J. Thomas Parsons (University of Virginia Health System, VA). Transient expression of these constructs was performed using FuGENE 6 (Roche) according to the manufacturer’s protocol.

Immunoblotting. Immunoblotting was performed essentially as we described previously (Tang et al., 2000). Cells were washed twice with ice-cold phosphate-buffered saline (PBS) and then lysed on ice in Nonidet P-40 lysis buffer (25 mM Tris-HCl, pH 7.5, 1% NP-40, 150 mM NaCl, 10 mM NaF, 1 mM Na₃VO₄, 1 mM phenylmethylsulfonyl fluoride, 10 µg/ml each of leupeptin and aprotinin). The extract was clarified by centrifugation. Whole cell lysates were subjected to SDS-PAGE and transferred to polyvinylidene difluoride membrane. The membrane was probed with various primary antibodies as indicated and detected using the ECL system with horseradish peroxidase-conjugated secondary antibodies according to the manufacturer’s protocol.

PTPs Assay. Cells were washed twice with ice-cold PBS and then lysed on ice in PTP lysis buffer (25 mM sodium acetate, pH 5.5, 1% NP-40, 150 mM NaCl, 10% glycerol, 1 mM phenylmethylsulfonyl fluoride, 10 µg/ml each of leupeptin and aprotinin. The phosphatase activity was measured essentially as we described recently (Tang et al., 2005). Briefly, the synthetic peptide Raytide (Oncogene) was labeled at its tyrosine residue using [γ-³²P]ATP and Src tyrosine kinase. RPTPα immunoprecipitates were mixed with ³²P-labeled Tyr-Raytide in 50 µl of phosphatase reaction buffer (25 mM Hepes, pH 7.4, and 5 mM EDTA) and incubated at
37 °C for 15 min. The reaction was terminated by the addition of acidic charcoal mixture (0.9 M HCl, 90 mM sodium pyrophosphate, 2 mM NaH$_2$PO$_4$, and 4% (w/v) Norit A). After centrifugation in a microcentrifuge, the amount of radioactivity present in the supernatant was determined by scintillation counting. The phosphatase activity was evaluated by the extent of Tyr-Raytide dephosphorylation \textit{in vitro}.

Statistical Analysis. All data were expressed as mean ± SEM. Differences between mean values of 2 groups were analyzed by Student t tests. Differences between mean values of multiple groups were analyzed by 1-way ANOVA with a Newman-Keuls post hoc analysis. $P<0.05$ was considered statistically significant.
Results

H₂O₂ Inhibits RPTPα Activity and Suppresses the Phosphorylation of RPTPα on Tyr-789. H₂O₂, the most stable form of ROS, can easily diffuse across the membrane and has been widely used to study the role of ROS in cells (Finkel, 2003). To determine effect of H₂O₂ on the catalytic activity of RPTPα, RPTPα was immunoprecipitated and phosphatase activity of the immune complexes towards ³²P-labeled Tyr-Raytide was measured. In agreement with a previous report (Blanchetot et al., 2002), we found that the activity of RPTPα was inhibited ~40% by H₂O₂ at 5 min, then gradually recovered to basal level at 30 min (Fig. 1A). An early study suggests that Tyr-789 is an autodephosphorylation site of RPTPα (den Hertog et al., 1994). If so, inhibition of RPTPα activity by H₂O₂ should increase the phosphorylation of Tyr-789. We next determined effect of H₂O₂ on the phosphorylation of Tyr-789, a critical tyrosine for RPTPα signaling, using a phospho-specific antibody against Tyr-789-phosphorylated RPTPα (Cell Signaling). As shown in Fig. 1B, a 135 kDa protein band representing the phosphorylated RPTPα was detected with the phospho-specific antibody in E6-RPTPα+/+ but not in E3-RPTPα−/− fibroblasts (Su et al., 1999), indicating that the phospho-RPTPα (Tyr-789) antibody specifically recognizes the phosphorylated RPTPα but not other receptor PTPs. Surprisingly, we found that the phosphorylation of RPTPα Tyr-789 was suppressed 95% by a subcytolytic concentration of H₂O₂ (250 µM) within 10 min and gradually returned to 50% of basal level by 120 min in E6 fibroblasts (Fig 1B). The time-dependent suppression of the phosphorylation of Tyr-789 by H₂O₂ was also observed in HAECs and HUVECs, but with a lower recovery rate compared with E6 fibroblasts (Fig. 1C and 1D). We also found that the phosphorylation of RPTPα Tyr-789 was markedly suppressed by H₂O₂ in bovine aortic endothelial cells and 293 cells (data not shown).
Moreover, we found that the H2O2-induced suppression of Tyr-789 phosphorylation was blocked by an antioxidant N-acetyl cysteine (Ferrari et al., 1995) (Fig. 1E). Since RPTPα associates with Grb2 through binding of the phosphorylated Tyr-789 to Grb2 SH2 domain (den Hertog et al., 1994), we then determined the effect of H2O2 on the association of RPTPα with Grb2. As shown in Fig. 1F, treatment of HUVECs with H2O2 (250 µM) caused a rapid dissociation of RPTPα from Grb2, further confirming the inhibitory effect of H2O2 on Tyr-789 phosphorylation. These findings suggest that the phosphorylation of Tyr-789 by a kinase may be dominant over any Tyr-789 autodephosphorylation and that the tyrosine kinase may be inhibited by H2O2 through a redox regulatory mechanism in cells.

We next determined the dose-dependent effect of H2O2 using the phospho-RPTPα (Tyr-789) antibody. As shown in Fig. 2A, the Tyr-789 phosphorylation was suppressed 60% by 10 min treatment of E6 fibroblasts with as low as 100 µM H2O2, 93% by 250 µM H2O2, and 91% by 500 µM H2O2, respectively. A similar dose-dependent inhibitory effect of H2O2 on Tyr-789 phosphorylation was observed in HAECs (Fig. 2B). Thus, the maximal suppression of Tyr-789 phosphorylation can be achieved by 250 µM H2O2 in both cells.

PP1-sensitive but Src/Yes/Fyn-independent Phosphorylation of RPTPα on Tyr-789. We next characterized the phosphorylation of RPTPα Tyr-789. As shown in Fig. 3A, the phosphorylation of Tyr-789 was inhibited 80% by H2O2, 85% by a Src kinase inhibitor PP1 (Hanke et al., 1996), and 70% by a PKCδ inhibitor rottlerin (Gschwendt et al., 1994) in HAECs, respectively. In contrast, a general PKC inhibitor GF109203X or a membrane-permeable calcium chelator BAPTA/AM had virtually no effect. Furthermore, the H2O2-induced
suppression of Tyr-789 phosphorylation was slightly enhanced by both PP1 and rottlerin in HAECs (Fig. 3B).

Although PP1 is an inhibitor of Src kinase (Hanke et al., 1996), it has been shown that PP1 also inhibits Kit and Bcr-Abl tyrosine kinases (Tatton et al., 2003). As shown in Fig. 4A, the phosphorylation of RPTPα Tyr-789 was inhibited 88% by PP1, whereas the phosphorylation of Src activation loop conserved tyrosine (Tyr-418 in mammalian Src) that represents Src activation (Yamaguchi and Hendrickson, 1996) was inhibited only 40% by PP1 in HAECs, suggesting involvement of a Src-independent mechanism for Tyr-789 phosphorylation. Interestingly, the phosphorylation of RPTPα Tyr-789 and Src Tyr-418 was inhibited 82% and 90% by H2O2 in HAECs, respectively (Fig. 4A), which may result from the H2O2-induced inhibition of a novel kinase other than Src as we hypothesized (Tang et al., 2005). To determine whether Src kinase is involved in the phosphorylation of RPTPα Tyr-789, HAECs were transiently transfected with SrcY529F (Polte and Hanks, 1997), a constitutively activated form of Src, and lysates were immunoblotted with the phospho-RPTPα (Tyr-789) antibody. As shown in Fig. 4A, transient expression of the SrcY529F mutant had virtually no effect on the phosphorylation of Tyr-789 in HAECs, although it apparently enhanced (2.65-fold) Src activation detected with a phospho-Src (Tyr-418) antibody that recognizes the activated form of Src (Biosource). We next performed similar experiments using 293 cells that can be transfected with a high efficiency. As shown in Fig. 4B, transient expression of v-Src (Wilkerson et al., 1985) virtually did not affect the phosphorylation of RPTPα Tyr-789 in 293 cells, although it apparently enhanced (4-fold) Src activation detected with the phospho-Src (Tyr-418) antibody (Biosource). Furthermore, activation of Src to an extremely high level (>30-fold) with expression of the SrcY529F mutant only slightly (1.3-fold) increased the phosphorylation of RPTPα Tyr-789 in 293 cells (Fig. 4B).
Remarkably, we found that RPTPα Tyr-789 was strongly phosphorylated in SYF cells lacking all three ubiquitously expressed members (Src, Yes and Fyn) of Src family kinases (Klinghoffer et al., 1999) (Fig. 4C). Reintroducing the activated Src (SrcY529F) into SYF cells only slightly (1.2-fold) increased the phosphorylation of RPTPα Tyr-789, whereas it markedly augmented the phosphorylation of p130Cas Tyr-410, a Src phosphorylation site (Tang et al., 2005). The phosphorylation of p130Cas Tyr-410 was unable to detect in vector-transfected (control) SYF cells (Fig. 4C). In addition, we found that the phosphorylation of RPTPα Tyr-789 was suppressed 51% by genistein (Spinozzi et al., 1994), a general inhibitor for protein tyrosine kinases, 70% by PP1, but only 10% by another Src kinase inhibitor herbimycin A (Ogino et al., 2004) in SYF cells, respectively (Fig. 4D). In contrast, piceatannol (Oliver et al., 1994), a Syk tyrosine kinase inhibitor, AG-1295 (Levitzki and Gazit, 1995), a selective inhibitor of platelet-derived growth factor receptor, AG-1478 (Levitzki and Gazit, 1995), a selective inhibitor of epidermal growth factor receptor, GTP-14564 (Murata et al., 2003), a selective inhibitor of class III receptor tyrosine kinases including Kit, and terreic acid (Kawakami et al., 1999), a selective inhibitor of Bruton’s tyrosine kinase, did not significantly affect the phosphorylation of Tyr-789 in SYF cells (Fig. 4D and 4E). Interestingly, we found that AG-957 (Anafi et al., 1992), a potent inhibitor of Bcr-Abl and c-Abl, caused a mobility shift of RPTPα and apparently suppressed the phosphorylation of Tyr-789 in a dose-dependent manner in SYF cells (Fig. 4E). Taken together, these findings demonstrated that, in contrast to Tyr-410 of p130Cas, Tyr-789 of RPTPα is not a primary target site of Src kinase. Thus, the phosphorylation of RPTPα Tyr-789 is predominantly regulated by a PP1-sensitive but Src/Yes/Fyn-independent tyrosine kinase in cells.
H$_2$O$_2$ Suppresses the Phosphorylation of RPTPα Tyr-789 in Src/Yes/Fyn-deficient SYF Cells. Consistent with the data obtained using fibroblasts and endothelial cells (Fig. 1), we found that the phosphorylation of RPTPα Tyr-789 was also markedly suppressed by H$_2$O$_2$ in SYF cells lacking all three ubiquitously expressed members (Src, Yes and Fyn) of Src family kinase (Fig. 5A). The phosphorylation of Tyr-789 was inhibited 85% by H$_2$O$_2$ at 10 minutes, then gradually recovered to near basal level at 60 min. Of note, the phosphorylation of c-Abl on the kinase activation loop Tyr-412 (Brasher and Van Etten, 2000), which represents c-Abl activation, was not altered by H$_2$O$_2$ treatment in SYF cells (Fig. 5A, third panel). Interestingly, the H$_2$O$_2$-induced suppression of Tyr-789 phosphorylation was mimicked by a PTP inhibitor phenylarsine oxide (PAO) (Garcia-Morales et al., 1990), but not by the serine/threonine phosphatase inhibitor NaF, in SYF cells (Fig. 5B). Furthermore, pretreatment of SYF cells with PAO enhanced the suppression of Tyr-789 phosphorylation by H$_2$O$_2$. These findings suggest that a novel tyrosine kinase (but not Src, Yes, Fyn, or c-Abl) phosphorylating RPTPα Tyr-789 may be inhibited by H$_2$O$_2$ treatment in cells and that the inhibition of a PTP(s) may be involved in the process.
Discussion

In the present study, we have characterized the phosphorylation of RPTPα on Tyr-789 using different approaches and obtained substantial evidence indicating that the phosphorylation of RPTPα Tyr-789 is regulated by a PP1-sensitive but Src/Yes/Fyn-independent tyrosine kinase in cells. We further show that, besides the inhibition of RPTPα activity, H₂O₂ at low to moderate levels (50-250 µM) markedly suppresses the phosphorylation of Tyr-789 and the association of RPTPα with Grb2 in cultured cells, which may be through inhibition of such a Src/Yes/Fyn-independent tyrosine kinase. Since Tyr-789 plays an important role in RPTPα signaling, our findings may provide new insights into the functional regulation of RPTPα by H₂O₂, a stable form of ROS.

It has been demonstrated that phosphorylation of RPTPα Tyr-789 modulates Grb2-mediated signaling and the activation of Src family kinases, although Tyr-789 is not involved in the regulation of the intrinsic phosphatase activity of RPTPα (den Hertog et al., 1994; Su et al., 1996; Zheng et al., 2000). However, the regulation of RPTPα Tyr-789 phosphorylation remains unclear. An early study suggests that Tyr-789 is an autodephosphorylation site of RPTPα (den Hertog et al., 1994). If so, inhibition of RPTPα activity should increase the phosphorylation of Tyr-789. Surprisingly, we found that besides the inhibition of RPTPα activity, H₂O₂ markedly suppressed the phosphorylation of Tyr-789 in cells, leading to the dissociation of RPTPα from Grb2. These data suggest that the phosphorylation of Tyr-789 by a tyrosine kinase may be dominant over any Tyr-789 autodephosphorylation and that the tyrosine kinase may be inhibited by H₂O₂. A model for the RPTPα-mediated Src activation describes that binding of the
phosphorylated Tyr-789 to Src SH2 domain induces displacement of the Src negative regulatory site (Tyr-529) from its SH2 domain, which facilitates the dephosphorylation of Tyr-529 by RPTPα and thereby promotes Src activation (Zheng et al., 2000). If the phosphorylation of Tyr-789 is mediated by Src in cells as suggested by an early study in which co-expression of RPTPα with Src enhanced Tyr-789 phosphorylation in 293 cells (den Hertog et al., 1994), the activated Src will phosphorylate RPTPα Tyr-789 and the phosphorylated Tyr-789 will bind to Src SH2 domain to activate Src, thereby causing hyperactivation of Src and hyperphosphorylation of RPTPα through cycles of the positive-feedback loop. Apparently, this is against the fact that only a small fraction of Src is activated in cells, suggesting involvement of a Src-independent mechanism for Tyr-789 phosphorylation. In the present study, we have provided substantial evidence indicating that the phosphorylation of RPTPα Tyr-789 is regulated predominantly by a Src/Yes/Fyn-independent tyrosine kinase. Transient expression of SrcY529F (Polte and Hanks, 1997), a constitutively activated form of Src, or v-Src (Wilkerson et al., 1985), which led to a moderate Src activation (2.6-4 fold), had virtually no effect on the phosphorylation of Tyr-789 in HAECs and 293 cell, respectively. The phosphorylation of Tyr-789 was only slightly increased (1.3-fold) in 293 cells when Src was activated to an extremely high level (>30-fold) with expression of SrcY529F mutant. It should be noted that RPTPα Tyr-789 was strongly phosphorylated in SYF fibroblasts lacking Src, Yes and Fyn (Klinghoffer et al., 1999). Furthermore, reintroducing the activated Src (SrcY529F) into SYF cells only slightly (1.2-fold) increased the phosphorylation of RPTPα Tyr-789, whereas it remarkably augmented the phosphorylation of a Src substrate p130Cas on Tyr-410 that was not detected in control SYF cells. These findings demonstrated that, in contrast to Tyr-410 of p130Cas, the Tyr-789 of RPTPα is not a primary target site of Src family kinases in cells. It is likely that the
phosphorylation of RPTPα Tyr-789 is regulated predominantly by a Src/Yes/Fyn-independent tyrosine kinase. Nine members of Src family kinases have been identified to date. In contrast to Src, Yes and Fyn that are expressed ubiquitously, Hck, Fgr, Blk, Yrk and Lck are restricted to hematopoetic cell lineages, Lyn is expressed in both hematopoetic and neuronal cells (Brown and Cooper, 1996). The defective integrin signaling phenotype of the SYF cells also argues against expression of other cell type-specific Src family members in SYF cells (Klinghoffer et al., 1999). Indeed, no band was detected in SYF fibroblasts by using a SRC-2 antibody that recognizes the C-terminus of Src family kinases (data not shown). It seems that a non-Src family kinase may be responsible for the phosphorylation of RPTPα Tyr-789.

Interestingly, we found that the phosphorylation RPTPα Tyr-789 was profoundly inhibited by a Src kinase inhibitor PP1 (Hanke et al., 1996) in HAECs and even in SYF cells lacking Src family kinases, but was not affected by another Src kinase inhibitor herbimycin A (Ogino et al., 2004) in SYF cells. Of note, the phosphorylation of RPTPα Tyr-789 was inhibited 88% by PP1, whereas the phosphorylation of Src activation loop conserved tyrosine Tyr-418 that represents Src activation (Yamaguchi and Hendrickson, 1996) was inhibited only 40% by PP1 in HAECs, suggesting involvement of a Src-independent mechanism. Indeed, PP1 also inhibits other tyrosine kinases, including Kit and Bcr-Abl tyrosine kinases (Tatton et al., 2003). We found that AG-957 (Anafi et al., 1992), a potent inhibitor of Bcr-Abl and c-Abl, but not GTP-14564 (Murata et al., 2003), a selective inhibitor of class III receptor tyrosine kinases including Kit, markedly inhibited the phosphorylation of Tyr-789 in SYF cells through a distinct mechanism from PP1 by causing a mobility shift of RPTPα. Whether c-Abl is directly involved in Tyr-789 phosphorylation remains to be investigated. Moreover, the pharmacological studies revealed that platelet-derived growth factor receptor kinase, epidermal growth factor receptor kinase, Syk and
Bruton’s tyrosine kinases may not be involved in the phosphorylation of RPTPα Tyr-789. These findings suggest that a PP1-sensitive but Src-independent tyrosine kinase (probably not Kit) may be responsible for the phosphorylation of RPTPα Tyr-789. This notion was further supported by the finding that the phosphorylation of Tyr-789 was inhibited by a general tyrosine kinase inhibitor genistein in SYF cells. In addition, we found that the phosphorylation of RPTPα Tyr-789 was also sensitive to rottlerin in cells. Although rottlerin is originally identified as an inhibitor of PKCδ (Gschwendt et al., 1994), it readily suppresses cellular ATP levels (Soltoff, 2001). We found that neither PKCδ wild type nor the kinase-dead mutant (kindly provided by Dr. Trevor Biden) affected the phosphorylation of RPTPα Tyr-789, indicating that the phosphorylation of Tyr-789 is regulated by rottlerin in a PKCδ-independent mechanism (data not shown).

RPTPα that can be oxidized and inhibited by H₂O₂ is emerging as an important redox sensor in cells (Blanchetot et al., 2002). However, it is not known whether oxidative stress could regulate the phosphorylation of Tyr-789, a critical residue for RPTPα signaling that modulates the function of Grb2 and the activation of Src family kinases. In the present study, we reported a novel finding that, besides the inhibition of RPTPα activity, H₂O₂ at low to moderate concentrations (50-250 µM) markedly suppressed the phosphorylation of RPTPα Tyr-789 in endothelial cells, E6 fibroblasts, and Src/Yes/Fyn-deficient SYF cells. Remarkably, the phosphorylation of Tyr-789 was inhibited 65% by 5 min treatment of HAECs with as low as 50 µM H₂O₂ and was almost abolished by 250 µM H₂O₂ in all cells examined. Thus, H₂O₂ suppresses RPTPα signaling not only through inhibition of its catalytic activity but also through a reduction in the phosphorylation of Tyr-789. Because the phosphorylation of Tyr-789 is predominantly regulated by a PP1-sensitive but Src/Yes/Fyn-independent tyrosine kinase, it
seems that such a tyrosine kinase phosphorylating RPTPα Tyr-789 may be inhibited by H₂O₂, leading to a reduction in Tyr-789 phosphorylation. Moreover, our data suggest that inhibition of a PTP(s) may be involved in the process since the H₂O₂-induced suppression of Tyr-789 phosphorylation was mimicked by a PTP inhibitor PAO (Garcia-Morales et al., 1990). The hypothesis merits further investigation.

In summary, we have obtained substantial evidence indicating that H₂O₂ suppresses the phosphorylation of RPTPα on a Src-independent phosphorylation site Tyr-789, which may offer new insights into the redox regulation of RPTPα signaling.

Acknowledgments

We thank Dr. Jan Sap for E6 and E3 fibroblasts, Dr. Steven K. Hanks for SrcY529F mutant, Dr. J. Thomas Parsons for v-Src, and Dr. Trevor Biden for PKCδ wild type and kinase-dead mutant.
References

Brasher BB and Van Etten RA (2000) c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines. *J Biol Chem* **275**:35631-35637.

Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok BA, and
Connelly PA (1996) Discovery of a novel, potent, and Src family-selective tyrosine kinase

Hunter T (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation

Kaplan R, Morse B, Huebner K, Croce C, Howk R, Ravera M, Ricca G, Jaye M, and
family of receptor-linked protein-tyrosine-phosphatases expressed in brain. *Proc Natl Acad

quione epoxide inhibitor of Bruton's tyrosine kinase. *Proc Natl Acad Sci U S A* **96**:2227-
2232.

Klinghoffer RA, Sachsenmaier C, Cooper JA, and Soriano P (1999) Src family kinases are
required for integrin but not PDGFR signal transduction. *EMBO J* **18**:2459-2471.

Science **267**:1782-1788.

Footnotes

a) *This work was supported by National Institutes of Health Grant HL-69806 (to H.T.), American Heart Association Grant 0130038N (to H.T.), and Research Council Grant of the University of Texas Health Center at Tyler (to H.T.).

b) Reprint requests: Hua Tang, Ph.D., Department of Biochemistry, The University of Texas Health Center at Tyler, 11937 US Highway 271, Tyler, Texas 75708
 Tel: 903-877-7938; Fax: 903-877-2881; E-mail: hua.tang@uthct.edu
LEGENDS FOR FIGURES

Fig. 1. H$_2$O$_2$ inhibits RPTP$_\alpha$ activity and suppresses the phosphorylation of RPTP$_\alpha$ on Tyr-789 in various cultured cells. A, time-dependent effect of H$_2$O$_2$ (250 μM) on the catalytic activity of RPTP$_\alpha$ in HUVECs. The phosphatase activity was evaluated by the extent of 32P release from 32P-labeled Tyr-Raytide. Values are mean ± SEM. *P<0.05 vs control. B-D, E6- RPTP$_\alpha^{+/+}$ and E3-RRPTP$_\alpha^{-/-}$ fibroblasts (B), HAECs (C), and HUVECs (D) were treated with H$_2$O$_2$ (250 μM) for the indicated time periods. E, E6-RPTP$_\alpha^{+/+}$ cells were left untreated (control) or pretreated with N-acetyl cysteine (NAC, 6 mM) for 1 h and then incubated without or with H$_2$O$_2$ (250 μM) for 10 min. Lysates from B to E were subjected to immunoblotting (IB) with RPTP$_\alpha$ (pY789) antibody that recognizes Tyr-789-phosphorylated RPTP$_\alpha$. The phosphorylation of Tyr-789 is also shown as percentage of untreated individual control cells determined by densitometric analysis from three independent experiments. The same blot was stripped and reprobed with a RPTP$_\alpha$ antibody to show the equal loading. F, HUVECs were treated without (-) or with (+) H$_2$O$_2$ (250 μM) for 10 min. RPTP$_\alpha$ was immunoprecipitated (IP) and subjected to immunoblotting with Grb2 or RPTP$_\alpha$ antibodies. Representative immunoblots of three (B-E) or two (F) independent experiments are shown.

Fig. 2. Dose-dependent suppression of RPTP$_\alpha$ Tyr-789 phosphorylation by H$_2$O$_2$. E6-RPTP$_\alpha^{+/+}$ fibroblasts (A) or HAECs (B) were treated with various concentrations of H$_2$O$_2$ for 10 min, and lysates were subjected to immunoblotting (IB) with RPTP$_\alpha$ (pY789) antibody. The phosphorylation of Tyr-789 is also shown as percentage of untreated control cells determined by
densitometric analysis. The same blot was stripped and reprobed with a RPTPα antibody to show the equal loading. Representative immunoblots of three independent experiments are shown.

Fig. 3. PP1-sensitive phosphorylation of RPTPα on Tyr-789. A, HAECs were treated 15 min with H_2O_2 (250 μM) or 30 min with PP1 (10 μM), GFX109203X (GFX, 10 μM), rottlerin (10 μM), or BAPTA-AM (50 μM). B, HAECs were left untreated (-) or pretreated with various inhibitors as shown in Fig. 3A and then incubated without (-) or with H_2O_2 (250 μM) for 15 min. Lysates were subjected to immunoblotting (IB) with RPTPα (pY789) antibody. The phosphorylation of Tyr-789 is also shown as average percentage of untreated control cells determined by densitometric analysis from two independent experiments. The same blot was stripped and reprobed with a RPTPα antibody to show the equal loading. Representative immunoblots of two independent experiments are shown.

Fig. 4. PP1-sensitive but Src/Yes/Fyn-independent phosphorylation of RPTPα on Tyr-789. A, HAECs were transiently transfected with vector alone or SrcY529F mutant and then treated without or with PP1 (10 μM) for 30 min or H_2O_2 (250 μM) for 10 min. B and C, 293 cells or SYF cells were transiently transfected with vector alone, v-Src or SrcY529F as indicated. D and E, SYF cells were left untreated (control) or treated for 30 min with PP1 (10 μM), herbimycin A (10 μM), AG-1295 (50 μM), AG-1478 (250 nM), genistein (300 μM), peceatannol (50 μM), GTP-14564 (1 or 5 μM), AG-957 (10 or 20 μM), or terreic acid (50 μM) as indicated. Lysates from A to E were subjected to immunoblotting (IB) with antibodies against RPTPα (pY789), Src (pY418), Cas (pY410) or RPTPα. The phosphorylation of RPTPα Tyr-789 or Src Tyr-418 is also shown as mean percentage or fold over untreated control cells determined by densitometric
Fig. 5. H₂O₂ suppresses the phosphorylation of RPTPα Tyr-789 in SYF Cells lacking Src/Yes/Fyn. A, SYF cells lacking Src/Yes/Fyn were treated with H₂O₂ (250 μM) for the indicated time periods. B, SYF cells were left untreated (-) or treated 10 min with H₂O₂ (250 μM) or 20 min with PAO (20 μM) or NaF (10 mM). PAO+H₂O₂ indicates that SYF cells were pretreated 10 min with PAO and then incubated with H₂O₂ (250 μM) for 10 min in the presence of PAO. Lysates were subjected to immunoblotting (IB) with RPTPα (pY789) or Abl (pY412) antibodies. The phosphorylation of Tyr-789 is also shown as mean percentage of untreated control cells determined by densitometric analysis from three independent experiments. The same blot was stripped and reprobed with a RPTPα antibody to show the equal loading. Representative immunoblots are shown.
A: E6 fibroblasts

<table>
<thead>
<tr>
<th>H$_2$O$_2$: 0 100 250 500 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB: RPTPα [pY789]</td>
</tr>
<tr>
<td>(%) 100 40 7.5 9</td>
</tr>
<tr>
<td>-150 kDa</td>
</tr>
<tr>
<td>IB: RPTPα</td>
</tr>
<tr>
<td>-150 kDa</td>
</tr>
</tbody>
</table>

B: HAECs

<table>
<thead>
<tr>
<th>H$_2$O$_2$: 0 50 100 250 500 1000 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB: RPTPα [pY789]</td>
</tr>
<tr>
<td>(%) 100 35 25 15 26 30</td>
</tr>
<tr>
<td>-150 kDa</td>
</tr>
<tr>
<td>IB: RPTPα</td>
</tr>
<tr>
<td>-150 kDa</td>
</tr>
</tbody>
</table>

Figure 2
Figure 3
Figure 5