Erlotinib, an Effective Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor, Induces p27^{KIP1} Upregulation and Nuclear Translocation in Association with Cell Growth Inhibition and G1/S Phase Arrest in Human Non-Small Cell Lung Cancer Cell Lines

Yi-He Ling, Tianhong Li, Ziqiang Yuan, Missak Haigentz, Jr., Thomas K. Weber, and Roman Perez-Soler

Department of Oncology (Y.H.L., T.L., M.H., R.P-S)
Department of Molecular Genetics (Z.Y., T.K.W)
Albert Einstein College of Medicine
Bronx
New York
Running title: G1/S Arrest and p27 Upregulation by EGFR TK Inhibitor

Address Correspondence to:

Roman Perez-Soler, MD
Department of Oncology
Montefiore Medical Center
111 East 210th Street
Hofheimer 100
Bronx, New York 10467
Tel: 718-920-4001
Fax: 718-798-7474
Email: rperezso@montefiore.org

Number of text pages: 42
Number of tables: 0
Number of figures: 7
Number of references: 49
Number of words in
Abstract: 257
Introduction: 678
Discussion: 1467

Abbreviations: BrdU, bromodeoxyuridine; CDK, cyclin dependent kinase; CIP/KIP, cyclin inhibitory protein/kinase inhibitory protein; EGFR, epidermal growth factor receptor; FACS, fluorescence-activated cell sorting, NSCLC, non-small cell lung cancer; PAGE, polyacrylamide gel electrophoresis; Rb, retinoblastoma; RT-PCR, reverse transcription-polymerase chain reaction; siRNA, small interfering RNA; TKI, tyrosine kinase inhibitor.
Abstract

Erlotinib, a small molecule EGFR tyrosine kinase inhibitor, has been shown to have potent antitumor effects against human NSCLC cell growth; however, the mechanism of such effect is not elucidated. Here, we demonstrate that erlotinib-induced cell growth inhibition in EGFR high expressing human H322 NSCLC cells was accompanied by G1/S phase arrest, which was largely due to a decrease in expression of G1/S-related cyclins, suppression of activities of CDK2 and CDK4, induction of CDK inhibitor p27^KIP1, and Rb hypophosphorylation. To further understand the role of p27^KIP1 in G1/S arrest and cell growth inhibition by erlotinib, we determined its effect on the expression of p27^KIP1 at transcriptional and posttranscriptional levels. Studies using real-time RT-PCR analysis and p27 promoter-driven luciferase reporter showed that erlotinib treatment resulted in the promotion of p27 gene transcription. In addition, erlotinib treatment led to an increase in p27^KIP half-life by inhibiting p27^KIP1 phosphorylation at Thr 187 and by down-regulating Skp2 expression. Furthermore, immunofluorescence staining and cell fractionation showed that erlotinib treatment led to p27^KIP1 translocation to the nucleus. Knockdown of p27^KIP1 expression with p27^KIP1 siRNA significantly abrogated erlotinib-induced G1 phase arrest and cell growth inhibition, suggesting that induction of p27^KIP1 is required for G1 arrest and cell growth inhibition by erlotinib. Importantly, we found that G1 arrest and p27^KIP1 up-regulation by erlotinib occurred in the tested sensitive cell lines, but to lesser extent in the resistant cell lines. Taken together, these results suggest erlotinib inhibits human NSCLC cell growth predominantly by inducing p27^KIP1 expression and by suppressing cell-cycle events involved in the G1/S transition.
Introduction

Cell cycle control plays a fundamental role in cell differentiation, proliferation and cell growth. The proper regulation of the cell cycle machinery, including cyclins, cyclin-dependent kinases (CDKs) and CDK inhibitors is essential for control of cell growth (Sherr et al., 1994; Chellappan et al., 1998). Several lines of evidence have demonstrated that growth factors trigger cascades of intracellular signals that lead to activation of nuclear transcriptional factors that activate cyclin/CDK complexes; active cells pass the G1 checkpoint and embark on DNA replication in S phase (Matsushima et al., 1991). G1/S transition is positively controlled by two families of cyclin-dependent kinases (CDKs) including the complexes of CDK2/cyclin E and cyclin A or the complexes of CDK4/cyclin D or CDK6/cyclin D. In contrast, the complexes of CDK inhibitors can be subdivided into two families including the INK4 family, consisting of p16^{INK4a}, p15^{INK4b}, p18^{INK4c} and p19^{INK4d} and KIP/CIP families consisting of p21^{WAF1/CIP}, p27^{KIP1} and p57^{KIP2} (Sherr and Roberts, 1999). Other critical events for the G1/S transition are Rb protein phosphorylation and the release of its regulatory E2F proteins, which translocate to the nucleus and induce transcription of target genes that are required for cell proliferation (Weinberg et al., 1995; Dyson, 1998).

The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor of the ErbB family. Upon ligand binding, EGFR may either homodimerize or heterodimerize, resulting in transautophosphorylation (Yarden and Sliwkowski, 2001). The tyrosine-phosphorylated EGFR then served as a docking molecule to initiate the activation of downstream pathways, including the activation of PI3/AKT (promoting cell survival) and/or the activation of Raf/Ras/MAP kinase cascades (associated with cell proliferation) (Salomon et al., 1995). Moreover, EGFR and its family are implicated in regulation of cell growth, transformation, and apoptosis (Klapper et al.,
Many tumor cells, especially epithelial-cell-derived tumors, express elevated levels of EGFR or express mutant versions of ErbB family members. A number of reports have demonstrated high expression of EGFR in NSCL cells (Haeder et al., 1988; Scagliotti et al., 2004). As increased EGFR expression is known to correlate with poor clinical outcome in patients with NSCLC, the EGFR has been considered a potential therapeutic target. In recent years, several compounds have been developed that directly target the EGFR signaling pathway and have significant anticancer activity (Herbst and Bunn, 2003; Noonberg and Benz, 2000).

Erlotinib (Tarceva™, OSI-774) is an orally bioavailable quinazoline derivative which selectively inhibits the EGFR tyrosine kinase by competitively inhibiting the intracellular ATP binding domain and blocking signal transduction pathways implicated in cell proliferation and survival of cancers (Moyer et al., 1997; Pollack et al., 1999). Preclinical studies demonstrated erlotinib’s potent activity against tumor cell growth accompanied by suppression of EGFR activation. Erlotinib as a single agent has demonstrated significant clinical activity even in previously treated patients with NSCLC and has improved patient survival in a randomized, placebo-controlled trial (Shepherd et al. 2005), and recently it has been approved by FDA as the second/third line for treatment of patients with NSCLC. Although erlotinib has marked antitumor activity in both in vitro and in vivo systems, the mechanisms of its antitumor effects remain to be elucidated. In this work, we utilized the erlotinib-sensitive human H322 NSCLC cell line as model to examine the effects of erlotinib on cell proliferation and cell cycle machinery. Our results demonstrate that erlotinib treatment causes cells to accumulate at G1/S phase accompanied by a decline in the expression of G1-related regulators, remarkable suppression of CDK2 and CDK4 activities, and induction of CDK inhibitor p27KIP1. In addition, we found that erlotinib treatment resulted in Rb hypophosphorylation. Moreover, we found that
erlotinib induces p27KIP1 accumulation via promotion of p27KIP1 transcription and protein stabilization. Erlotinib treatment resulted in p27KIP1 translocation to the nucleus. Knockdown of p27KIP1 expression with p27 siRNA caused abrogation of G1 phase arrest and cell growth inhibition by erlotinib. Importantly, we observed a direct relationship between G1 phase arrest and cell sensitivity to erlotinib in several human NSCLC cell lines. The results provide insights into the cell cycle effects of erlotinib and may be used as potential surrogate endpoints of drug action in clinical studies.

Materials and Methods

Chemicals. Erlotinib was supplied by OSI Pharmaceuticals Inc. (Melville, NY), dissolved in DMSO (10 mM) as a stock solution and diluted to the required concentration with RPMI-1640 medium. The following antibodies were used for immunoblot analysis, immunoprecipitation, and immunostaining: monoclonal antibody to cyclin A (Upstate Biotechnology, Lake Placid, NY), monoclonal antibody to cyclin D1 (HD11, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) and polyclonal antibody to cyclin D1 (M-20, Santa Cruz), monoclonal antibody to cyclin D2 (Ab-2, Calbiochem, La Jolla, CA), monoclonal antibody to cyclin D1 (M-20, Santa Cruz), monoclonal antibody to cyclin D2 (Ab-2, Calbiochem, La Jolla, CA), monoclonal antibody to cyclin E (Ab-1, Calbiochem), monoclonal antibody to CDK2 (D-12, Santa Cruz) and CDK4 (BD Pharmingen, Inc. San Diego, CA), monoclonal antibody to p21WAF1/CIP1 (EA10, Calbiochem), p27KIP1 (F-8, Santa Cruz), and p16INK4a (50.1, Santa Cruz), monoclonal antibody to Rb, and polyclonal antibodies to p-Rb Ser795 and Ser780 (Cell Signaling, Beverly, MA), monoclonal antibodies to E2F1 (KH95, Cell Signaling) and polyclonal antibodies to SKP2, p-p27KIP1 Thr178 (Santa Cruz), polyclonal anti-Sp1 antibody (PEP-2, Santa Cruz), polyclonal antibodies to EGFR, p-EGFR, AKT and p-AKT (Cell
Signaling), polyclonal antibodies to ERK and p-ERK (Promega, Madison, WI). Other chemicals were obtained from Sigma Chemical Co. (St. Louis, MO).

Cell Lines and Cell Culture. Human non-small cell lung cancer cell lines (H322, H358, A431, H460, A549, H596, and H1299), and human skin epidermoid carcinoma A431 cells were purchased from ATCC (Manassas, VA). Human head and neck carcinoma HN5 cell line was a generous gift from OSI Pharmaceuticals (Uniondale, NY). All cell lines were grown in RPMI-1640 medium with 10% fetal bovine serum in a humidified air atmosphere with 5% CO2.

Cell Growth Assay. Exponentially growing cells (2x10^4 cells/well) were plated on a 96-well plate overnight. After cell attachment, cells were exposed to various concentrations of erlotinib at 37°C for 72 h. After exposure, cell survival fractions were assessed by viable cell count with trypan blue exclusion or by colormetric assay based on the reduction of 3-(4, 5-dimethylthioiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT).

Cell Cycle Assay. H322 cells were exposed to various concentration of erlotinib for 24 h or to 2 µM erlotinib for the indicated times. Cells were washed twice with cold PBS solution, and harvested by trypsinization. After fixing with cold 75% ethanol overnight, cells were stained with 1 µg/ml of propidium iodide and exposed to 5 µg/ml RNase I at room temperature for 3 h. The cell cycle distribution was assessed by FACS flow cytometer analysis (BD Biosciences, San Joes, CA). For determination of BrdU incorporation into DNA, cells were treated with 2 µM erlotinib for the indicated time, and then 10 µM BrdU were added into cell culture. After
incubation for 1 h, the incorporated BrdU was detected with a FITC-BrdU assay kit according to the manufacturer’s instruction (Calbiochem, Cambridge, MA).

Immunoblot Analysis. Cells were lysed with lysis buffer containing 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM NaF, 1 mM PMFS, 1mM DTT, 20 µg/ml leupeptin, 20 µg/ml aprozin, 0.1% Triton X-100, and 1% SDS at 0-4°C for 15 min. Equal amounts of lysates (50 µg of protein) were subjected to electrophoresis on either 7% or 12% SDS-PAGE. Following electrophoresis, protein blots were transferred to a nitrocellulose membrane and probed with the corresponding primary antibodies. The detected protein signals were visualized by an ECL reaction system (Amersham, Arlington Heights, IL).

CDK Kinase Assay. Cells were exposed to 2 µM erlotinib for the indicated times and harvested by trypsinization. Cells were suspended in a lysis buffer on an ice-bath for 10 min. After centrifugation at 15,000 x g at 4°C for 10 min, the supernatant was collected for immunoprecipitation. Equal amounts of supernatant (500 µg of protein) were incubated with 2 µg of anti-CDK2 or anti-CDK4 antibodies and 25 µl of protein A/G conjugated agarose beads at 0-4°C overnight. Following washing three times with lysis buffer, immunoprecipitates were incubated at 30°C for 15 min in 30 µl of reaction mixture containing 20 mM HEPES, pH 7.4, 10 mM p-nitropheny phenylphosphonate, 20 mM MgCl₂, 1 mM EDTA, 1 mM Na₂VO₄, 1 µM ATP, 1 µCi of [γ-³²P]ATP (Amersham, Arlington Heights, IL), and 5 µg of histone H1 (Sigma) as a substrate for CDK2 assay or 5 µg of Rb fusion protein (Cell Signaling) as a substrate for CDK4 assay. The reaction was terminated by addition of 2x SDS-PAGE sample buffer. After boiling for 5 min, the supernatants were collected by centrifugation at 15,000 x g for 5 min and then
subjected to a 12% SDS-PAGE. Activities of CDK2 and CDK4 were determined by autoradiography of the dried gels.

Subcellular Fractionation. Cells were treated with 2 µM erlotinib or with the same volume of medium contained 0.1% DMSO as a control for 24 h, washed twice with cold PBS solution, and harvested by trypsinization. Cells were suspended in an ice-cold nuclei isolation buffer containing 10 mM HEPES (pH 7.5), 1.5 mM MgCl₂, 10 mM KCl, 0.5 mM DTT, 1% Triton X-100, and incubated on an ice-bath for 5 min. After centrifugation at 800 x g at 4°C for 5 min, the supernatant was collected as a cytosolic fraction. The pellets were resuspended in lysis buffer containing 1% SDS, and following incubation on an ice-bath for 5 min, the lysate was centrifuged and supernatant was collected as a nuclear fraction. After determination of protein concentration with a BioRad DC protein assay kit, equal amounts (50 µg of protein) of cytosolic and nuclear fractions were subjected to 15% SDS-PAGE, and p27KIP1 was detected by immunoblot analysis as described above.

Real-Time RT-PCR Analysis. Total RNA was isolated from H322 cells following treatment with 2 µM erlotinib for the indicated times by phenol/chloroform extraction, and cDNA was produced with Superscript II reverse transcription (Life Technologies, Inc., Carlsbad, CA). The standard real-time RT-PCR was preformed using the following primers: p27 primers, forward 5’-CTGCCCTCCCCAGTCTCTCT-3’ and reverse 5’-CAAGCACCTCGGATTTT-3’; ß-actin primers, forward 5’-GATGAGATTGGCATGGCTTT-3’ and reverse 5’-CACCTTCACCCTCAGTTT-3’. All assays were performed using duplicate samples of reverse transcriptase product. The mRNA expression of p27 was normalized using the
dCt=[Ct(p27)-Ct(β-actin)] method (Livak and Schmittgen, 2001). The increased folds of p27 mRNA were calculated as relative to p27 mRNA level at time 0.

Luciferase Activity Assay. p27 promoter containing luciferase reporter construct and cDNA empty vector was the gift from Dr T. Sakai (Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan) (Inoue et al., 1999). H322 cells were transiently transfected with p27 luciferase reporter cDNA or with cDNA empty vector by a Lipofectamine kit (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions. After transfection, cells were treated with 2 µM erlotinib or with the same volume of medium contained 0.1% DMSO as a control for the indicated times and then harvested in 1x lysis buffer. Luciferase activity was measured by the luciferase assay system kit (Promega, Madison, WI). For normalization of transfection efficiency, 2 µg of renilla (sea pansy) luciferase expression plasmid (pRL-TK vector, Promega, Madison, WI) was included in the transfection.

p27 siRNA Transfection. P27 siRNA and nonspecific siRNA were purchased from Dharmacon (Lafayette, CO), and transfections of p27 siRNA and nonspecific siRNA were preformed by oligofectamine (Invitrogen, Carlsbad, CA) according to the manufacturer’s instruction. After p27 siRNA transfection, cells were exposed to 2 µM erlotinib or the same volume of medium as a control at 37°C for 24 h. Cells were washed twice with cold PBS solution, and cell pellets were divided into two aliquots. One was for cell cycle analysis by FACS analysis as described above. The other was prepared for determination of p27 expression by immunoblot analysis. For determination of cell growth, cells were plated on a 12-well plate and transfected with p27 siRNA or without siRNA as control. P27 siRNA transfected and untransfected H322 cells were
exposed to 2 µM erlotinib or to the same volume of medium as control for the indicated times. At the specified time point, cells were harvested by trypsinization, and the viable cell numbers were assessed by trypan blue exclusion.

Immunofluorescence Staining. Cells were plated on a glass cover and treated with 2 µM erlotinib or with the same volume of medium contained 0.1% DMSO as a control for 24 h. After treatment, cells were washed twice with cold PBS solution, fixed with 4% paraformaldehyde in PBS solution at room temperature for 15 min and then treated with 1% NP-40 in PBS solution for 30 min. After blocking with 5% bovine serum albumin in PBS solution for 30 min, cells were incubated with anti-p27KIP1 antibodies (1:500) at room temperature for 1 h. After washing three times with PBS solution, cells were incubated with fluorescence FITC-conjugated secondary antibodies (1:1000) and 100 ng/ml of DAPI for 30 min in a dark room. The immunofluorescence signals were visualized with a Nikon Eclipse E400 fluorescence microscope.

Data Analysis. Data are presented as mean ± S.D. of three independent experiments. The comparisons were made with a t test, and the difference was considered to be statistically significant if the p value was <0.05.

Results

Erlotinib Induces the Inhibition of H322 Cell Growth and G1/S Phase Arrest. Initially, we determined the effects of erlotinib on H322 cell growth inhibition in medium containing 10% fetal bovine serum. Exposure to erlotinib at 0.2 to 10 µM for 24, 48 and 72 h caused cell growth
inhibition in a concentration- and time-dependent manner. The results shown in Fig. 1A indicate that erlotinib at 0.2 µM did not markedly inhibit cell growth, but at 2 and 10 µM caused about 30-43% inhibition at 24 h, 40-65% inhibition at 48 h and 56-85% inhibition of cell growth at 72 h (p< 0.01). To further examine whether erlotinib could inhibit cell proliferation, we determined DNA synthesis in H322 cells following treatment with erlotinib, and found that erlotinib significantly inhibited DNA synthesis in a dose-dependent manner after 24 to 48 h treatment (data not shown). Under similar experimental conditions, inhibition of cell growth and DNA synthesis was observed in the human H358 NSCLC cell line (data not shown), indicating that the inhibition of cell growth and proliferation by erlotinib is not restricted to H322 cells.

Given the previously reported data that erlotinib causes HN5 and A431 cells to accumulate at the G1 phase (Moyer et al., 1997; Polack et al., 1999), we sought to extend these findings to H322 cells. An accumulation of cells at G1 phase and reduction of S and G2-M phase cells occurred in H322 cells following treatment with different concentrations of erlotinib for 24 h or with 2 µM erlotinib for the indicated times. Erlotinib exposures from 2 to 10 µM resulted in a range of ~80% of cells at G1 phase compared with 52% of control cells at G1 phase (Fig. 1B).

The time course studies demonstrate that erlotinib-induced G1 phase arrest (~70% of cells) at 12 h, reached a maximum (~81%) at 24 h and remained high over experimental periods (Fig. 1C). Furthermore, we utilized BrdU incorporation into DNA to determine the effect of erlotinib on cell-cycle progression from G1 to S phase transition. As shown in Fig. 1D, the numbers of BrdU positive cells standing for the cell cycle at S phase were dramatically reduced by ~7% after 24 h exposure to 2 µM erlotinib compared with ~38% of BrdU-incorporated cells at time 0, and dropped to complete abolishment (~2%) after 48 h exposure. The results show that erlotinib
induces cell growth inhibition accompanied by a strong blockade of cell-cycle progression from G1 to S phase.

Effects of Erlotinib on the Expression of G1/S-Related Cell Cycle Regulators, CDK Kinase Activity, and Rb-Phosphorylation. Next, we investigated the effect of erlotinib on intracellular expression of cyclins A, E, D1, D2 and CDK2 and CDK4 by immunoblot analysis. With H322 cells exposed to 2 \(\mu \)M erlotinib for the indicated periods, reduction of intracellular levels of cyclin E, and CDK2 occurred at 12 h and reduction of cyclin A level started at 24 h; the extents of reduction of these regulators were gradually increased thereafter. In contrast, the levels of CDK inhibitor p27\(^{KIP1}\) were significantly induced in a time-dependent manner, i.e., the endogenous amounts of p27\(^{KIP1}\) were barely detected at time 0-8 h but was clearly induced after 12 h post treatment and increased thereafter. The level of p21\(^{WAF1/CIP}\) was barely detectable in H322 cells over times (data not shown), and the level p16\(^{IKK4a}\) was unchanged over experiment periods (Fig. 2A). Furthermore, we found that erlotinib treatment resulted in a time-dependent suppression of CDK2 activity as measured by use of histone H1 as a substrate as well as reduction of CDK4 activity as assessed using Rb fusing protein as a substrate (Fig. 2B). The active, phosphorylated Rb is thought to play a critical role in regulation of cell cycle progression at the G1/S phase transition (Berthet et al., 2006). We therefore examined whether erlotinib-induced G1 phase arrest could be involved in the disruption of Rb phosphorylation. The results shown in Fig. 2C demonstrate that erlotinib treatment led to downregulation of total Rb protein levels and decrease in Rb protein phosphorylation as detected by slow migration of phosphorylated Rb bands in a time-dependent manner, i.e., the reduction of total Rb protein level and its phosphorylation were seen at 12 h post drug treatment and increased over experimental
times. In addition, we compared the inhibitory effect of erlotinib on Rb phosphorylation at different sites probed by immunoblots using the corresponding antibodies, and found that Rb phosphphorylation at Ser780 and Ser795 were notably inhibited after 12 h of erlotinib exposure with similar patterns of inhibition of total Rb phosphorylation. However; p-Ser795 appeared more susceptible to erlotinib than p-Ser 780. For example, Rb p-Ser795 was fully abolished, but only ~60% reduced at Rb p-Ser780 following 24 h of erlotinib exposure.

Erlotinib Induces the Promotion of p27KIP1 Gene Transcription. To further understand the molecular mechanisms of erlotinib action on G1/S phase arrest and the induction of p27KIP1, we examined the effect of erlotinib on p27KIP1 expression at the protein level by immunoblots and at the transcriptional level by real-time RT-PCR analysis in H322 cells following treatment with 2 µM erlotinib for the indicated times. The results as shown in Fig 3A demonstrate that erlotinib treatment results in the induction of p27KIP1 at both protein and mRNA levels in a time-dependent manner. The time course study indicates that the elevation of p27KIP1 protein amount coincides with increase in p27KIP1 mRNA levels. Real-time RT-PCR results show that erlotinib treatment results in about 2.8 fold and 4.6 fold increase in p27KIP1 expression at 24 h and 48 h, respectively. Next, we explored whether this effect could be due to an activation of the p27KIP1 transcriptional promoter. H322 cells were transiently transfected with a cDNA construct containing luciferase reporter, controlled by promoter regions of human p27KIP1 (p27 Luc, from -3568 to -549), or with an empty cDNA vector as a control. As shown in Fig. 3B, erlotinib treatment led to a notable and time-dependent activation of p27KIP1 promoter as measured by luciferase activity. All results suggest that the induction of p27KIP1 by erlotinib may be at least in part due to the activation of p27KIP1 at the transcriptional level.
Erlotinib Induces p27KIP1 Protein Stabilization. Aside from induction of p27KIP1 transcription, the increase in the intracellular amount of p27KIP1 could be due to reduction of p27KIP1 protein degradation via suppression of its phosphorylation at Thr 187 or interaction with the SKP2-mediated ubiquitin/proteasome pathway (Tsvetkov et al., 1999). To test this possibility, we examined p27KIP1 phosphorylation at Thr-187 and the expression of SKP2 in H322 cells following treatment with 2 µM erlotinib for the indicated times. The results shown in Fig. 4A demonstrate that erlotinib treatment caused a time-dependent reduction of p27KIP1 phosphorylation at Thr-187 and decrease in SKP2 expression. Interestingly, the time point at which the reduction of p27KIP1 p-Thr-187 and SKP2 occurred (12 h after erlotinib treatment) was tightly consistent with the accumulation of p27KIP1. To further test the hypothesis that the increased level of p27KIP1 protein in erlotinib-treated cells is due to stabilization of p27KIP1 protein, we determined the effect of erlotinib on p27KIP1 stability in a pulse-chase experiment. The results as shown in Fig. 4B indicate that p27KIP1 protein was rapidly degraded with calculated half life time (t1/2) of ~1.8 h in control cells, while, the p27KIP1 protein was stable with t1/2 of ~6 h in erlotinib-treated cells. The accumulation of p27KIP1 protein in cells treated with erlotinib may be due to activation of p27KIP1 transcriptional level and/or increase in p27KIP1 stabilization.

Erlotinib Induces Nuclear Localization of p27KIP1 Protein. Recent reports suggest that p27KIP1-mediated G1 phase arrest and suppression of cell growth was associated with subcellular localization of p27KIP1 from the cytoplasm to nucleus (Liang et al., 2002). Here, we sought to determine whether erlotinib-induced cell G1/S arrest could be involved in alteration of p27KIP1 subcellular localization. First we performed immunofluorescence staining experiments to
observe the localization of p27KIP1 in H322 cells following 24 h of exposure to 2 \textmu M erlotinib or with the same volume of medium contained 0.1\% DMSO as a control. Fig. 5A shows a representative example of immunofluorescence staining which shows that erlotinib treatment leads to p27KIP1 localization in the nucleus (48 \pm 10\% of cells), compared with that in control cells (only 9 \pm 7\% of cells with p27KIP1 staining in nucleus). Furthermore, we preformed cell fractionation to determine the levels of p27KIP1 in cytosolic and nuclear fractions by immunoblot analysis. We consistently found that p27KIP1 was predominately detected in the nuclear fraction, and to a lesser extent in cytosolic fraction in erlotinib-treated cells, while low levels of p27KIP1 protein were detected in both cytosolic and nuclear fractions of untreated cells (Fig. 5B). These results suggest that the accumulation of p27KIP1 protein in the nucleus may be one event in the response to erlotinib-induced G1/S phase arrest and cell growth inhibition.

Effect of Knockdown of p27KIP1 Expression by p27 siRNA on Erlotinib-Induced G1 Phase Arrest and Cell Growth Inhibition. Next, we explored whether p27KIP1 accumulation could directly cause the blockade of G1 phase and cell growth inhibition in response to erlotinib stress. For this purpose, we utilized p27 siRNA to down-regulate p27KIP1 expression. As shown in Fig 6A, immunoblot analysis indicated that p27 siRNA transfection specifically led to the knockdown of p27KIP1 protein expression in both erlotinib-treated and control cells; transfection with nonspecific siRNA did not significantly affect erlotinib-induced accumulation of p27KIP1 as compared with that of p27KIP1 changes in untransfected cells. We then determined whether the accumulation of p27KIP1 is required in response to erlotinib-induced G1 arrest and cell growth inhibition. The results from the analysis of cell cycle distribution by FACS flow cytometry showed that the down-regulation of p27KIP1 by siRNA results in a partial decrease in erlotinib-
induced G1 arrest (60% of G1 cells) as relative to about 78% and 72% cells at G1 in untransfected and nonspecific siRNA transfected cells followed treatment with erlotinib (Fig. 6B). Cell growth assessment also demonstrated that down-regulation of p27KIP1 expression by p27 siRNA resulted in a significant reduction of erlotinib-induced cell growth inhibition over experimental periods (Fig. 6C). The data suggest that the increase in p27KIP1 expression by erlotinib contributes to cell cycle arrest at G1 and cell growth inhibition.

Relationship between G1 Phase Arrest and Cell Sensitivity to Erlotinib. G1/S phase arrest may be a major contributor to erlotinib-induced cell growth inhibition in H322 cells. Thus we needed to determine whether there was a relationship between cell cycle response and cell sensitivity to erlotinib. We chose two sensitive NSCLC cell lines (H322, H358), human skin epidermoid carcinoma A431 cells and human head and neck carcinoma HN5 cells, which are known to be sensitive to erlotinib (Moyer et al., 1997; Polack et al., 1999), and four resistant NSCLC cell lines (H460, A549, H596, and H1299 cells) as models and exposed them to erlotinib at 2 µM, which concentration is close to clinically effective doses (Hidalgo et al., 2001). After 72 h of exposure, cell survival was assessed by MTT assay. The results shown in Fig. 7A and B indicate that 2 µM erlotinib causes >50% cell growth inhibition (P<0.01) in all tested sensitive cell lines, but had less effect in all tested resistant cell lines. Consistently, a 24 h exposure to 2 µM erlotinib resulted in significant increase in G1 phase cell accumulation in sensitive cell lines tested, but lesser extents of G1 cell accumulation was observed in resistant cell lines (Fig. 7C and D). Moreover, immunoblot analysis revealed that while erlotinib treatment led to suppression of p-Rb, decrease in cyclin A expression, and induction of p27KIP1 protein in all tested sensitive cells, no noticeable effect was observed in resistant cell lines (Fig. 7E and F). These results
suggest that G1/S phase arrest and the upregulation of p27KIP1 as well as the alteration in the expression of cell cycle regulators may be at least in part associated with NSCLC cell response to erlotinib.

Discussion

In previous work, we have demonstrated that erlotinib as a highly selective EGFR tyrosine kinase inhibitor induced suppression of serum- or EGF-activated EGFR activity and its mediated downstream pathways. Erlotinib inhibits the activation of PKB/AKT, Ras/Raf/MAP kinase, and Stat family in several human NSCLC cell lines (Adjei, 2006). In this work, we demonstrate that erlotinib strongly inhibits H322 cell growth and proliferation and blocks cell cycle progression at G1/S phase transition. To better understand the molecular mechanisms underlying erlotinib-induced cell growth inhibition and cell cycle arrest, we determined the effect of erlotinib on the expression of key regulatory proteins that are required for transition past the G1/S phase restriction point of cell cycle progression. Indeed, we found that erlotinib induced a time-dependent decrease in cyclin A and cyclin E expression, along with inhibition of CDK2 activity. Several reports have demonstrated the G1-phase arrest induced by inhibition of mitogen-activated signal pathways are accompanied by down-regulation of D-types of cyclins and by suppression of CDK4 activity (Baldin et al., 1993). In our work, we found that erlotinib treatment significantly suppressed CDK4 activity but did not markedly affect the levels of cyclin D1 and CDK4 in H322 cells. To certify our conclusions, we utilized two different epitope mapping anti-cyclin D1 antibodies to determine cyclin D1 levels in lysates from erlotinib treatment, and obtained the similar results, indicating that the results should be believable. In addition, our preliminary results showed that erlotinib induced G1 phase arrest, but did not
markedly change cyclin D1 expression in H358 cells (data not shown). The reasons for cyclin D level being stable in erlotinib-induced G1 cells remain to be understood. One possibility may be that H322 cells have too high endogenous cyclin D1 to change its levels after erlotinib treatment. In addition, we suggest that erlotinib-induced suppression of CDK4 activity may be mediated via unidentified factors that could be required for the activation of CDK4. Recent reports have demonstrated that inhibition of cyclin A/CDK2, or cyclin E/CDK2 is implicated in the suppression of CDK4 activity (Koff et al., 1992). In this work, we demonstrated that erlotinib treatment causes a time-dependent decrease in the levels of total Rb protein and inhibition of Rb phosphorylation. In addition, erlotinib inhibits Rb phosphorylation at different serine residues, particularly at Ser795, which was more susceptible than that at Ser780, suggesting that erlotinib could act on Rb phosphorylation at specific sites, by which it may specifically affect Rb protein binding to a particular partner. In addition, recent reports have shown that the ERK1/2 pathway may be involved in EGF-induced rapid Rb protein phosphorylation at Ser780 and Ser795 (Guo et al., 2005). We examined whether erlotinib-induced inhibition of Rb phosphorylation at Ser795 or Ser780 could be associated with inhibition of ERK1/2 and/or PI3/AKT related pathways. Our preliminary data show that only erlotinib and U0162, an ERK1/2 inhibitor, but not LY294002, a PI3/AKT inhibitor, caused the suppression of Rb phosphophorylation at Ser795 and Ser780, suggesting that erlotinib-induced Rb hypophosphorylation may be at least in part associated with the inhibition of ERK1/2 related pathways (data not shown).

It has been well established that cyclin-CDK inhibitors CIP/KIP p21, p27, and INK4 p15, p16 and p18 as the negative controllers play important roles in the regulation of cell cycle progression. Recent studies have shown that p21^{WAF/CIP1} and p27^{KIP1} are necessary for the assembly of the cyclinA/CDK4 or CDK6 as well as formation of cyclin A/CDK2 or cyclin
E/CDK2 complexes. Thus an increase in the expression of p21^{WAF/CIP1} and p27^{KIP1} could facilitate assembly of the complexes and result in suppression of the activity of cyclin/CDKs and thereby delay cell cycle progression (Slinglerland and Pagano, 2000). In this work, we determined the effect of erlotinib on the expression of CDK inhibitors, and found that erlotinib did not affect the expression of p16^{INN4a} over experiment times. The endogenous levels of p21^{WAF/CIP1} in H322 cells were barely detectable and erlotinib did not induce p21^{WAF/CIP1} expression. However, we found that p27^{KIP1} levels were markedly induced by erlotinib in a time-dependent manner. The increase in p27^{KIP1} levels tightly correlated with G1/S phase arrest. It has been known that expression of p27^{KIP1} is regulated at transcriptional and posttranscriptional levels in different types of cells (Besson et al., 2006). We found that erlotinib-induced increase in p27^{KIP1} level was mediated through up-regulation of gene transcriptional activity as well as via inhibition of protein degradation. The results from quantitative real-time RT-PCR showed that an increase in p27 mRNA expression was tightly correlation with an increase in p27^{KIP1} protein in cells treated with erlotinib. We also provide evidence that the region from -3568 to -549 of the p27^{KIP1} promoter plays an important role in erlotinib-induced p27^{KIP1} gene transcription. Several reports have shown that the transcriptional regulation of p27^{KIP1} promoter activity appears to be complex and consists of both positive and negative regulatory elements. Multiple transcriptional factor binding sites within the p27^{KIP1} promoter have been characterized including forkhead transcription factor (Dijkers et al., 2000), SP1 (Fisher et al., 2005), and E2F (Wang et al., 2005). Although our results showed that erlotinib caused the upregulation of p27^{KIP1} expression, the mechanism by which erlotinib-induced promotion of p27^{KIP1} gene transcription remains to be further elucidated. Besides activation of gene expression, the increase in p27^{KIP1} level may depend on the posttranslational regulation by the
prevention of proteolytic degradation. Several studies have demonstrated that the ubiquitin-proteasome proteolysis system is a major pathway for the regulation of p27KIP1 levels (Boehim et al., 2002). It has been known that phosphorylation of p27KIP1 at Thr187 by CDK2 prepared p27KIP1 protein for binding to ubiquitin ligase SCF-SKP2 that leads to 26S proteasome degradation (Montagnoli et al., 1999). Consistently, in our study, erlotinib treatment resulted in a time-dependent reduction of p27KIP1 phosphorylation at Thr187 and decrease in SKP2 levels. Overall, our findings suggest that the G1/S phase arrest by erlotinib was at least in part associated with the accumulation of p27KIP1, which was regulated by the promotion of gene expression and decrease in protein degradation. Recent studies have shown that localization of p27KIP1 protein in the nucleus is required to inhibit CDK activation by CDK-activating kinase (Yarslavskiy et al., 1999). In addition, p27KIP1 localization is essential for controlling the cell cycle progression and cell proliferation (Jiang et al., 2000). In this work, we have investigated the effect of erlotinib on p27KIP1 subcellular localization, and found that the p27KIP1 protein was significantly accumulated in the nucleus in erlotinib-treated cells compared with its predominant localization in the cytoplasm in control cells, suggesting that the alteration of p27KIP1 localization may be involved in the cell cycle arrest at G1/S phase and inhibition of cell proliferation. Several reports have shown that phosphorylation of p27KIP1 is an important determinant of its subcellular localization. It has been evident that phosphorylation of p27KIP1 at Thr157 mediated by PKB/AKT results in retention of p27KIP1 in the cytoplasm and prevention of G1 arrest (Shin et al., 2002). Ser10 is another phosphorylation site of p27KIP1 for the nuclear export of the protein mediated by exportin (Viglietto et al., 2002). Consistently, recent studies have showed that the inhibition of p27KIP1 phosphorylation at Thr157 by LY294002 causes p27KIP1 accumulation in the nucleus and cell growth inhibition (Shin et al., 2005). In addition, it has been reported that
inhibition of cyclin E/CDK2 results in the retention of p27KIP1 in nucleus (Ishida et al., 2002). Accordingly, we suggest that erlotinib-induced p27KIP1 accumulation in the nucleus may be due to the suppression of activity of the EGFR-PKB/AKT axis and/or by the reduction of cyclin E/CDK2 as described above. Interestingly, knock-down of p27KIP1 expression by siRNA resulted in the attenuation of G1 phase arrest and significantly overrode the inhibition of cell growth in erlotinib-treated cells, indicating that the induction of p27KIP1 is essential for erlotinib-induced G1 arrest and cell growth inhibition. These results are consistent with studies by Le et al. a. (2003), who showed that reduction of p27KIP1 using p27 siRNA blocked anti-HER2 antibody-induced p27KIP1 upregulation and G1 arrest in breast cancer cells. Finally, our results demonstrate a direct relationship between G1/S phase and cell sensitivity to erlotinib. These results are consistent with other reports, which showed that inhibition of erbB-2 pathways by AG1478 caused G1 phase arrest with accumulation of p27KIP1 and a decrease in the cyclin D1 in the human breast MCF-7/ErbB2 overexpressing cell line (Lenferink et al., 2001). Recently, Nahta et al. showed that downregulation of p27KIP1 in breast cancer cell lines was associated with both an increase in cell cycle S-phase fraction and with cell resistance to trastuzumab, an anti-erbB-2/Neu monoclonal antibody (Nahta et al., 2004). Consistently, we found that induction of p27KIP1 was necessary in response to erlotinib-induced cell growth inhibition and G1/S arrest, suggesting the induction and accumulation of p27KIP1 may be one of the important determinants in response to erlotinib-induced cell cycle blockade and cell growth inhibition.
References

Legends for figures

Fig. 1. Erlotinib induces cell growth inhibition and G1/S phase arrest in H322 cells. (A), Cells were incubated in the presence of 0.2, 2, and 10 µM erlotinib or in the presence of the same of volume of medium contained 0.1% DMSO as a control. At the indicated time point, viable cells were counted by trypan blue exclusion. Each point represents the mean ± S.D. of three independent experiments. (B), Cells were exposed to varying concentrations of erlotinib for 24 h or (C), to 2 µM erlotinib for the indicated time periods. After exposure, cells were stained with propidium iodide, and the cell-cycle distribution was determined by FACS analysis. Each point represents the mean ± S.D. of three independent experiments. (D) The effect of 2 µM of erlotinib on BrdU incorporation into DNA. The typical and reproducible profiles of BrdU incorporation represent a time course study of erlotinib-induced G1/S phase arrest.

Fig. 2. Effect of erlotinib on the expression of cell cycle regulators, CDK activities and Rb protein phosphorylation in H322 cells. (A) Exponentially growing cells were treated with 2 µM erlotinib for the indicated times. After treatment, cells were harvested and prepared for the cell lysate. Equal amounts (50 µg of protein) of cell lysate were subjected to a 12% SDS-PAGE, and the protein blots were detected by immunoblots with the corresponding antibodies. β-Actin was used as a sample loading control. The quantitative analysis of expression of regulators was preformed with a laser scanning densitometer. The increased fold was expressed as comparison with the value at time 0. (B) Erlotinib inhibits the activities of CKD2 and CKD4. After treatment with 2 µM erlotinib for the indicated times, cells were harvested, and CDK2 and CDK4 were immunoprecipitated by the corresponding antibodies. The activity of CDK2 and...
CDK4 was determined by [γ-32P]ATP incorporation into histone H1 or Rb fusion protein as described in Materials and Methods. The relative activity of CDK2 and CDK4 was compared with that at time 0. Each bar represents the mean ± S.D. of three independent experiments. (C), Erlotinib suppresses Rb phosphorylation. Cell lysates were prepared from cells followed exposure to 2 µM erlotinib for the indicated times, and total Rb, and p-Rb at Ser-780 or Ser-795 were detected by immunobLOTS with the corresponding antibodies. β-Actin was used as a sample loading control. The quantitative analysis of each band was performed with a laser scanning densitometer. The increased folds were calculated in comparison with the value at time 0.

Fig. 3. Erlotinib induces the promotion of p27^KIP1 gene expression in H322 cells. (A) Cells were exposed to 2 µM erlotinib for the indicated times. After exposure, cells were harvested and divided into two aliquots. One was for determination of the amount of p27^KIP1 protein by immunobLOTS. β-Actin was used as a sample loading control. The other aliquot was for extraction of total RNA to determine p27^KIP1 mRNA level by using real-time PCR. Each point represents the mean ± S.D. of three independent experiments. (B) H322 cells were transiently transfected with p27 luciferase reporter construct or with cDNA empty plasmid vector. After a 6-h of transfection, cells were washed and incubated in the fresh medium containing 2 µM erlotinib for the indicated times. Luciferase activity was determined with a luciferase assay system kit. Each bar represents the mean ± S.D. of two independent experiments.

Fig. 4. Erlotinib-induced p27^KIP1 accumulation and stabilization mediated by inhibition of phosphorylation of p27^KIP1 at Thr-187, and the level of SKP-2 protein. (A) H322 cells were exposed to 2 µM erlotinib for the indicated times. After exposure, the levels of p27^KIP1, p-
p27KIP1 Thr-187, and SKP-2 were detected by immunobLOTS with the corresponding antibodies. \(\beta\)-Actin was used as a sample loading control. (B) Effect of erlotinib on p27KIP1 stabilization. H322 cells were exposed to 2 \(\mu\)M erlotinib or to the same volume of medium contained 0.1\% DMSO as a control. After 24 h exposure, cells were washed three times with medium, and then reincubated in the fresh medium contained 50 \(\mu\)g/ml of cyclohexamide. After incubation at the indicated time period, cells were taken from culture for determination of the level of p27KIP1 as detected by immunobLOTS with anti-p27KIP1 antibody. The quantitative analysis of p27KIP1 in each time point was performed with a laser scanning densitometer. The relative p27KIP1 level was expressed as compared with the level of p27KIP1 at chase time 0.

Fig. 5. Erlotinib induces p27KIP1 localization to the nucleus. (A) H322 cells were plated at a glass cover overnight, and then exposed to 2 \(\mu\)M erlotinib or to the same volume of medium contained 0.1\% DMSO as a control. After a 24 h of exposure, cells were fixed with 4\% paraformaldehyde for 15 min, and permeibilization with 1\% NP-40 for 30 min. After incubation with monoclonal anti-p27KIP1 antibodies at room temperature for 1 h, cells were incubated with FITC-conjugated secondary antibody and 100 ng/ml DAPI solution for 30 min in dark room. The p27KIP1 localization and DAPI stained nucleus were visualized with a Nikon Eclipse E400 fluorescence microscope. The percentage of cells with a p27KIP1 stained nucleus represents the mean \(\pm\) S.D. of three independent experiments of counting at least 200 cells. (B) Following a-24 h of exposure to 2 \(\mu\)M erlotinib or the same of volume of medium contained 0.1\% DMSO as a control, the extractions of total cell lysates, cytosolic and nuclear fractions were preformed as described in Materials and Methods. The levels of p27KIP1 were detected by immunobLOTS with
monoclonal anti-p27^{KIP1} antibody. β-Tubulin was used as a cytosolic fraction loading control, and c-Jun as a nuclear fraction loading control, respectively.

Fig. 6. **Knockdown of p27^{KIP1} expression by p27^{KIP1} siRNA attenuates erlotinib-induced G1 arrest and cell growth inhibition of H322 cells.** Following transefection with p27^{KIP1} siRNA or with non-specific siRNA, and with the same volume of medium as an untransfection, cells were incubated in the presence of 2 µM erlotinib or the same of medium contained 0.1% DMSO as a control. After 24 h of incubation, cells were taken from culture and divided into two aliquots. One was for the determination of p27^{KIP1} expression by immunoblots with anti-p27^{KIP1} antibody. β-Actin was used as a loading control (A). The other aliquot was for determination of cell cycle distribution by FACS analysis after cell staining with propidium iodide (B). For determination of cell growth, H322 cells were plated on a 24 well plate and transfected with p27^{KIP1} siRNA or with the same volume of medium as a control. After transfection, cells were incubated in the medium in the presence of 2 µM erlotinib or the same volume of medium contained 0.1% DMSO as a control at 37°C for the indicated times. At the time point, cells were harvested and viable cells were assessed by trypan blue exclusion. Each point represents the mean ± S.D. of three independent experiments (C). *p<0.05.

Fig. 7. **Relationship between G1 phase arrest and cell sensitivity to erlotinib in human NSCLC cell lines.** Erlotinib-sensitive cell lines (H322, H358, A431, and HN5) and erlotinib-resistant cell lines (H460, A549, H596, and H1299) were seeded on a 96-well plate and exposed to 2 µM erlotinib or to the same volume of medium contained 0.1% DMSO as a control for 72 h. After exposure, the cell survival in sensitive (A) and resistant cell lines (B) was assessed by
MTT assay. The percentage of cell survival in erlotinib-treated cells was calculated in comparison with the value of control as 100%. Each bar represents the mean ± S.D. of three independent experiments. **p<0.01. For determination of G1 phase arrest by erlotinib, the tested sensitive (C) and resistant cell lines (D) were seeded on a 6-well plate and exposed to 2 µM elorinib or to the same volume of medium contained 0.1% DMSO as a control. After a 24-h of exposure, cells were harvested and divided into two aliquots. One was for the assay of cell cycle distribution by FACS analysis after cell staining with propidium iodide. Each bar represents the mean ± S.D. of three independent experiments. **p<0.01. The other cell aliquots were for the preparation of cell lysates to determine levels of p-Rb, cyclin A, and p27KIP1 by immunoblot analysis. β-Actin was used as a sample loading control. The quantitative analysis of p-Rb, cyclin A, and p27KIP1 in sensitive (E) and resistant cell lines (F) was preformed with a laser scanning densitometer. The increased fold in erlotinib-treated cells was calculated in comparison to the value of control as one.
Footnotes:

Acknowledgements:

1. This work was supported by National Institutes of Health Grants CA91784 and CA96515, and by OSI Pharmaceuticals, Inc.

2. The authors would like to thank Ruoping Lin for technical support.
MOL 34827 Fig. 2A-B

(A) Western blot analysis of various proteins including Cyclin A, Cyclin E, Cyclin D1, Cyclin D2, CDK2, CKD4, p27^KIP, p16^INK4a, and β-Actin. The fold changes are shown for each protein at different exposure times (0, 4, 8, 12, 24, 36, 48 hours).

(B) Graph showing the relative CDK2 activity over Erlotinib exposure time (0, 4, 8, 12, 24, 36, 48 hours). The activity is normalized to the control at 0 hours.

Histone H1 and Rb protein levels are also depicted, showing the expression changes over time.

Molecular Pharmacology Fast Forward. Published on April 24, 2007 as DOI: 10.1124/mol.107.034827

This article has not been copyedited and formatted. The final version may differ from this version.
MOL 34827 Fig. 2C

- **Exposure Time (h)**: 0, 4, 8, 12, 24, 36, 48
- **p-Rb (Ser-780)**
 - Fold: 1, 1, 0.9, 0.5, 0.4, 0.2, 0.1
- **p-Rb (Ser-795)**
 - Fold: 1, 1, 0.9, 0.4, 0.01, 0.01, 0.001
- **β-Actin**
 - Fold: 1, 1, 0.9, 0.4, 0.01, 0.01, 0.001

- p-Rb: 110 kDa
- β-Actin: 43 kDa

This article has not been copyedited and formatted. The final version may differ from this version.

Molecular Pharmacology Fast Forward. Published on April 24, 2007 as DOI: 10.1124/mol.107.034827

Molecular Pharmacology. Published on February 6, 2021 molpharm.aspetjournals.org Downloaded from
MOL 34827 Fig. 3

(A) **WB**

- **p27**^{KIP}
- **β-Actin**

Real-Time PCR

- **Relative p27 RNA Level (Folds of Control)**

(B) **Luciferase Activity (fold of control)**

- **Erlotinib Exposure Time (h)**

- **p27**
- **Vector**

This article has not been copyedited and formatted. The final version may differ from this version.
MOL 34827 Fig. 5
(A) Nonspecific
Untransfected siRNA p27 siRNA
p27KIP1 →
β-actin →
Erlotinib - + - + - +

G1: 54%
S: 30%
G2-M: 16%

G1: 49%
S: 35%
G2-M: 16%

G1: 48%
S: 36%
G2-M: 16%

G1: 60%
S: 21%
G2-M: 19%

(B) Control
Untransfected Nonspecific p27 siRNA
Erlotinib

G1: 78%
S: 3%
G2-M: 19%

G1: 72%
S: 11%
G2-M: 17%

G1: 60%
S: 21%
G2-M: 19%

(C) Viable Cells (1 \times 10^4)

0 25 50 75 100 125 150

0 24 48 72

p27siRNA + Erlotinib
Control + Erlotinib

MOL 34827 Fig. 6
MOL 34827 Fig. 7