Perspective

Messing up with traffic: different effects of antipsychotics on glutamate receptor complexes in vivo

Thomas Del’guidice and Jean-Martin Beaulieu

Department of anatomy and physiology, Université Laval, Cellular Neurobiology Unit, CRULRG, Québec City, Québec, Canada.
Messing up with traffic

Address correspondence to: Dr. Jean-Martin Beaulieu, Cellular Neurobiology Unit, CRULRG, 2601 Chemin de la Canardière, Suite F-6500, Beauport (Québec) G1J 2G3, Canada. Phone: (418) 663-5747 #6888, Fax: (418) 663-8756
E-mail: Martin.Beaulieu@CRULRG.ULAVAL.CA

12 Pages
27 References
1 Figure

Abstract: 230 words
Main Text: 1614 words

Abbreviations: (FGA), First generation antipsychotic; (SGA), second antipsychotic; (PCP), phencyclidine; (GSK-3) glycogen synthase kinase 3; (PSD), post-synaptic densities; (CaMKII), Ca\(^{2+}\)calmodulin (CaM)-dependent protein kinase; (CATIE) Clinical Antipsychotic Trials for Intervention Effectiveness; (PP2A), protein phosphatase 2A
Abstract

Antipsychotics are major drugs for human neuropsychiatric conditions including schizophrenia, mood disorders, Tourette syndrome and Alzheimer’s disease. These drugs are divided in two groups—first-generation/typical and second-generation/atypical—on the base of their propensity to induce extra-pyramidal motor side effects. Furthermore, second-generation antipsychotics have been reported to be superior in addressing cognitive deficits in schizophrenia. Understanding differences between the mechanism of action of first and second-generation antipsychotics thus represents an interesting opportunity for the development of new compounds having better therapeutic action and less side effects. In this issue of Molecular Pharmacology, Fumagalli et al. report that chronic treatment with the first-generation drug haloperidol interferes with the trafficking of both AMPA and NMDA glutamate receptor complexes and associated molecules PSD95 and CaMKII in the rat frontal cortex. In contrast, the second-generation drug olanzapine did not affect glutamate receptor trafficking. The action of haloperidol on glutamate receptor trafficking in specific brain regions may contribute to the low efficacy of this drug on cognitive deficits and to the development of side effects. Overall, antipsychotics have been shown to act upon multiple signaling mechanisms (e.g.: cAMP-PKA, β Arrestin 2-Akt-GSK-3 and PLC-inositol-PKC pathways) mostly by blocking D2-class dopamine receptors (first-generation) or D2-class dopamine and 5-HT2 serotonin receptors (second generation). Identification of specific pathways by which haloperidol affects glutamate receptor trafficking may thus represent an important next step toward the development of better antipsychotic drugs.
Since the introduction of chlorpromazine in the 1950’s, antipsychotics have become the principal therapeutic intervention for schizophrenia. Moreover, these drugs are sometimes used for the management of other neuropsychiatric conditions such as mood disorders, Tourette syndrome and Alzheimer disease. Antipsychotics are divided in two broad categories under the basis of their effects and side effects (Kapur and Remington, 2001; Meltzer, 1991). First generation (FGA) or typical antipsychotic such as chlorpromazine or haloperidol are associated with the development of extra-pyramidal side effects. In contrast, second generation (SGA) or atypical antipsychotic (e.g. clozapine, olanzapine) have lower incidence of extra-pyramidal side effects while still exerting therapeutic action. Some studies have also indicated that SGAs may be superior to FGA in improving cognitive deficits in persons with schizophrenia (Di Pietro and Seamans, 2007; Keefe et al., 2006). However, SGAs are not without problems as their administration can lead to metabolic complications such as diabetes and obesity (Haupt and Kane, 2007). Clozapine can also induce agranulocytosis (Idanpaan-Heikkila et al., 1975), a potentially fatal condition, thus requiring close supervision of patients’ blood granulocytes levels. Furthermore, a recent large scale Clinical Antipsychotic Trials for Intervention Effectiveness (CATIE) has challenged the overall clinical superiority of SGAs over FGAs in clinical practice (Lieberman et al., 2005).

In this context, understanding the molecular mechanisms by which SGAs and FGAs exert their therapeutic action and induce specific side effects is of a tremendous importance for the development of much needed new compounds with antipsychotic actions. At the receptor levels, FGAs are potent antagonists of D2-class dopamine (DA) receptors (Creese et al., 1976) while SGAs are weaker D2-class receptor antagonists...
while also blocking 5-HT₂ serotonin (5-HT) receptors (Meltzer, 1991; Roth et al., 2004; Sheng and Hoogenraad, 2007). Recent evidence have shown that some signaling molecules, notably the serine/threonine kinase glycogen synthase kinase 3 (GSK-3) can be regulated in a similar fashion by both SGAs and FGAs (Beaulieu et al., 2007). However the link between these observations and the pharmacological actions of antipsychotics as not been clearly elucidated.

Ionotropic glutamate receptor complexes AMPA and NMDA are potentially important indirect targets for antipsychotics. These receptors are hetero-multimeric ion-channels whose expression and trafficking are tightly regulated by complex networks of scaffolding proteins and signaling molecules (Sheng and Hoogenraad, 2007). Noncompetitive NMDA/glutamate receptor antagonists, such as ketamine and phencyclidine (PCP) induce psychotic-like responses in human as well as in primate and rodent animal models (Sharp et al., 2001). Furthermore, mice expressing only 5% of the normal level of the NMDA receptor subunit NR1 (NR1KD mice) also display “schizophrenia like” behaviors such as enhanced stereotypy and locomotion as well as deficits in social and reproductive behaviors (Mohn et al., 1999). Importantly, these behavioral abnormalities can be ameliorated by antipsychotics in both NR1KD mice and in rodent treated with noncompetitive NMDA/glutamate receptor antagonists. This suggests that antipsychotics may indirectly affect the regulation of ionotrophic glutamate receptor complexes by blocking DA and/or 5-HT receptor functions.

Few investigations have focused on the impact of antipsychotics on ionotropic glutamate receptor complexes trafficking in the brain. In an article published in this issue of Molecular Psychiatry, Fumagalli et al. used sub-cellular fractioning of brain tissue to
examine the expression and trafficking of glutamate receptor complex proteins to post-synaptic densities (PSD) in response to chronic treatment with antipsychotics (Fumagalli et al., 2008). The authors administrated repeated treatment of two antipsychotics, haloperidol and olanzapine, in adult rats. They found that the SGA olanzapine does not affect the expression or trafficking of NMDA receptor complexes in the frontal cortex and hippocampus. In contrast chronic administration of the FGA haloperidol leads to reduced trafficking of NMDA receptor subunits NR1 and NR2A as well as AMPA receptor subunit GluR1 to PSDs in the rat frontal cortex. These finding expend a recent report by this same group of a similar reductions in NMDA receptor synaptic expression in the striatum in response to chronic haloperidol treatment (Gardoni et al., 2007).

The authors also examined the impact of chronic haloperidol treatment on the expression and trafficking of proteins associated to ionotropic glutamate receptor complexes. The Ca\(^{2+}\)-calmodulin (CaM)-dependent protein kinase (CaMKII) is a multimeric serine/threonine kinase involved in the regulation of synaptic plasticity and glutamate receptor trafficking (Hudmon and Schulman, 2002). Furthermore it has been suggested that CaMKII may also act as a protein scaffold for the recruitment of other proteins to PSDs (Bayer et al., 2006). One important step in the regulation of CaMKII is its autophosphorylation on threonine 286 (thr286) that increases it affinity for CaM thus resulting in an augmentation of kinase activity. Fumigalli et al. report that chronic haloperidol treatment interferes with the trafficking of phospho-thr286-CaMKII to PSD. Furthermore haloperidol also reduces the interaction of CaMKII with the NMDA subunit NR2B.
Scaffolding post-synaptic protein of the MAGUKs family (PSD95, SAP 102, chapsyn-110/PSD-93 and SAP97) (Garner and Kindler, 1996) interact with NMDA receptors complex (Sheng and Hoogenraad, 2007). Interestingly reduced expression of the MAGUK protein PSD95 has been identified as a common outcome of DA receptor over stimulation in four different pharmacological or genetic models of altered monoamine neurotransmitter functions (Yao et al., 2004). In these models a reduction of PSD95 expression is associated with altered synaptic plasticity in the striatum and with behavioral sensitization to DA drugs. In their article, Fumagalli report that while chronic haloperidol also prevents the normal trafficking of PSD95 to the PSDs but without affecting its expression.

Taken together Fumagalli et al. findings reveal that chronic administration of FGAs induces a deficit in the trafficking of glutamate ionotropic receptors and their associated regulatory proteins to PSD in the frontal cortex (Figure 1). This would results in a reduction of both AMPA and NMDA receptor synaptic receptor functions in this brain region and in the development of cognitive impairments in response to haloperidol. Theses findings support previous reports that chronic haloperidol treatment induces working memory impairments in non-human primates (Castner et al., 2000). Interestingly, haloperidol had no effect on the trafficking of glutamate receptor subunits in the hippocampus thus suggesting that its negative effect on cognition may be restricted to a subset of brain regions. This region specificity may provide a way out of an apparent paradox between the authors’ observation that an FGA interferes with ionotropic glutamate receptor trafficking and the postulated implication of reduced NMDA receptor functions in the pathology of schizophrenia.
The results also suggest that olanzapine and potentially other SGAs do not reduce the trafficking of glutamate receptor complexes to PSD in the frontal cortex. This may provide a molecular basis for the reported clinical superiority of some SGAs in addressing cognitive deficits in schizophrenia. Furthermore, since AMPA and NMDA are also involved in the regulation of motor functions, alterations of glutamate receptor trafficking by FGAs may also contribute to their enhanced propensity to induce extrapyramidal side effects (Gardoni et al., 2007). However, before to reach definitive conclusions, the study would have to be expended to include multiple different FGAs and SGAs tested at multiple doses. This can be particularly important since recent clinical evidences have shown that when given at low doses haloperidol induces less side effects while still exerting its therapeutic action in patients with schizophrenia (Oosthuizen et al., 2004).

Another question raised by these results is the mechanism by which haloperidol regulates ionotropic glutamate trafficking. Haloperidol is believed to exert most of its effect by acting as a potent DA D2-class receptor antagonists (Creese et al., 1976). These receptors are couples to at least two independent signaling pathways (Figure 1) in the adult brain (Beaulieu et al., 2007). A first pathway involves the activation of Gα/i/o G proteins which results in the regulation of ion channels an in the inhibition of adenylate cyclases (Missale et al., 1998). Blockade of this pathway by haloperidol increases the production of cAMP leading to an activation of PKA. Importantly, both NMDA and AMPA receptors contain PKA phosphorylation sites that have been shown to regulate their function and trafficking in vivo (Esteban et al., 2003).
D2-class receptors also regulate the Akt/GSK-3 signaling pathway (Figure 1) though a cAMP independent mechanism (Beaulieu et al., 2004). Upon activation, D2 receptors induce the formation of a signaling complex composed of the protein kinase Akt, the scaffolding protein beta-arrestin 2 and protein phosphatase 2A (PP2A). The formation of this complex facilitates the inactivation of Akt by PP2A (Beaulieu et al., 2005). Since Akt is a negative regulator of GSK-3, inhibition of Akt in response to D2 receptor stimulation leads to an activation of GSK-3 (Beaulieu et al., 2008). Interestingly recent evidence has implicated GSK-3 in the regulation of long term plasticity in hippocampal slice preparation, thus suggesting a potential role for this kinase in the regulation of ionotropic glutamate receptor functions (Peineau et al., 2007).

Finally, regulation of glutamate receptor trafficking may also be independent from D2 DA receptors. For instance, co administration of DA D1 receptor agonists can prevent the development of short-term memory deficit in response to chronic haloperidol in non-human primates (Castner et al., 2000). Since haloperidol can act as a weak D1 receptor antagonists (Roth et al., 2004) it is possible that regulation of inotropic glutamate receptor trafficking by D1 receptors (Cepeda and Levine, 2006) may also explain some of the effects observed by Fumagalli et al.

In summary, the article by Fumagalli et al. provides new avenues to examine the differential effects and mechanism of action of two important classes of antipsychotic drugs used in the management of schizophrenia and other neuropsychiatric conditions. Furthermore the authors have shown that a single drug, haloperidol, can exert different effects on ionotropic glutamate signaling between the frontal cortex and the hippocampus. Such differences between brain regions suggests possible differences in the
regulation of ionotropic glutamate receptor trafficking between neuronal cell types and underscore the importance of conducting molecular studies in vivo.

Acknowledgements

J-M. B. is the recipient of a Canadian research Chair in Molecular Psychiatry and of a Human Frontier Science Program (HFSP) career development award.
MOL 46540

References

Figure 1. Model of the haloperidol and olanzapine effects on ionotropic glutamate receptors trafficking. Signalling pathways directly affected by D2 and 5-HT2 receptors are also indicated.