The NF-κB Pathway Regulates Cytochrome P450 3A4 Protein Stability

R. C. ZANGAR, N. BOLLINGER, S. VERMA, N. J. KARIN, and Y. LU.

Cell Biology and Biochemistry, Pacific Northwest National Laboratory, Richland, WA (RCZ, NB, SV, NJK) and University of Tennessee Health Science Center, Memphis, TN (YL).
Running title: **NF-κB and CYP3A4 Protein Stability**

Corresponding author:

Richard C. Zangar
902 Battelle Blvd
P7-56
Richland, WA 99354
richard.zangar@pnl.gov

Number or text pages: 19
Number of tables: 0
Number of figures: 6
Number of words in Abstract: 216
Number of words in Introduction: 631
Number of words in Discussion: 1041

ABBREVIATIONS: Ad3A4, CYP3A4-expressing adenovirus; AdRed, cytochrome P450 reductase-expressing adenovirus; CAPE, caffeic acid phenethyl ester; ER, endoplasmic reticulum; IκB, inhibitory kappaB factor; IKKα, inhibitory kappaB kinase alpha; MOI, multiplicity of infection factor; MPPB, 4-methyl-N1-(3-phenylpropyl)benzene-1,2-diamine; NAI, NF-κB activation inhibitor I; NF-κB, nuclear factor kappa B; P450, cytochrome P450; PBS, phosphate-buffered saline; PXR, pregnane X receptor.
ABSTRACT

We have previously observed that CYP3A4 protein levels are suppressed by inhibition of the proteasome in primary cultured hepatocytes. Because this result is opposite of what would be expected if CYP3A4 is degraded by the proteasome, it seems likely that there is another protein that is susceptible to proteasomal degradation that regulates CYP3A4 expression. In this study, we evaluate whether the nuclear factor kappa B (NF-κB) pathway is involved in that process.

Our model system uses an adenovirus system to express CYP3A4 protein in HepG2 cells, which are derived from human cancer cells. Similar to results in primary hepatocytes, the inhibition of the proteasome with MG132 suppresses CYP3A4 protein levels. We also find that MG132 treatment has a broad affect on the NF-κB pathway, including down-regulation of NF-κB DNA binding activity and IKKα levels and up-regulation of IKKβ and IκBα levels. Treatment of the HepG2 cells with several structurally distinct NF-κB inhibitors also suppresses CYP3A4 proteins levels. When the HepG2 cells are treated with cycloheximide, a general inhibitor of protein synthesis, the loss of CYP3A4 protein is accelerated by co-treatment with either proteasome or NF-κB inhibitors. These results indicate that NF-κB activity regulates CYP3A4 protein stability and suggest that the NF-κB pathway is responsible for the decrease in CYP3A4 protein levels that results from the proteasomal inhibition.
INTRODUCTION

Members of the cytochrome P450 (P450) 3A (CYP3A) subfamily constitute the most abundant P450s expressed in human intestine and liver, comprising about 70% and 30%, respectively, of the total cytochrome P450 present in these tissues (Guengerich, 1995). The CYP3A enzymes are important in the degradation of approximately half of all therapeutic agents and a variety of endogenous lipophilic compounds such as steroidal hormones (Guengerich, 1995). CYP3A4 is basally expressed and is highly inducible at the level of transcription, particularly by agents that activate the pregnane X receptor (PXR) (Kliewer et al., 1998; Akiyama and Gonzalez, 2003). In addition, CYP3A4 protein is stabilized by substrates (Watkins et al., 1987) but is destabilized by oxidative stress (Kimzey et al., 2003). Our research suggests that this process may be dependent upon the metabolism of fatty acid hydroperoxides by CYP3A4, which leads to reactive lipid byproducts that adduct to the enzyme and trigger its degradation (Kimzey et al., 2003).

Studies have suggested that the proteasome is responsible for degrading CYP3A (Correia et al., 1992; Wang et al., 1999). However, this conclusion is based in part on results obtained with atypical proteasomal inhibitors such as hemin and aclarubicin, which we found to be ineffective proteasome inhibitors in primary cultured hepatocytes (Zangar et al., 2003). Rather, the effects on CYP3A4 protein by hemin, an iron-rich molecule, are typical of compounds that cause oxidative stress, and the effects of aclarubicin appear to be due to substrate-mediated stabilization (Zangar et al., 2003). Although it has been suggested that prototypical inhibitors such as MG132 and lactacystin do not effectively block proteasome activity in hepatocytes (Korsmeyer et al., 1999), we found that this was not the case in primary cultured hepatocytes.
What is surprising, however, is that these agents actually decrease CYP3A protein levels, a response that is opposite what would be expected if CYP3A protein is degraded by the proteasome (Zangar et al., 2003).

Nuclear factor kappa B (NF-κB) has a central role in the cellular stress response and the control of intracellular levels of reactive oxygen species (Li and Karin, 1999; Piva et al., 2006; Storz and Toker, 2003). NF-κB is a heterodimer that commonly resides in the cytoplasm bound to a third inhibitory component, inhibitory kappaB (IκB). Although NF-κB DNA binding activity is highly inducible, there is a detectable basal activity level in HepG2 cells (La Ferla et al., 2002; Ralstin et al., 2006). Oxidative stress or activation of a variety of cell-surface receptors leads to NF-κB activation. Key steps in this process are the activation of inhibitory κB kinase (IKK) and phosphorylation of the IκB, which then dissociates from NF-κB (Krappmann and Scheidereit, 2005). Once released from IκB, NF-κB translocates to the nucleus where it functions as both an enhancer and a repressor of gene transcription. Therefore, IKK and IκB activities have opposing effects on NF-κB activity. Although both IKK and IκB can be ubiquitinated and degraded by the 26S proteasome complex (Krappmann and Scheidereit, 2005), proteasome inhibition is commonly associated with suppression of NF-κB activity (Montagut et al., 2006; Olivier et al., 2006).

Since NF-κB activation suppresses oxidative stress, which can destabilize CYP3A protein, it is possible that NF-κB has a causative role in the suppression of CYP3A levels by proteasome inhibitors. To evaluate this hypothesis, we use an adenovirus expression system to transduce a human liver cell line, HepG2, with DNA encoding CYP3A4. Similar to our studies with primary
hepatocytes, CYP3A4 protein levels are suppressed in the HepG2 cells following treatment with the proteasome inhibitor MG132. In addition, we find that inhibition of NF-κB has a similar suppressive effect on CYP3A4 proteins levels and that a decrease in CYP3A4 protein stability is a key factor in this response. This is the first evidence of a relationship between NF-κB activity and the stability of any P450 protein.
MATERIALS AND METHODS.

Materials. Rabbit polyclonal anti-CYP3A4 was a generous gift from Dr. Hyesook Kim (Detroit R&D). Mouse monoclonal anti-ubiquitin and IKKα antibodies were obtained from Santa Cruz Biotechnology and Cell Signaling Technology, respectively. Goat anti-rabbit and goat anti-mouse horseradish peroxidase conjugated antibodies were obtained from Jackson ImmunoResearch Laboratories. The proteasome inhibitor MG132, NF-κB activation inhibitor I (NAI or [6-amino-4-(4-phenoxyphenylethlamino)quinazoline]), caffeic acid phenethyl ester (CAPE), 4-methyl-N₁-(3-phenylpropyl)benzene-1,2-diamine (MPPB) and the protease inhibitor cocktail set were purchased from Calbiochem/EMD Biosciences.

Adenovirus transduction. The CYP3A4 and P450 reductase adenoviruses (Ad3A4 and AdRed, respectively) used in these studies have been previously described and characterized (Brimer et al., 2000). The adenoviruses were propagated in HEK293 cells (American Type Culture Collection) as described in the Clontech user manual (protocol #PT3496-1). Briefly, cells were cultured in T150 flasks until 50-70% confluence and then infected with viral stocks at an MOI of 5. Cells were gently rocked to ensure equal distribution of the virus to all of the cells. Cells were harvested after cytopathic effects were observed in ~70% of the cells. Cells were pelleted by centrifuging at 5000 rpm for 15 min at 4 °C. All of the supernatant was aspirated except 2 ml. The cells were lysed and the virus released by 3 rounds of freeze/thawing. The cellular debris was removed by centrifuging for 15 min at 5000 rpm at 4 °C. The supernatant containing the virus was aliquoted and stored at -80 °C.
The multiplicity of infection factor (MOI) was determined as follows using the following formula:
\[
\text{MOI} = \left(\frac{\mu l \text{ of virus stock per dish} \times \text{virus titer}}{\text{total # cells/dish}}\right).
\]
As such, the MOI was calculated based on the viral titer which is a quantitative measurement of the biological activity of the virus and is expressed as plaque forming units (pfu) per ml. The titer of the virus was determined using the end-point dilution assay from protocol #PT3496-1 (appendix D; part B at www.clontech.com). The protocol involves creating a dilution series of viral stocks and then infecting HEK293 cells. The virus titer is calculated based on the cytopathic effects that are measured after a 10-day incubation period.

HepG2 cell culture and adenoviral infection. Human hepatocarcinoma HepG2 cells were obtained from American Type Culture Collection and maintained at 37 °C in 95% air, 5% CO₂ in Eagle’s MEM medium (American Type Culture Collection) containing 10% fetal bovine serum (Invitrogen). New cultures were started from frozen stocks approximately every 12 weeks. The adenoviral transduction of HepG2 cells was conducted as previously described (Brimer et al., 2000). Briefly, HepG2 cells were seeded at 10⁶ cells per 35 mm dish and incubated overnight at 37 °C. The following day, the medium was replaced with serum-free medium and transduced with Ad3A4 using an MOI from 0 to 150 (see figure legends) and AdRed at an MOI of 5. The cells were incubated with the adenovirus for 2 hours and then replenished with 3 ml of serum-containing medium. The medium was changed once per day for the next two days. The cells were then treated with 200 µM MG132, 1 µM NAI, or vehicle (0.02% ethanol) for 0 to 6 hr before harvesting. Typically, cells were harvested by lysing, in accordance with the following protocol. The cultures were washed twice with ice-cold phosphate-buffered saline, pH 7.4 (PBS) and lysed in 50 mM Tris (pH 7.4), 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% Triton X-100,
1% sodium deoxycholate, 2 mM Na$_3$VO$_4$, and protease inhibitor cocktail. Cell lysates were cleared of particulates by centrifugation.

Alternatively, cells were harvested and microsomal and cytosolic fractions were prepared as described previously (Zangar et al., 2003). Briefly, once harvested, cells were washed and homogenized in 50 mM KPO$_4$, 250 mM sucrose, 1 mM EDTA, 100 µg phenylmethylsulfonyl fluoride/ml, 0.2 units aprotinin/ml, 10 µg leupeptin/ml, and 10 mM N-ethylmaleimide (homogenization buffer). Cell homogenates were centrifuged at 10,000 g for 10 min at 4 °C. The supernatant from this sample was centrifuged again at 100,000 g for 1 h. The 100,000 g supernatant was saved as the cytosol fraction and, after washing, the pellet was saved as the microsome sample. Samples were stored at -80° until analyzed by immunoblot.

Dual fluorescent labeling of CYP3A4 and the endoplasmic reticulum. HepG2 cells that were grown on chambered slides (Nunc Labtek II) were transduced with Ad3A4 and AdRed at MOI’s of 100 and 5, respectively. The next day, cells were fed fresh medium. After another 24 h, the transduced cells were subjected to dual fluorescent staining, as described previously (Dong and Wiley, 2000), to determine if the CYP3A4 was localized in endoplasmic reticulum (ER). In brief, the cells were washed with PBS and fixed with 3.6% paraformaldehyde for 10 min. Fixed cells were rinsed twice with Buffer I (PBS containing 0.012% saponin) and immediately quenched by incubating for 7-10 min with freshly prepared 0.1% sodium borohydride in PBS. Cells were rinsed twice with Buffer I and once with Buffer II (PBS containing 1% BSA, 0.012%, saponin and 0.02% sodium azide) and then labeled at room temperature and 100% humidity for 1 h with CYP3A4 antibody (Chemicon, Temecula, CA) diluted 1:300 in Buffer II. Cells were
washed three times with Buffer II and labeled with 1 µg/µl of Alexa 594 anti-rabbit (Molecular Probes, Eugene, OR) for 1 h in the dark. After rinsing three times with Buffer II, cells were incubated with 2.5 µg/ml of 3,3'-dihexyloxacarbocyanine iodide (DiOC₆(3), Molecular Probes) for 5 min and washed twice with PBS. The stained cells were immediately imaged using a Leica TCS SP2 Confocal microscope. The 594-610 and 488-520 filters were used for Alexa 594 and DiOC₆(3), respectively.

Human hepatocytes. CYP3A4 levels in the transduced HepG2 cells were compared to levels in primary human hepatocytes. Cryopreserved human hepatocytes that were pooled from 10 individuals were obtained from Celsis (In Vitro Technologies). These cells were frozen shortly after isolation and have CYP3A4 protein levels comparable to hepatocytes in normal human livers. According to the manufacturer, testosterone 6ß hydroxylase activity, which is a marker for CYP3A4 activity, was 255 pmol/min/million cells for this lot of hepatocytes. The cryopreserved cells were thawed and then pelleted by centrifuging at 500 g for 5 min. Cell lysates were prepared from the washed pellets in the same manner as described for the HepG2 cells.

Immunoblot analyses. Approximately 25 µg of total protein from each sample was loaded onto a single lane of a 10% Bis-Tris gel, transferred to a PVDF membrane and probed for CYP3A4 and ubiquitin. CYP3A4 and ubiquitin were detected by immunoblotting with rabbit polyclonal antibody (1:100,000 dilution) and a mouse monoclonal antibody (1:1000 dilution), respectively, and with a HRP-conjugated secondary antibody at 1:5,000 dilution. Quantification of protein bands was performed using a Boehringer-Mannheim LumilMager and associated image analysis.
software. For the protein stability studies with cycloheximide, immunoblot band densities for CYP3A4 were determined using LumiAnalyst 3.1 software (Roche Diagnostics).

NF-κB DNA Binding Activity. The DNA binding activity of NF-κB subunits p50 and p65 were determined in HepG2 cells. Briefly, using the same protocols described above, HepG2 cells were transduced with Ad3A4 using an MOI of 25 and AdRed at an MOI of 5. On the fourth day, cells were treated with either MG132 or vehicle for 6 h. In two separate studies, effects of MG132 HepG2 cells were also determined in HepG2 cells that were not treated with adenovirus or were treated with the control vector, AdRSV, at an MOI of 30. For all studies, cell lysates were prepared using the M-PER Mammalian Protein Extraction Reagent kit (Pierce Biotechnology) according to the manufacturer’s instructions. The lysates were analyzed in both the p50 and p65 EZ-DETECT NF-κB Transcription Factor kits (Pierce Biotechnology) according to the manufacturer’s instructions. In this kit, 96-well microtiter plates were provided that were coated with a DNA oligomer pair that contained a consensus NF-κB binding sequence. Following incubation with the cell lysates, antibodies against p50 or p65 were used to detect DNA binding by the respective protein. Horseradish-peroxidase-conjugated secondary antibody and chemiluminescence were used to generate a signal, which was measured on a luminometer (Perkin Elmer 1420 Luminescence Counter).

Analysis of mRNA. Quantitative assessment of mRNA expression was performed by real-time RT-PCR. Total RNA was isolated using an RNeasy kit (Qiagen, Valencia, CA, USA). Complementary DNA was synthesized from total RNA via reverse transcription using ImProm-II reagents (Promega, Madison, WI, USA) with oligo-dT priming. Primer pairs for quantitative
real-time RT-PCR spanned an intron to eliminate potential amplification of contaminating genomic DNA. The following primers were employed: CYP3A4 (GenBank NM_017460) forward, CATGGACTTTTTAAGAAGCTTGG; reverse, TTCCATGTCAAAACATAACAAAAGC (102 base pair amplimer); cyclophilin A (GenBank NM_008907) forward, GAGCTGTGTGCAGACAAAGTTC; reverse, CCCTGGCCACATGAATCCTGG (125 base pair amplimer). PCR reactions were carried out using 20 ng cDNA and FastStart DNA MasterPLUS SYBR Green I reagents according to the manufacturer’s instructions (Roche Applied Science, Indianapolis, IN, USA) in a Roche Lightcycler II. Cycle parameters were: denaturation at 95 °C for 10 sec, annealing at 55 °C for 5 sec and elongation at 72 °C for 10 sec for 45 cycles. Melting curve analyses were performed from 60 °C to 95 °C in 0.5 °C increments. In order to determine if there was any interference from viral or genomic DNA in the RT-PCR analysis, we compared the signal from total RNA fractions with and without the reverse transcriptase step. There was at least a 1000-fold increase in signal after the reverse transcriptase step, indicating that DNA contamination did not significantly impact the measurement of CYP3A4 mRNA. RNA from three individual dishes was prepared for treatment group. Quantitative RT-PCR data for CYP3A4 and P450 reductase were normalized based on cyclophilin A transcript levels (Pfaffl et al., 2002).

Statistics. Statistical differences between all treatment groups were initially determined by ANOVA and then delineated using the Fisher’s test using StatView 5.0.1 software (SAS Institute). A significance level of 0.05 was used in all cases.
RESULTS

Characterization of the CYP3A4 Expression in Adenovirus Transduced Cells. Misfolded or improperly trafficked protein can lead to protein degradation by pathways that may be different from those used for normal proteins (Gregersen, 2006; Schmitz and Herzog, 2004). Overexpression of P450 can also lead to an ER stress response (Szczesna-Skorupa et al., 2004). Therefore, studies were undertaken to ensure that CYP3A4 in transduced HepG2 cells is properly located in ER and is not overexpressed compared to normal hepatic levels. To confirm that the CYP3A4 was appropriately localized, HepG2 cells that had been transduced with CYP3A were differentially stained for CYP3A4 and the ER. Overlay of these images gave results that were consistent with CYP3A4 protein being located in the ER, although we could not rule out that CYP3A4 was located in the cytosol from these images (Fig. 1A). Therefore, the CYP3A4-expressing HepG2 cells were fractionated into microsomal and cytosolic fractions and analyzed by immunoblot. This analysis confirmed that CYP3A4 was present at high levels in the microsomal fraction but not in the cytosolic fraction (Fig. 1B).

We also compared CYP3A4 proteins levels in the transduced HepG2 cells with levels in human hepatocytes. In these studies, immunoblot analysis was used to compare CYP3A4 protein levels in the HepG2 cells and a pooled sample of human hepatocytes prepared from 10 individuals (Fig. 2). Although a single prominent band was detected in the human hepatocytes, two bands that migrated near each other were commonly detected in the HepG2 lysates. The lower band (thick arrow, Fig. 2) co-migrated with the band detected in the human hepatocyte sample and was increased in response to Ad3A4 transduction. In addition, only the lower band was detected in
microsomal samples from the HepG2 cells (Fig. 1B) but the upper band could be detected in the cytosol with longer exposures (data not shown). As such, it appears that the upper band (thin arrow, Fig. 2) is an artifact unrelated to the CYP3A4 protein. A steady increase in CYP3A4 protein levels was observed with increasing Ad3A4 MOI. A relatively short exposure time was used to develop the image in Fig. 2. This was necessary to prevent overexposure of the CYP3A4 band in the human sample but, as shown below (e.g., Fig. 3). MOI’s as low as 5 were generally sufficient to produce detectable levels of CYP3A4. This analysis demonstrates that Ad3A4 MOI’s up to 150 produce levels of CYP3A4 protein that were much lower than observed in normal human hepatocytes. No toxicity in the HepG2 cells was apparent unless Ad3A4 MOI’s were 200 or higher (data not shown). This effect appeared to be dependent upon CYP3A4 expression since equal MOI’s of the control virus did not result in any overt toxicity. In subsequent studies, we used Ad3A4 MOI’s of 5 and 25 since the exceptionally low levels of CYP3A4 expressed under these conditions are unlikely to stimulate an ER stress response.

Effects of Proteasome Inhibition on levels of CYP3A4 Protein and the NF-κB Pathway. We have previously observed that treatment of primary hepatocytes with the proteasome inhibitor, MG132, suppressed CYP3A protein levels (Zangar et al., 2003). We therefore conducted studies to determine if a similar effect could be observed in the HepG2 cells transduced to express CYP3A4. Treatment with MG132 for 6 h increased the levels of ubiquitinated proteins, confirming that proteasome activity was inhibited (Fig. 3A). In contrast, CYP3A4 protein levels were decreased in the cultured cells (Fig. 3A). In addition, MG132 increased both IKKβ and IκBβ levels, suppressed IKKα levels but apparently had no affect on IκBα levels. As such, MG132 treatment had a diverse effect on proteins that regulate NF-κB activity.
We next examined how these changes impacted the DNA binding activity of NF-κB subunits p50 and p65. These analyses clearly demonstrated that MG132 treatment down-regulated the DNA binding activity of NF-κB (Fig. 3B). Separate studies were also conducted with HepG2 cells that were not treated with any virus or were treated with the control virus (AdRSV). In both of these cases, MG132 treatment significantly suppressed NF-κB DNA binding activity to a degree that was similar to that observed for HepG2 transduced to express CYP3A4 and P450 reductase (data not shown). Therefore, there is a basal level of NF-κB DNA binding activity in HepG2 cells that is suppressed by MG132.

Tests were also done to determine if the adenovirus itself had any affect on the levels of the IKK and IκB proteins. Cells were harvested for this analysis at the same time interval after adenovirus exposure (slightly over 2 days) as conducted in all of the studies reported here. HepG2 cells were treated with the control adenovirus (AdRSV) at MOIs of 10 and 30, which are equivalent to the combined MOIs for the Ad3A4 and AdRed used in the experiments described below. Treatment with either MOI did not alter IKKα, IKKβ, IκBα or IκBβ compared to cells that were not treated with adenovirus (data not shown). Since there is a strong regulatory feedback pathway between NF-κB activity and IκB regulatory proteins (Hoffmann et al., 2006), these results suggest that treatment with the replication-incompetent adenovirus vector did not have any marked, long-term effects on the NF-κB pathway that could potentially affect the experiments described below.
Effects of NF-κB Inhibition of CYP3A4 Protein Levels. In order to determine if NF-κB activity could be mediating the decrease in CYP3A4 protein levels observed in the presence of MG132, we treated cells with 1 µM NF-κB Activation Inhibitor (NAI) for 6 h. Similar to MG132, NAI suppressed CYP3A4 proteins levels (Fig. 4A). NAI treatment, however, did not increase levels of ubiquitinated proteins and may even had a slight suppressive effect (Fig. 4A). We also evaluated two additional NF-κB inhibitors, CAPE and MPPB, that were structurally distinct from NAI. These compounds had similar suppressive effects on CYP3A4 protein levels without increasing ubiquitination levels (Fig. 4B).

Effects of NF-κB and Proteasome Inhibition on CYP3A4 and P450 Reductase mRNA Levels. The suppression of the CYP3A4 protein levels by NAI suggested that NF-κB might down-regulate CYP3A4 gene expression. Therefore, we used quantitative RT-PCR to evaluate the effects of proteasome and NF-κB inhibition on CYP3A4 mRNA levels. Treatment of HepG2 cells with either MG132 or NAI induced CYP3A4 mRNA levels (Fig. 5A). Similar inductive effects were observed at Ad3A4 MOI of both 5 and 25, suggesting that this effect was not dependent upon CYP3A4 expression levels. The CYP3A4 mRNA levels were normalized to cyclophilin mRNA levels, which was unaffected by treatment (data not shown). Since both MG132 and NAI have opposing effects on CYP3A4 mRNA and CYP3A4 protein levels, the suppression of CYP3A4 protein levels by these agents is clearly not due to suppression of CYP3A4 mRNA levels.

In order to determine if the observed increase in CYP3A4 mRNA levels could be due to vector-associated sequences, we also analyzed the expression of the P450 reductase, which has the same
vector sequences as the CYP3A4. There was no change in P450 reductase mRNA levels with changing Ad3A4 MOI, as expected (Fig. 5B). There was a significant increase in P450 reductase mRNA in cells treated with MG132, similar to what was observed for the CYP3A4 mRNA. Although cells treated with NAI tended to have higher levels of P450 reductase mRNA, this was not significantly different from the control values. The coordinated changes in CYP3A4 and P450 reductase mRNA levels suggest that vector DNA sequences could be responsible for the increase in mRNA levels observed with the MG132 and NAI treatments.

Inhibition of the Proteasome or NF-κB Decreases CYP3A4 Protein Stability. CYP3A4 is known to be regulated at the level of protein stability (Watkins et al., 1986; Watkins et al., 1987). Since the decrease in CYP3A4 protein levels was not associated with a decrease in mRNA levels, we suspected that changes in CYP3A4 protein stability may be a key factor. Therefore, we treated cells with cycloheximide, an inhibitor of protein synthesis, and measured changes in CYP3A4 protein levels over time. CYP3A4 protein levels were lower at 3 and 6 h after cycloheximide treatment in HepG2 cells co-treated with either MG132 or NAI compared to cells without co-treatment (Fig. 6).
DISCUSSION

CYP3A4 is a key enzyme in the metabolism and elimination of drugs in humans. The CYP3A subfamily of P450 proteins have a shorter half-life than typical ER proteins and most P450s (Watkins et al., 1987). Although the ubiquitin-proteasome system has been implicated in the rapid degradation of CYP3A proteins (Korsmeyer et al., 1999; Wang et al., 1999), our studies in rat and human primary cultured hepatocytes have shown that inhibition of the proteasome system decreases CYP3A protein levels (Zangar et al., 2003). One of the goals of the current work is to replicate our previous results in a human cell culture system that expresses the predominant human hepatic P450, CYP3A4, but does not have the limitations of human primary hepatocytes including availability, cost and variability. Since cell lines express extremely low levels of CYP3A4, we use an adenovirus transduction system that has been previously used to successfully increase CYP3A4 expression in human cell lines (Brimer et al., 2000). Care must be taken, though, since overexpression of some P450 proteins can stimulate an ER stress response that includes activation of the NF-κB pathway (Szczesna-Skorupa et al., 2004), a result which could confound our studies. Therefore, CYP3A4 protein in the HepG2 cells was kept at a level that is only a small fraction of normal human hepatic levels.

We initially tested the effects of the proteasome inhibitor MG132 on CYP3A4 protein levels in the HepG2 cells. We find that proteasome inhibition in this cell line results in a clear suppression of CYP3A4 protein levels (Fig. 3 and 4). Although this result provides further support for the existence of a proteasome-dependent mechanism that regulates CYP3A4 expression, it is inconsistent with the concept that the ubiquitin-proteasome system is a major
pathway for CYP3A4 protein degradation. It seems likely that this mechanism is highly conserved in mammalian hepatocytes since it is functional in HepG2 cells and in rat and human primary hepatocytes.

We also found that proteasome inhibition suppressed NF-κB DNA binding activity and the levels of IKKα while it increased levels of IKKβ and IκBβ (Fig. 3). It seems likely that the primary effect of MG132 was to decrease the degradation of IKKβ and IκBβ. This in turn resulted in a reduction of NF-κB activity and a subsequent down-regulation of IKKα expression, which is regulated by NF-κB activity. These results are consistent with our hypothesis that effects of MG132 on CYP3A4 are mediated by the NF-κB pathway. We therefore evaluated the effects of NF-κB inhibitors on CYP3A4 protein levels in the HepG2 cells. These experiments demonstrated that NF-κB inhibition was sufficient to suppress CYP3A4 protein levels. In contrast to the MG132, NF-κB inhibition did not increase levels of poly-ubiquitinated proteins. Therefore, it seems clear that NAI decreased CYP3A4 protein levels by a mechanism independent of proteasome inhibition.

The P450 catalytic cycle has high rates of uncoupling, which can result in the release of hydrogen peroxide or superoxide anion (Zangar et al., 2004). As a result, P450 enzymes can be a significant source of intracellular oxidative stress (Zangar et al., 2004). Consistent with its role as a regulator of intracellular oxidative stress, NF-κB is known to interact with a variety of transcriptional factors that regulate P450 expression, including the PXR, the constitutively active receptor and the aryl hydrocarbon receptor (Zhou et al., 2006; Gu et al., 2006; Van Ess et al., 2002; Tian et al., 2002). In this study, analysis of CYP3A4 mRNA levels, though, indicates that...
just the opposite is true. That is, inhibition of the proteasome or NF-κB increases CYP3A4 mRNA levels (Fig. 5). The adenovirus vector only contains the 96 bases of the 5’ upstream region commonly found in the mRNA, which raises the possibility that the adenovirus promoter itself may be responsive to NF-κB inhibitors. Analysis of the P450 reductase transcript, which is also under control of the adenovirus vector, supports this concept (Fig. 5). Therefore, our analysis of the CYP3A4 mRNA levels clearly demonstrates that the decrease in CYP3A4 proteins levels observed after treatment with MG132 or NAI is not due to a suppression of CYP3A4 mRNA levels, but does not provide any substantive evidence as to whether these agents have an effect on normal CYP3A4 transcription.

CYP3A expression is known to be regulated at the level of protein stability (Watkins et al., 1987). Analysis CYP3A4 protein levels following cycloheximide treatment demonstrated that CYP3A4 protein is less stable when either the proteasome activity or the NF-κB pathway is inhibited (Fig. 6). Therefore, it appears that the NF-κB pathway regulates CYP3A4 expression at the level of protein stability and that the effects of MG132 on CYP3A4 protein levels could be mediated by this pathway.

Since the NF-κB pathway is a positive regulator of cellular antioxidant pathways, it seems likely that these antioxidant properties are responsible for stabilizing the CYP3A4 protein. We have previously shown that oxidative stress destabilizes CYP3A proteins and that one likely mechanism is the P450 metabolism of fatty acid hydroperoxides and subsequent protein denaturation (Kimzey et al., 2003). There is also evidence that stimulation of protein kinase A can lead to CYP3A4 phosphorylation and protein loss (Eliasson et al., 1994). Protein kinase A
both regulates and is regulated by the NF-κB pathway and is activated by ROS (Jamaluddin et al., 2007; von Bulow et al., 2007; Kaltschmidt et al., 2006), suggesting that ROS could potentially function through multiple mechanisms to regulate P450 protein stability. Another possibility is cytochrome b5, which stabilizes CYP2B and possibly other P450 proteins (Jansson et al., 1990). This process appears to be related to the ability of cytochrome b5 to reduce uncoupling of the P450 catalytic cycle and thereby diminish the formation of reactive oxygen species (Davydov, 2001; Zangar et al., 2004). Further studies are needed to determine which, if any, of these potential mechanisms are responsible for the changes in CYP3A4 protein stability observed after suppression of the NF-κB pathway.

In summary, these results confirm and extend our previous work that show that proteasome inhibitors suppress CYP3A protein levels. We also provide the first evidence that the NF-κB pathway regulates the stability of CYP3A4 protein. It also seems likely that the suppressive effects of proteasome inhibition on CYP3A4 protein levels are mediated at least in part by NF-κB pathway. The mechanism by which NF-κB regulates CYP3A4 protein stability remains to be defined but may relate to NF-κB-mediated suppression of intracellular oxidative stress.
REFERENCES

Watkins, PB, Bond, JS, and Guzelian, PS. Degradation of the hepatic cytochromes P-450.

Footnote

This work was supported by National Institutes of Health grant CA117378 and by the Environmental Biomarkers Initiative, which is a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. Department of Energy.
Figure Legends

Fig. 1. Localization of adenovirus-expressed CYP3A4 to the endoplasmic reticulum. HepG2 cells were transduced with Ad3A4 and AdRed at an MOI of 100 and 5, respectively, for 48 h. A. Cells were fixed and stained with anti-human CYP3A4 antibody (red) and the ER dye, DiOC6(3) (green), and the fluorescent images were superimposed (right panel). Overlay of images is consistent with the expressed CYP3A4 protein being localized to either the endoplasmic reticulum or the cytosol of HepG2 cells. B. Immunoblot analysis of subcellular fractionations demonstrates high levels of CYP3A4 in the microsomes, which is highly enriched with the endoplasmic reticulum, but not in the cytosol. The AdRSV represents cells that were treated with the control vector that lacks the CYP3A4 sequence.

Fig. 2. CYP3A4 is expressed at very low levels in the HepG2 cells compared to human hepatocytes. Cell lysates were prepared from pooled human hepatocytes (Hu) or from HepG2 cells that had been transduced with CYP3A4 adenovirus (Ad3A4) at MOI’s from 0 to 150 and P450 reductase at an MOI of 5. Twenty-five µg of protein/lane was analyzed by immunoblot for CYP3A4. CYP3A4 levels in the MOI 5 lane are visible under longer exposure conditions (e.g., see Fig. 3). The lower thicker arrow indicates the CYP3A4 band. The thin arrow indicates a band other than CYP3A4 that appears to be due to non-specific cross reactivity of the antibody (see text).
Fig. 3. Suppression of CYP3A4 and disruption of the NF-κB pathway by MG132. HepG2 cells were transduced with adenovirus expressing CYP3A4 at MOI’s of either 5 or 25 and, in all cases, P450 reductase at MOI 5. Cells were subsequently treated for 6 h with 0.02% ethanol vehicle (CON) or 200 µM MG132 to suppress proteasome activity. A. Twenty-five µg of protein per lane was analyzed by immunoblot using antibodies specific for ubiquitin, CYP3A4, IKKα, IKKβ, IκBα, IκBβ. The lowest band in the ubiquitin blot migrates at ~8 kDa, consistent with mono-ubiquitin. Except for CYP3A4, results are shown only for CYP3A4 adenovirus MOI’s of 5 but are representative of both MOI’s. Each lane represents a lysate obtained from a separate cell culture dish. B. DNA binding activity of NF-κB subunits p50 and p65 in whole cell lysates. Columns and crossbars represent the mean and standard error, respectively, of 4 or 5 individual samples per group. ★ Mean value is significantly different from the CON mean value (p < 0.05).

Fig. 4. Inhibition of NF-κB activity suppresses CYP3A4 protein levels without proteasome inhibition. HepG2 cells were transduced with an equal MOI of adenovirus lacking P450 (AdRSV) or adenoviruses expressing CYP3A4 and P450 reductase at MOI’s of 5 each. Cell lysates were harvested and 25 µg protein/lane was analyzed by immunoblot using antibodies specific for ubiquitin or CYP3A4. The lowest band in the ubiquitin blot migrates at ~8 kDa, consistent with mono-ubiquitin. A. Cells were treated with 0.02% ethanol vehicle (AdRSV and CON), 200 µM MG132 or 1 µM NAI for 6 h. B. Cells were treated with 1 µM NAI, 175 µM CAPE, 0.15% DMSO vehicle (CON), or 60 µM MPPB for 6 h. Results are representative of CYP3A4 MOI’s of 5 and 25. Data are representative of duplicate cell culture studies conducted on separate days.
Fig. 5. Induction of CYP3A4 and P450 reductase mRNA levels by proteasome and NF-κB inhibitors. HepG2 cells were transduced with CYP3A4-expressing adenovirus (Ad3A4) at MOI’s of either 5 or 25 and with P450-reductase adenovirus (AdRed) at an MOI of 5 in all cases. Cells were subsequently left untreated (CON) or treated with the 200 µM MG132 or 1 µM NF-κB Activation Inhibitor (NAI) for 6 h. Total RNA was harvested and quantitative RT-PCR analysis of CYP3A4, P450 reductase and cyclophilin A mRNA’s were undertaken. Columns and crossbars represent the mean and SE, respectively, of CYP3A4 (A) or P450 reductase (B) mRNA levels from three samples per treatment. Each sample was prepared from a different cell culture dish. Each mRNA value is normalized based on the corresponding cyclophilin A mRNA levels in the same total RNA sample. The cyclophilin A mRNA levels showed only modest variation across samples that was unrelated to treatment (data not shown). Levels of mRNA are graphed relative to the MOI 5 control. ↔Mean value is significantly different from untreated mean value (CON) of the same MOI (p < 0.05). Data are representative of duplicate cell culture studies conducted on separate days.

Fig. 6. Proteasome or NF-κB inhibition decreases CYP3A4 protein stability. HepG2 cells were initially transduced with CYP3A4-expressing adenovirus at an MOI of 25. Cells were subsequently treated with 10 µM cycloheximide without (CON) or with co-treatment with 1 µM NF-κB Activation Inhibitor (NAI). Cell lysates were then prepared at 0, 3 or 6 h after initiation of treatment. Twenty-five µg of protein/lane was analyzed by immunoblot for CYP3A4 protein. Each data point and crossbar represents the mean ± SE, respectively, of CYP3A4 band density from at least three samples, each of which was prepared from a different cell culture dish. ★Significantly different from the CON value at the same time point (p < 0.05).
Figure 1

<table>
<thead>
<tr>
<th></th>
<th>Ad3A4</th>
<th>AdRSV</th>
<th>Ad3A4</th>
<th>AdRSV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytosol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2
Figure 3
Figure 4
Figure 5

Relative mRNA Levels

A. CYP3A4

B. Reductase

Ad3A4 MOI: 5 25
AdRed MOI: 5 5
Figure 6

This article has not been copyedited and formatted. The final version may differ from this version.