Mechanisms and functional significance of inhibition of neuronal T-type calcium channels by isoflurane

Peihan Orestes, Damir Bojadzic, Robert M. Chow and Slobodan M. Todorovic

Department of Anesthesiology (P.O, D.B., R.M.C., S.M.T.), Neuroscience (S.M.T.) and Neuroscience Graduate Program (P.O., S.M.T.)

University of Virginia Health System
a) Running Title: “Effects of isoflurane on recombinant T-type channels”

b) Corresponding author: Slobodan M. Todorovic
 Department of Anesthesiology, University of Virginia Health System, Mail Box 800710, Charlottesville, VA 22908-0710
 Phone 434-924-2283
 Fax 434-982-0019
 Email:st9d@virginia.edu

c) Number of text pages: 33
 Number of tables: 0
 Number of figures: 9
 Number of references: 32
 Number of words in Abstract: 231
 Number of words in Introduction: 679
 Number of words in Discussion: 1381

d) Abbreviations:
 LTS (low threshold spike)
 DRG (dorsal root ganglion)
 LVA (low-voltage-activated)
 HVA (high-voltage-activated)
 Iso (Isoflurane) (2-chloro-2-(difluoromethoxy)-1,1,1-trifluoro-ethene)
 nRT (reticular thalamic nucleus)
 Hal (halothane) (2-bromo-2-chloro-1,1,1-trifluoroethane)
 MAC (minimum alveolar concentration)
 LORR (loss of righting reflex)
 TTLORR (time to loss of righting reflex)
 KO (knock out)
 WT (wild type)
 DMEM (Dulbecco’s modified eagle’s medium)
 TEA (tetraethylammonium)
 HEK (human embryonic kidney)
 ATP (adenosine three phosphate)
 GTP (guanosine three phosphate)
 HEPES (4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid)
Previous data have indicated that T-type calcium channels (low-voltage activated, LVA, T-channels) are potently inhibited by volatile anesthetics. Although the interactions of T-channels with a number of anesthetics have been described, the mechanisms by which these agents modulate channel activity, and the functional consequences of such interactions, are not well studied. Here, we used patch-clamp recordings to explore the actions of a prototypical volatile anesthetic, isoflurane (Iso), on recombinant human CaV3.1 and CaV3.2 isoforms. We also performed behavioral testing of anesthetic end-points in mice lacking CaV3.2. Iso applied at resting channel states blocked current through both isoforms in a similar manner at clinically relevant concentrations (1 minimum alveolar concentration, MAC). Inhibition was more prominent at depolarized membrane potentials (-65 mV versus -100 mV) as evidenced by hyperpolarizing shifts in channel availability curves and a 2.5-fold decrease in IC50 values. Iso slowed recovery from inactivation and enhanced deactivation in both CaV3.1 and CaV3.2 in a comparable manner, but caused a depolarizing shift in activation curves and greater use-dependent block of CaV3.2 channels. In behavioral tests, CaV3.2 knockout (KO) mice showed significantly decreased MAC in comparison to wild type (WT) littermates. KO and WT mice did not differ in loss of righting reflex (LORR), but mutant mice displayed a delayed onset of anesthetic induction. We conclude that state-dependent inhibition of T-channel isoforms in the central and peripheral nervous system may contribute to isoflurane’s important clinical effects.
INTRODUCTION

The effects of general anesthetics on ion channels have been the subject of intense research since studies described specific interactions between anesthetics and proteins (Franks and Lieb, 1982; 1994). It is now known that some ligand-gated channels (e.g. GABA A), voltage-gated channels, and background potassium channels, display anesthetic sensitivity in vitro that is within the concentration range achieved during general anesthesia (Franks, 2008). These channels have overlapping physiological roles and pharmacological profiles, making it difficult to assign aspects of the anesthetic state to individual channel types. Thus it has become clear that further study of anesthetic mechanisms of action on specific ion channels is needed.

Low voltage-activated calcium channels activate with small depolarizations and allow calcium influx at resting potentials, so that small differences in channel activity can result in large changes in cellular excitability and/or second messenger pathways. Recent molecular studies have indicated that at least three isoforms of T-channels exist: Ca V 3.1 (α1G), Ca V 3.2 (α1H) and Ca V 3.3 (α1I) (Perez-Reyes et al., 2003). These channels are located throughout the spinothalamic pathway, where nociceptive information passes from peripheral sensory neurons to the cortex. T-channels in small-sized dorsal root ganglia (DRG) neurons are thought to function in pain signaling (Todorovic and Lingle, 1998; Todorovic et al., 2001). Small and medium DRG neurons contain both Ca V 3.1 and Ca V 3.2 channels, though Ca V 3.2 predominates (Talley et al., 1999). Ca V 3.2-null mice have significantly decreased responses to acute somatic and visceral pain (Choi et al., 2007). Furthermore, oligonucleotide antisense studies against Ca V 3.2 reported similar results (Bourinet et al., 2005). This evidence makes it clear that T-channels are pro-nociceptive in the DRG.
In vivo studies have shown that anesthetic-induced loss of movement in response to pain is mediated primarily in the spinal cord. Actions in the brain are not apparently critical to inhibit motor responses to pain. This has been demonstrated in anesthetized rats, where cervical transection of the spinal cord did not change the MAC for painful limb stimulation (Rampil, 1994). Furthermore, in situ studies have indicated that all three isoforms of T-channels are expressed predominantly in the dorsal horn of the spinal cord, an important pain processing region of CNS (Talley et al., 1999). Thus it is likely that any contributions of T-channels in the spinal cord to MAC of general anesthetics are indirect, since the effects would be on nociceptive pathways rather than motor pathways in the spinal cord.

T-channels are also expressed in various brain regions and are particularly abundant in thalamic nuclei, where they are crucial for control of the functional states of those neurons (McCormick and Bal, 1997; Steriade, 2005). Specifically, Ca\textsubscript{3.1} is mainly expressed in thalamo-cortical relay neurons, while Ca\textsubscript{3.2} and Ca\textsubscript{3.3} are expressed in thalamic reticular (nRT) neurons, the main inhibitory structure in the thalamus (Talley et al., 1999). Inhibition of thalamic processing of sensory information has been recently implicated as a possible contributor to clinical effects of anesthetics such as loss of consciousness and sedation (Rudolph and Antkowiak, 2004; Alkire, 2000; Franks, 2008). Therefore, the potential of T-channel isoforms expressed in the thalamus, spinal cord and DRG as targets for the action of general anesthetics remains an important issue in our understanding of the cellular mechanisms of anesthetic action.

It has been previously shown that Iso at clinically relevant concentrations inhibit recombinant and native T-current variants in peripheral and central neurons (Todorovic and Lingle 1998; Todorovic et al., 2000; Joksovic et al., 2005a; 2005b; Ries and Puil, 1999; Study, 1994). Here, we studied the effects of clinically relevant concentrations of Iso on two kinetically similar isoforms of T-channels, Ca\textsubscript{3.1} and Ca\textsubscript{3.2}, which are
abundantly expressed in the thalamus, spinal cord and DRG. By expressing T-type
canals in a heterologous system, we are able to study individual isoforms without
interference from other ionic conductances. Since it is known that Iso inhibits native T-
channels, we now strive to describe the similarities and differences of its effects on each
isoform and to compare in vivo effects of Iso on anesthetic end-points in mice lacking
these channels. This may lead to a better understanding of the distinct roles of these
channels in anesthesia.

METHODS

HEK-293 cells. For recordings of recombinant T-currents, we used both
transiently transfected and stably-expressed CaV3.1 or CaV3.2 channels in human
embryonic kidney (HEK-293) cells as reported previously (Joksovic et al., 2006). HEK-
293 cells (CRL-1573; American Type Culture Collection, Manassas, VA) were grown in
DMEM/F-12 media (Invitrogen) supplemented with 10% fetal bovine serum, penicillin G
(100mg/ml), and streptomycin (0.1mg/ml). Transiently transfected cell lines were made
using cDNA encoding human CaV3.1 or CaV3.2, and a plasmid encoding the CD8
antigen. Cells were then incubated with polystyrene microbeads coated with CD8
antibody (Dynabeads M-450 CD8, Dynal GmbH, Hamburg, Germany). After ~48 hours,
cells with microbeads bound were selected for electrophysiology.

In vitro anesthetic preparation. Isoflurane (Abbott Laboratories, IL) was
prepared as a saturated stock solution incubated overnight in a tightly sealed glass
bottle (40 ml Iso, 60 ml external solution) and freshly diluted to appropriate
concentrations at the time of experiments, using only the upper aqueous layer. To
quantify the actual anesthetic concentrations in solutions, we had previously analyzed
samples of identically prepared saturated stock solutions and aliquots in a gas
chromatograph calibrated with appropriate volatile anesthetic standards (Todorovic and
Lingle, 1998; Joksovic et al., 2005b). By measuring actual concentrations, we found less than 10% loss if the solution was used within 30 min after preparation. Test solutions were maintained in tightly sealed, all-glass syringes.

Electrophysiology. All recordings were made using standard whole-cell techniques. Electrodes were fabricated from borosilicate microcapillary tubes (Drummond Scientific, Broomall, PA) and fire-polished to final resistances of 2-3 MΩ. Voltage commands and digitization of membrane voltages and currents were done with Clampex 9.2 of the pClamp software package (Axon Instruments), running on an IBM-compatible computer. Membrane voltages and currents were recorded with an Axopatch 200B patch-clamp amplifier (Axon Instruments). Data were analyzed using Clampfit 9.2 (Axon Instruments) and Origin 7.0 (Microcal Software). Currents were filtered at 2 kHz. Series resistance (R_s) and membrane capacitance (C_m) values were taken directly from readings on the amplifier following electronic subtraction of the capacitative transients. We compensated for 50%-80% of R_s. Cell were held (V_h) at -90 mV and depolarized to a test potential (V_t) of -30 mV every 10-20 seconds to evoke inward Ba^{2+} currents, unless otherwise noted. In most experiments, a P/N protocol was used for online leak subtraction.

Multiple independently controlled glass syringes served as reservoirs for a gravity-driven local perfusion system, where manually controlled valves allowed for switching between syringes. Solution exchange was accomplished by constant suction through a glass capillary tube at the opposite end of the recording dish. All drugs were prepared as stock solutions and freshly diluted to appropriate concentrations at the time of experiments. The external recording solution used to isolate Ba^{2+} currents in HEK-293 cells contained (in mM): BaCl_2, 2-10; TEA-Cl, 152; HEPES, 10; pH adjusted to 7.4 with TEA-OH. The internal solution contained (in mM): Cs-methane sulfonate, 110;
phosphocreatine, 14; HEPES, 40; Mg-ATP, 2; Na-GTP, 0.1; adjusted to pH 7.2 with KOH.

Data analysis and statistical procedures: Peak currents and exponential fits to currents were calculated using Clampfit, while curve fitting was performed using Origin 7 software. For general statistical evaluations, we used one- and two-way ANOVAs with values <0.05 judged to be statistically significant, and paired or unpaired Student’s t-tests as appropriate.

Analysis of current blockade. The percent reduction in peak T-current at a given Iso concentration was used to generate concentration-response curves. For each such curve, all points are averages of multiple determinations obtained from at least three different cells. In most of the cells, we tested at least 2 different concentrations of Iso. On all plots, vertical bars indicate ±SEM. Mean values on concentration-response curves were fit to the following function:

\[
P_B([\text{Iso}]) = \frac{PB_{\text{max}}}{1 + \left(\frac{IC_{50}}{[\text{Iso}]^n}\right)}
\]

(1)

where \(PB_{\text{max}}\) is the maximal percent block of peak T-current, \(IC_{50}\) is the concentration that produces 50% of maximal inhibition, and \(n\) is the apparent Hill coefficient for blockade. Fitted values are typically reported with 95% linear confidence limits.

Analysis of current. The voltage dependence of steady-state activation was described with a single Boltzmann distribution:

\[
G(V) = \frac{G_{\text{max}}}{1 + \exp\left[-\left(V - V_{50}\right)/k\right]}
\]

(2)

where \(G_{\text{max}}\) is the maximal estimated conductance, \(V_{50}\) is the half-maximal voltage, and \(k\) (units of mV) represents the voltage dependence of the distribution. The voltage-dependence of steady-state inactivation was described with a single Boltzmann distribution:

\[
I(V) = \frac{I_{\text{max}}}{1 + \exp\left[(V - V_{50})/k\right]}
\]

(3)
where I_{max} is the maximal current, V_{50} is the half-maximal voltage, and k (units of mV) represents the voltage dependence of the distribution.

The time courses of macroscopic current inactivation and deactivation of tail currents were fitted using a single exponential equation:

$$f(t) = A_1 \exp(-t/\tau_1)$$

yielding one time constant (τ_1) and its amplitude (A_1). For fitting the time course of recovery from inactivation, a double exponential function was used, yielding two time constants (τ_1 and τ_2) and their corresponding amplitudes (A_1 and A_2).

For all steady-state inactivation curves, fitted values typically were reported with 95% linear confidence limits.

Behavioral studies. Adult mice of either sex were used for all behavioral studies. Ca\textsubscript{v}3.2 knock-out mice (Ca\textsubscript{v}3.2 +/-) and their age-matched WT littermates (Ca\textsubscript{v}3.2 +/-) were studied at 16 to 60 weeks of age. The initial breeding pair for our colony of Ca\textsubscript{v}3.2 +/- mice was obtained through the courtesy of Dr. Kevin Campbell (University of Iowa, Iowa City, IA). These mice were repeatedly backcrossed for at least 6 generations against wild type (C57BL/65J) mice. Animals were genotyped using tail biopsy. All behavioral experiments were performed in a blinded manner. Mutant mice were normal in appearance, weight, and overt behavior. They demonstrated a brisk righting reflex and in a previous study showed no differences in motor abilities under control conditions (Choi et al., 2007).

In order to compare anesthetic phenotypes accurately, we used procedures similar to those used recently to characterize Ca\textsubscript{v}3.1-deficient mice for behavioral testing of anesthetic end-points (Petrenko et al., 2007). Animals were tested individually in a small plexiglass chamber that was connected to an anesthetic vaporizer via a plastic nose cone made from latex glove. Iso was vaporized in 2-6 l/min oxygen. Anesthetic
concentration was constantly monitored by an infrared gas analyzer (Datex-Engström, Helsinki, Finland). Each concentration of Iso was maintained for a minimum equilibration period of 20 min. In all behavioral experiments we recorded rectal temperatures (Oakton Instruments, Vernon Hills, IL) before and after each measurement. Body temperature was actively maintained between 36°-38° C with an electric heat mat placed beneath the testing chamber.

We used loss of righting reflex (LORR) as a measure of anesthetic-induced hypnosis. An initial concentration of 0.6% atm Iso was administered and allowed to equilibrate. The chamber was then rotated to gently place the mouse on its back and the mouse was monitored for 3 consecutive tries, the first lasting 45 seconds, and the second two lasting 1 minute each. LORR onset was considered to be a failure of the animal to right itself on all three tries, but disregarded if the animal was able to right itself on any of the three. None of the animals demonstrated LORR at this concentration. Iso concentration was then increased by 0.1% atm for another equilibration period and the response was tested again. LORR ED_{50} (50% concentration for LORR) was calculated by averaging the two concentrations at which the mouse either retained or lost its righting reflex.

Time to LORR (TTLORR) was used as another measure of Iso hypnosis. We measured the ability of mice to right themselves within 15 s after being placed on their backs. Mice were evaluated at 30 s intervals after beginning exposure to 1.0, 1.4, or 2.0% Iso. The average time to first LORR (over three trials) was considered time to LORR. We also determined time to LORR for the intravenous anesthetic 2,6 diisopropylphenol (propofol, AstraZeneca), which was given intraperitoneally (i.p., 180 mg/kg) after a negative aspiration test. The TTLORR after propofol injections was assessed by using two consecutive 15 second periods every minute, or when deemed
necessary by observation. Failure of the mouse to right itself in both constituted the onset of the LORR.

The immobilizing properties of Iso or halothane (Hal) were examined using tail clamp experiments to determine MAC. The volatile anesthetics were delivered to the mice through a modified thumb portion of a latex glove. A latex glove was used to ensure that the mice were being exposed to a constant concentration of volatile anesthetic. The glove tip was connected to a vaporizer as well as an oxygen source with a flow of 2 l/min. For Iso, the concentration started at 0.9% for KO mice and 1.1% for the control mice with incremental increases of 0.1%. This experiment was repeated with Hal starting at an initial concentration of 0.8% for KO mice and 1.0% for control mice with incremental increases of 0.1%. These values were established after initial testing of both knockouts and controls. The mice were equilibrated at each concentration of anesthetic for at least 30 minutes (Iso) or 40 minutes (Hal). A plastic clamp was then used to clamp the proximal third of the mouse’s tail. If a response was elicited, the concentration of anesthetic was subsequently increased by 0.1%. If there was no response, a metal artery clamp was clamped on the proximal third of the tail on its first notch. Then if a response was elicited, the concentration was increased. However, if there was still no response, then this concentration was recorded as the value at which the mouse had no response. This is due to the fact that the metal artery clamp is a supra-threshold stimulus. MAC was calculated by averaging the two concentrations at which the mouse either retained or lost the movement response.

If the same mice were used for LORR and MAC studies, at least 1 week was allowed between each treatment for recovery. For behavioral studies, statistical analysis was performed using Student t-test or Mann-Whitney Rank sum test.

Animals. Ethical approval was obtained for all experimental protocols from the University of Virginia Animal Care and Use Committee, Charlottesville, VA. All
experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals adopted by the U.S. National Institutes of Health. Every effort was made to minimize animal suffering and the number of animals used.

RESULTS

State-dependent inhibition of T-current variants by isoflurane. We first characterized the effects of 300 μM and 600 μM Iso on Ca\textsubscript{V}3.1 and Ca\textsubscript{V}3.2 currents in the form of a current-voltage (I-V) series. Most notable in Figure 1A-B are the concentration dependent and almost complete inhibition of current amplitude over the wide range of test potentials for both isoforms. When normalized peak current was converted to conductance, it is noticeable that 300 μM Iso produced a significant (~4 mV) depolarizing shift in the conductance curves of Ca\textsubscript{V}3.2, while it had a minimal effect on Ca\textsubscript{V}3.1 (Figure 1C). Based on these initial results, we further explored the differential effects of Iso on these two key isoforms of human T-channels. We chose to perform our other studies using 300 μM Iso, a clinically relevant concentration for in vitro studies (MAC ~320 μM; Franks and Lieb, 1994).

Inactivation is one of the main features that distinguishes T-currents from high voltage-activated (HVA) currents. Inactivation of T-currents is normally complete with voltage-clamp commands that are subthreshold for HVA activation. Importantly, alteration of T-current inactivation kinetics by anesthetic agents can result in very different operational ranges of membrane potential in which action potential firing can be generated. Thus, we analyzed macroscopic inactivation kinetics of current waveforms fitted with a single exponential function (Figure 2A). 300 μM Iso minimally affected macroscopic current inactivation in both isoforms as evidenced by largely overlapping points before (open symbols) and after Iso application (filled symbols). Next, we
assessed the influence of the same concentration of Iso on macroscopic current activation by measuring 10-90% rise time. Figure 2B shows that Iso at 300 µM has very little effect on 10-90% rise times for either CaV3.1 or CaV3.2. Smooth curves denote single exponential equation fits. However, 600 µM Iso significantly increased the rate of macroscopic current activation and inactivation (data not shown). On average, for CaV3.1 constructs, 10-90% rise time (V_h -90 mV; V_t -30 mV) was in control conditions 4.3±0.3 ms, and during Iso application 3.0±0.4 ms (n=8, p<0.01) while for CaV3.2 constructs was 4.7±0.4 ms in control (n=6) and 3.4±0.1 ms with Iso (n=9, p<0.05). Similarly, average inactivation time constants for CaV3.1 constructs in these cells (V_h -90 mV; V_t -30 mV) was in control conditions 15.3±1.2 ms, and during Iso application 10.6±0.9 ms (p<0.001) while for CaV3.2 constructs was 21.2±0.9 ms in control and 12.2±0.9 ms with Iso (p<0.001).

T-channels deactivate (close) much more slowly than other voltage-gated Ca^{2+} channels. That is, they take more time to return from the open state to the resting state. This is evidenced by a slowly relaxing tail current at the end of short activating test pulse. This transition determines the mean open time and the bursting behavior of the channel. Hence, to study the possible effects of Iso on the voltage dependence of deactivation kinetics, tail currents were recorded over a sufficiently negative range of membrane potentials (e.g. -160 to -70 mV in 10 mV increments), following an 8 ms depolarizing step to -30 mV (Todorovic and Lingle, 1998). We determined the time constant of current decay using a single exponential fit of the time course of tail currents before and during application of 300 µM Iso in the same cells (Figure 3A). As shown in Figure 3B, 300 µM Iso markedly speeds deactivation time constants in both CaV3.1 and CaV3.2 isoforms over a wide range of membrane potentials. These changes were significant at all voltages shown (paired t-test, p<0.05), but are most impressive at
physiologically-relevant voltages (e.g. 2-3 fold change at -70 mV). This is important because deactivation can become physiologically significant following brief depolarizations that activate T-channels. The driving force for ion permeation at deactivation potentials is large so that significant Ca\(^{2+}\) entry can occur until the channels are completely deactivated. Thus, T-currents may serve to promote Ca\(^{2+}\) influx during the repolarization phase of action potentials in neurons (McCobb and Beam, 1991). Furthermore, by changing the time constant and/or voltage-dependence of T-current deactivation, anesthetic agents can modulate neuronal excitability.

Binding to inactivated states is an important property of drugs that modulate ion channels since it can provide selectivity to their action. Transitions from closed to inactivated states can be measured using long prepulses at different potentials, producing what are commonly referred to as the steady-state inactivation curves. Steady-state inactivation curves were assessed using a standard double-pulse protocol with 3.6 s long prepulses to variable voltages (from -110 to -45 mV) and test potentials to -40 mV. Figure 4A shows representative traces of currents in HEK cells transfected with Ca\(_V\)3.1 (left) and Ca\(_V\)3.2 (right) constructs before (top panels) and after application of 300 µM Iso (bottom panels). 60, 150 and 300 µM Iso caused concentration-dependent hyperpolarizing shifts of steady-state relationships even after exposure to as little as 60 µM Iso (Figure 4B, left top panel). Applications of 300 µM Iso resulted in about 6 mV leftward shift on Ca\(_V\)3.1, and about 4 mV shift on Ca\(_V\)3.2 (Figure 4B, lower panels). All changes were statistically significant (p<0.05), except for the effects of 60 µM Iso on Ca\(_V\)3.2 (paired t-test, p>0.05).

These data suggest that Iso binds to and stabilizes inactive states of the channel and thus is more potent blocker at depolarized membrane potentials. To further confirm this notion, we evaluated concentration-response curves for Iso inhibition of T-currents.
at different holding potentials. Cells were exposed to the same concentrations of Iso while held at membrane potentials of -100 and -65 mV. Representative traces (Figure 5A-B) illustrate a 2-3 fold greater block of peak CaV3.1 and CaV3.2 current when cells were held at -65 mV rather than -100 mV. Figure 5C shows the average concentration-response data from multiple cells. Depolarizing the cells decreased the IC50 of Iso approximately 2-fold for CaV3.1 (left panel), and 2.7-fold for CaV3.2 (right panel). As a result, the difference in the degree of inhibition of peak current at 300 µM Iso is significant for both isoforms at different holding potentials (t-test, p<0.05).

T-channels can recover from inactivation during sufficiently long hyperpolarizations of the neuronal membrane caused by inhibitory synaptic potentials in CNS (Perez-Reyes, 2003), or the effects of neuromodulators like serotonin in peripheral sensory neurons (Nelson et al., 2005). Rates of recovery can drastically influence firing properties of cells that express T-channels. Thus, we determined the effect of Iso on recovery from inactivation (deinactivation) of T-channels using our standard double-pulse protocol with variable duration pre-pulse (Figure 6A). As expected from the effects of Iso on steady-state inactivation (Figure 4), recovery from inactivation was slowed in both CaV3.1 and CaV3.2 after exposure to 300 µM Iso (Figure 6A-B). Average data in Figure 6B indicate that, when fitted with a double exponential curve, Iso produced a 1.5-fold increase in both isoforms of the slow component of the time constant, and CaV3.1’s fast component. Interestingly, Iso caused a 3-fold increase of CaV3.2’s fast component.

To further explore the mechanism of Iso inhibition of these channels, we investigated tonic blockade of the channel by using a protocol that allowed assessment of Iso interaction with resting states of the channel. First, we obtained baseline measurements of peak current amplitude when cells were repeatedly depolarized to -30 mV every 10 s, then applied 300 µM Iso to cells for two minutes with no stimulation, and
finally measured the amplitude of the first current waveform after resuming stimulation following Iso application (Figure 7A and 7B). A summary histogram comparing current amplitudes after the first depolarizing pulse with normal inhibition shows that there is similar degree of block of the channel in both isoforms: ~57% block of the resting (previously non-stimulated) channels versus ~50% of the constantly stimulated channels. Thus, it appears that Iso binds preferentially to resting states over open and inactive channel states.

Some blockers more effectively inhibit currents when channels are more frequently depolarized, presumably due to greater access to high-affinity binding states. As shown in Figure 8A, 300 µM Iso blocked ~50% of CaV3.1 current when cells were stimulated every 6s. When the stimulation frequency was reduced to once every 60s, only ~40% inhibition was observed (p>0.05). A greater difference is seen in CaV3.2 as depicted by representative current traces and time course of current inhibition (Figure 8B). Histograms on Figure 8C indicate that the same concentration of Iso inhibits ~70% of CaV3.2 current when stimulated every 6s, and only ~50% when stimulated every 60s (paired t-test, p<0.05). This use-dependence of inhibition indicates that Iso also binds to channel states entered upon membrane depolarization.

Mice lacking CaV3.2 have altered sensitivity to volatile anesthetics. A complete anesthetic state involves loss of consciousness (hypnosis), movement (immobilization), pain sensation (analgesia), and recollection of the event (amnesia). New theories propose that multiple end-points of anesthesia are mediated by multiple relevant cellular mechanisms (Urban 2002; Rudolph and Antkowiak, 2004). According to this multi-site hypothesis, the importance of a particular molecular target depends on the specific anesthetic and the specific end point in consideration. In agreement with this view, recent genetic studies with knockout mice of various ion channels have demonstrated variable, often small, alterations only in certain end-points of anesthetic
states (reviewed in Rudolph and Antkoviak 2004; Franks, 2008). Calcium current inhibition may be important to anesthetic action in either of two ways. First, it is possible that selective inhibition of particular Ca2+ channel subtypes in CNS neurons may be central to the effects of some general anesthetics. Second, there are large differences in the quality of the anesthetic state induced by different agents. Differential effects of volatile anesthetics on Ca2+ channels versus other potential targets may contribute to the diversity of effects produced by these agents. Thus, we tested the anesthetic sensitivity of mice lacking Ca\textsubscript{v}3.2 channels and compared the results with recently reported findings regarding the Ca\textsubscript{v}3.1 isoform (Petrenko et al., 2007).

First we examined the immobilizing effects of Iso in mutant and wild type littermate mice using tail clamp tests for the determination of MAC. Figure 9A shows that Ca\textsubscript{v}3.2 knockout mice have about 15% decreased MAC requirements for Iso and Hal (Mann-Whitney Rank Sum test, p<0.001). In contrast, KO mice show no statistical difference from wild type littermates for the concentration of Iso needed to reach LORR (Figure 9B). However, mutant mice have a considerably slower induction of anesthesia as manifested by about 60% longer times for loss of righting reflex (TTLORR) at 1.0% and 1.4% (p<0.05, t-test), but not with 2% Iso (Figure 9C). It appears that slower anesthetic induction was isoflurane-specific since we did not observe difference in TTLORR between the wild type and mutant mice after i.p. injections of a prototypical intravenous anesthetic, propofol, at 180 mg/kg (n=13 in each group, p>0.05, Mann-Whitney Rank Sum test; data not shown).

DISCUSSION

Biophysical mechanisms of T-channel inhibition by isoflurane. Recent studies have indicated that among other native voltage-gated calcium channels, T-channels are particularly sensitive to inhibition by volatile anesthetics (Takenoshita and
Steinbach, 1991; Study, 1994; Herrington and Lingle 1992; McDowell et al., 1996; Todorovic and Lingle, 1998; Joksovic et al., 2005a, 2005b; Ries and Puil, 1999). This study describes the inhibition of cloned human Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2 T-type channels by a commonly used volatile anesthetic, isoflurane. Previous pharmacological studies have demonstrated a similar sensitivity of recombinant rat Ca\textsubscript{v}3.1 (Todorovic et al., 2000) and rat Ca\textsubscript{v}3.3 (Joksovic et al., 2005a) to this anesthetic, but have not presented an in-depth comparison between isoforms. In this paper, we did not examine Ca\textsubscript{v}3.3, choosing to focus on the two more kinetically-similar but differentially tissue-expressed isoforms. For greatest relevance to human application, we performed all experiments using clinically pertinent anesthetic concentrations and used human isoforms of recombinant channels.

Our results strongly suggest that Iso inhibition of Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2 T-currents occur primarily by interaction with resting channel states since we observed significant tonic channel inhibition. However, functionally important state-dependent features of Iso inhibition of T-currents occur via stabilization of inactive channel states. This is seen in hyperpolarizing shifts in steady-state inactivation curves, greater potency of inhibition at more depolarized holding potentials and slowing of recovery from inactivation. Evidence also points to Iso binding to open channels. Iso inhibited gating of Ca\textsubscript{v}3.2 as evidenced by a depolarizing shift in channel activation curves in I-V relationships. Channel deactivation determines channel open time and bursting behavior. Thus the observation that Iso allows both Ca\textsubscript{v}3.1 and Ca\textsubscript{v}3.2 channels to close more rapidly suggest interaction with activation gate closure after repolarization. In addition, Iso inhibition of Ca\textsubscript{v}3.2 T-current increases with more frequent channel openings. This use dependent block provides additional evidence that the Iso molecule visits open channel states. Exact molecular determinants of such complex interactions of Iso with T-channel is currently not known, but further examination of T-channel kinetics in the presence of anesthetics could provide more details on the channel states and structures that Iso is.
able to affect. This could be accomplished through single channel studies and more extensive molecular mutagenesis studies.

Importantly, we identified several biophysical features of channel inhibition that may have a significant impact on active membrane firing that was previously observed with volatile anesthetic-induced inhibition of low-threshold calcium spikes (LTS) in functional current-clamp recordings in intact thalamic slices (Ries and Puil, 1999; Joksovic et al., 2005b). For example, both voltage- and use-dependent inhibition, together with speeding of channel closure, will likely decrease the amount of calcium ions passing through the channel during action potentials. This in turn may profoundly affect the T-channel-dependent cellular excitability of these cells. It is important to mention that we and others have observed previously both voltage-dependent (Joksovic et al., 2005a; Camara et al., 2001; Ries and Puil, 1999) and voltage-independent (Joksovic et al., 2005a; Takenoshita and Steinbach, 1991) inhibition of different native T-currents by volatile anesthetics. It is not clear whether these inconsistencies are related to difference in recombinant vs. native channels, different subunit composition and/or different splice variants of T-channels present in native tissues. The last explanation appears plausible since all three T-channel isoforms may undergo extensive alternative splicing (Perez-Reyes, 2006).

Functional considerations of T-channel inhibition by isoflurane. T-channels are new arrivals in the field of anesthesia research, but the part they play in pain transmission and sleep pathway make them interesting targets for further exploration. Knockout (Choi et al., 2007) and knockdown studies (Bourinet et al., 2005) have firmly established a prominent role for T-channels in DRG in amplifying nociceptive signals in the periphery and possible contributors to the development of central sensitization in the dorsal horn (Ikeda et al., 2003). Based on these observations, it is unsurprising that anesthetic agents which inhibit T-channels, such as Iso, also often possess notable
analgesic qualities. In agreement with this, we report decreases in MAC requirements for Iso in CaV3.2 KO mice likely resulting from the prominent role of these channels in pain signaling. In contrast, studies of CaV3.1 KO mice did not find any changes in MAC for Iso or other volatile anesthetics (Petrenko et al., 2007). Although both CaV3.1 and CaV3.2 isoforms are similarly inhibited by Iso, as shown in this study, and their mRNA transcripts are expressed in DRG and dorsal horn of the spinal cord (Talley et al., 1999), it appears that CaV3.2 is a more important contributor to anesthetic-induced analgesia. Our results strongly suggest that any future pharmaceutical developments of drugs that selectively inhibit CaV3.2 T-channels would be a useful adjuvant for general anesthesia since they would reduce MAC.

We also found that genetic elimination of CaV3.2 leads to a marked delay of anesthetic induction with Iso. It is unlikely that this results from general depressant actions of Iso on the cardiovascular system since this effect was present only with lower concentrations of anesthetic. Thus, a specific role of CaV3.2 in neural pathways that mediate hypnotic/sedative effects of anesthesia is more likely. While the role of CaV3.2 isoform in sleep is not established, CaV3.1 knockout mice also show slower anesthetic induction (Petrenko et al., 2007), and have an abnormal natural sleep phenotype likely resulting from the lack of T-channels and underlying burst firing in the thalamic relay neurons (Lee et al., 2004; Anderson et al., 2005). Furthermore, recent studies implicate the thalamus as a possible central site for the hypnotic/sedative effects of many anesthetic agents. The thalamus is a major “gateway” of corticothalamocortical functional connections and expresses abundant CaV3 isoforms on neuronal somas and dendrites where these channels can shape neuronal excitability and synaptic integration, respectively. Functional imaging studies in both humans and animals have led to the theory that direct and indirect depression of thalamocortical neurons may provide a convergence point for neural pathways of anesthetic action leading to a sleep-like state.
Mutually interconnected cortical, nRT, and thalamic relay neurons exhibit tonic and burst firing that represent different functional modes (McCormick and Bal, 1997; Steriade, 2005). During tonic firing, which predominates during awake states, there is a faithful transfer of sensory information to cortical neurons. In contrast, during slow oscillations with a burst firing pattern, which critically depends on functional T-channels, there is an impairment of sensory transfer and transition to sleep states. It is well established that these slow oscillations underlie delta rhythms on electroencephalogram (EEG) generated by the thalamocortical projection neurons and are very prominent during anesthesia (Franks, 2008), as well as in slow wave sleep (Steriade, 2005; McCormick and Bal, 1997). However, it is important to notice that Iso affects other ion channels in thalamocortical sensory pathways such as GABA\(_A\) and potassium leak (I\(_{LEAK}\)) currents (Franks, 2008; Ries and Pulil, 1999) and the overall effect of this anesthetic likely results from the interplay between all conductances that finely tune the inflow of sensory information into the thalamus.

Our findings of delayed anesthetic induction in Ca\(_{V}\)3.2 and similarly in Ca\(_{V}\)3.1 knockout mice (Petrenko et al., 2007) in vivo argue that at low and moderate levels of anesthesia with Iso (1.0-1.4% in vivo, or roughly 200-250 \(\mu\)M in vitro), T-channels are still functionally active and capable of producing burst firing in thalamocortical circuitries. This is likely due to the fact that at sub-anesthetic concentrations, activation of GABA\(_A\) receptors and I\(_{LEAK}\) would sufficiently hyperpolarize neurons, which would in turn deinactivate T-channels and relieve the state-dependent inhibition of thalamic T-channels by Iso. During deeper levels of anesthesia (e.g. 2% in vivo, roughly 400 \(\mu\)M in vitro), Iso causes a block of sensory information transfer between the thalamus and the cortex, with EEG patterns changing to a characteristic burst suppression mode and finally to an isoelectric line (Franks, 2008). This effect would be consistent with a strong
direct inhibition of T-channels and more profound hyperpolarization of neuronal membrane. Both of these would lead to eventual cessation of the thalamocortical rhythmicity. Consistent with this, we did not find difference in the speed of anesthetic induction with 2% Iso between Cav3.2 knockout mice and wild type littermates.

In conclusion, the results of the present study support the idea that inhibition of neuronal T-channels in pain and sleep pathways by volatile anesthetics may contribute to useful clinical properties of these agents such as analgesia, immobility and sedation/hypnosis.

ACKNOWLEDGMENTS

We thank Dr. Edward Perez-Reyes for his contribution of stably-transfected Cav3.1 and Cav3.2 HEK cell lines, Dr. Kevin Campbell for providing our initial pair of Cav3.2 KO mice and Dr. Wenhao Xu for providing the services of the UVA Gene Targeting and Transgenic Facility.
REFERENCES

FOOTNOTES

a) This work was supported by NIH grant GM070726 to SMT and F31NS059190 to PO.

b) Reprint requests to Slobodan M. Todorovic, Department of Anesthesiology, University of Virginia Health System, 1 Hospital Drive, Mail Box 800710, Charlottesville, VA 22908-0710; email: st9d@virginia.edu
FIGURE LEGENDS

Figure 1. A. Families of representative traces from current-voltage series traces from HEK cells transfected with Ca\(_3\)\(1\) (left panel) and Ca\(_3\)\(2\) (right panel) constructs. Cells were held at -90 mV, with steps ranging from -80 mV to -20 mV before (control, top traces) and during application of 300 \(\mu\)M Iso (bottom traces). Traces are shown in 10 mV increments for clarity. B. Average normalized current-voltage relationships in the same cells (n=6-8) before (open circles) and during application of 300 \(\mu\)M Iso (filled circles) and 600 \(\mu\)M Iso (filled triangles) for Ca\(_3\)\(1\) (left panel) and Ca\(_3\)\(2\) (right panel) constructs. Note that Iso blocked inward currents of both isoforms over the wide range of test potentials. Vertical lines represent SEM and are visible only if bigger than symbols. C. Apparent peak conductance values calculated from I-V curves in panel B, plotted against command potentials. All fits were performed using the Boltzmann equation. The extrapolated reversal potential (\(E_{r}\)) was taken to be +55 mV. The estimates of \(V_{50}\) and \(k\) show only small shifts with even up to 20 mV differences in assumed reversal potential values. Changes in conductance in control conditions (open symbols) and during applications of 300 \(\mu\)M Iso (filled symbols) are presented with midpoints (\(V_{50}\)) and slope (\(k\)) from fitted data (smooth lines) using a Boltzmann equation giving: Ca\(_3\)\(1\) control, \(V_{50}\) -51.4±0.1 mV, \(k\) 4.0±0.1 mV; Ca\(_3\)\(1\) Iso, \(V_{50}\) -50.6±0.2 mV, \(k\) 5.1±0.2 mV; Ca\(_3\)\(2\) control, \(V_{50}\) -50.6±0.3 mV, \(k\) 3.8±0.2 mV; Ca\(_3\)\(2\) Iso, \(V_{50}\) -46.1±0.3 mV, \(k\) 4.4±0.3 mV. Inset: same data are normalized to peak conductance.

Figure 2. A. Rates of macroscopic current inactivation (n = 6-8, error bars represent SEM) from the same cells used to generate current-voltage curves depicted in Figure 1 in control (open symbols) and during application of 300 \(\mu\)M Iso (filled symbols) for Ca\(_3\)\(1\) (left panel) and Ca\(_3\)\(2\) (right panel). All points represent averages from multiple
cells where inactivation τ was obtained at indicated potentials by fitting the decaying portion of the current with a single exponential function. **B.** All points represent averages of 10-90 rise time of the same cells. Rise time was measured as time between 10% and 90% of peak current. Solid lines are fits by a single exponential function (smooth lines). Calculated tau values were as follows: CaV3.1 control, 11.0±0.5; CaV3.1 iso, 11.5±0.4; CaV3.2 control, 13.5±0.4; CaV3.2 iso, 15.8±0.6 (n = 6-8, error bars represent SEM).

Figure 3. 300 μM isoflurane increases the speed of current deactivation in both CaV3.1 (left panel) and CaV3.2 (right panel) constructs. **A.** Normalized traces of tail currents from representative cells at deactivating test potentials of -70 mV for Iso (top traces) and control (bottom traces). **B.** Deactivating tail currents in control (open symbols) and during application of 300 μM Iso (filled symbols) were fit with a single exponential function and the resulting tau values are plotted (n = 5, error bars represent SEM). All points are statistically significant (p<0.05). Insert at the bottom depicts the protocol used in these experiments, where cells were held at -90 mV, then subjected to a 8 ms-long activating pulse to -30 mV, followed by variable deactivating steps from -160 to -70 mV.

Figure 4. Steady-state inactivation in human CaV3.1 (left panels) and CaV3.2 Ca$^{2+}$ (right panels) channels. **A.** Representative current traces are shown in control (top panels) and during application of 300 μM Iso (bottom panels) every 10 mV for clarity. Voltage protocol is depicted at the bottom: currents were measured using 3.6s-long inactivating pulses (-110 mV to -45 mV), followed by a brief activating step to -40 mV. **B.** Average data from similar experiments with different concentrations of Iso were fitted with Boltzmann equation (smooth lines) giving V_{50} (midpoint of inactivation) and slope (k) of the curve (n = 4-13 cells, error bars represent SEM). Left panels, CaV3.1 (top) control
V50 -73.2±0.4 mV, k 6.4±0.3 mV; 60 µM Iso V50 -76.1±0.4 mV, k 6.8±0.3 mV; (middle) control V50 -78.5±0.3 mV, k 5.4±0.3 mV; 150 µM iso V50 -84.3±0.3 mV, k 6.6±0.3 mV; (bottom) control V50 -74.2±0.3 mV, k 6.3±0.2 mV; 300 µM Iso V50 -80.1±0.3 mV, k 7.2±0.3 mV. Right panels, CaV3.2 (top) control V50 -71.7±0.5 mV, k 5.4±0.5; 60 µM Iso V50 -72.7±0.7 mV, k 5.4±0.6 mV; (middle) control V50 -73.7±0.6 mV, k 6.1±0.5 mV; 150 µM Iso V50 -78.6±0.6 mV, k 6.0±0.6 mV; (bottom) control V50 -74.3±0.3 mV, k 5.7±0.3 mV; 300 µM Iso V50 -78.6±0.3 mV, k 6.6±0.3 mV. * denotes significance by paired t-test (p<0.05).

Figure 5. Voltage-dependent inhibition of human T-channel isoforms by isoflurane. **A.** Representative traces of inward currents in the absence and presence of 300 µM Iso recorded from CaV3.1 in response to voltage steps to Vt -30 mV from holding potentials (Vh) of -65 (left panels) or -100 mV (right panels) applied every 10 s. In this cell, Iso inhibited about 50% of CaV3.1 current at Vh -100 mV and more than 70% at Vh -65. **B.** A similar effect is evident for CaV3.2 since Iso inhibited (in the same cell) only about 25% current at Vh -100 mV and about 66% at Vh -65 mV. Voltage protocols are depicted on the bottom of the panels presented on Figures 5A and 5B. **C.** Percent inhibition of peak current is plotted against drug concentration. IC50 values from fitted data (smooth lines) using a Hill equation were: CaV3.1 at Vh -65mV, 166±20µM, slope 1.2±0.2; CaV3.1 at Vh -100mV, 363±13µM, slope 1.3±0.1; CaV3.2 at Vh -65mV, 172±43µM, slope 1.1±0.3; CaV3.2 at Vh -100 mV, 464±85µM, slope 1.9±0.7. Number of cells recorded for each point is indicated on the graph. Error bars indicate SEM of multiple determinations.

Figure 6. Isoflurane slows recovery from inactivation of CaV3.1 (left panel) and CaV3.2 (right panel). **A.** Traces from representative cells showing initial traces and traces after a
100 ms recovery interval in control conditions (open symbol) and after application of 300 μM Iso (filled symbol) in the same cells. Note that Iso diminished the current amplitude of the second pulse more than the first. Double-pulse protocol with variable recovery duration is depicted below. B. Averaged data from multiple cells (n=5) were fitted with a double exponential equation (smooth lines): CaV3.1 (left panel) control: τ1 216.4±67.8 ms, τ2 40.2±3.3 ms; Iso: τ1 384.0±89.0 ms (p<0.01), τ2 60.5±4.4 ms (p<0.01); CaV3.2 (right panel) control: τ1 580.2±40.7 ms, τ2 91.8±8.2 ms; Iso: τ1 893.0±164.0 ms (p<0.01), τ2 292.6±52.2 (p<0.01).

Figure 7. Isoflurane inhibition of CaV3.1 and CaV3.2 during resting channel states. A. Traces from representative cells transfected with CaV3.1 (left panel) or CaV3.2 (right panel) constructs (Vh -90 mV, Vt -30 mV). Control current is marked with an open symbol. Inhibition of current after application of 300 μM Iso during non-stimulated or resting states is shown using a black filled symbol whereas constantly stimulated channel states are marked with a gray filled symbol. Bars indicate calibration. B. Time courses of drug application of the same cells presented on panel A of this figure. Horizontal bars indicate times of application of 300 μM Iso. Note that maximal current inhibition was similar in both applications. C. Pooled data compare the average block during the first pulse after non-stimulation with the drug (black bars) and after the drug effect reaches steady state (grey bars) during constant depolarizing pulses every 10 s. Percent block: CaV3.1 non-stimulated, 58.3±4.8; CaV3.1 stimulated, 49.5±6.0 (p>0.05); CaV3.2 non-stimulated, 56.9±8.3; CaV3.2 stimulated, 50.5±9.0 (p>0.05). Error bars indicate SEM and number of cells is indicated bellow each histogram bar.
Figure 8. Use-dependent block of CaV3.1 and CaV3.2 currents by isoflurane. **A.** Traces from representative cells at V_h -90 mV in control conditions (open symbol) and before during application of 300 µM Iso. Cells were stimulated with a depolarizing pulse to V_t -30 mV either every 6s (black filled symbol) or every 60s (gray filled symbol). **B.** Time courses of Iso application (300 µM) in the same cells depicted on panel A. Horizontal bars indicate duration of application of Iso. Note that Iso inhibited more potently inhibits CaV3.2 currents with more frequent stimulation, while there is little difference in CaV3.1 current regardless of frequency of stimulation. **C.** Pooled data (n = 7-8) show greater current inhibition of CaV3.2 but not CaV3.1 with Iso with more frequent membrane depolarization. Percent block: CaV3.1 every 6s, 48.9±2.4; CaV3.1 every 60s, 40.1±4.4; CaV3.2 every 6s, 67.2±1.9; CaV3.2 every 60s, 48.2±2.3. (* denotes a significant difference, p < 0.005 with Student's t-test).

Figure 9. CaV3.2 knockout mice have decreased MAC and slower onset of anesthetic induction than wild-type littermates. **A.** Histograms show decreased MAC measured by response to painful tail clamp to isoflurane and halothane. Error bars indicate SEM and number of mice in each group is indicated bellow histogram bars. For isoflurane, MAC in WT mice was 1.35±0.01% and in KO mice 1.16±0.06%. For halothane MAC in WT mice was 1.10±0.01% and in KO mice 0.94±0.02%. (*** p<0.001 by Mann-Whitney Rank Sum Test). **B.** Histograms show no significant difference in LORR for isoflurane between wild type mice (CaV3.2 +/+) and knockout littermates (CaV3.2 -/-). LORR in WT mice was 0.78±0.03% and in KO mice 0.79±0.04% (n.s. not significant, p>0.05 by t-test). Number of experimental animals in each group is indicated in the bars. **C.** Slower anesthetic induction with Iso in CaV3.2 KO mice (filled bars) than in wild-type littermates (open bars) is indicated with longer normalized TTLORR at 1.0% and 1.4% inhaled gas but not at.
2.0%. In each group, 12 animals were tested on different days with at least 1 week between experiments. When compared to wild-type group, KO mice had TTLOR increased by 60.0±15.0% (1.0% Iso), 56.3±15.0% (1.4% Iso) and by 8.8±18.8% (2.0% Iso). (* indicates significance p<0.05; n.s. not significant by t-test).
Figure 3

A

Ca_{3.1}

- Control
- 300\mu M iso

2ms

Ca_{3.2}

- Control
- 300\mu M iso

2ms

B

[Graph showing deactivation tau (ms) vs. voltage (mV) for control and 300\mu M iso]

- Control
- 300\mu M iso

-90mV

-30mV

-70mV

-160mV
Figure 6

A

Ca_v3.1

-90 mV

-30 mV

Control

300 μM Iso

100 ms

1000 pA

B

Percent recovery

Percent recovery

Control

300 μM Iso

Recovery time (ms)

Recovery time (ms)
Figure 7

(A) Ca,3.1 vs. Ca,3.2

(B) Time course of peak current for Iso-stimulated and non-stimulated conditions.

(C) Percent block for Ca,3.1 and Ca,3.2 in non-stimulated and stimulated conditions.
Figure 8

A

Ca\textsubscript{\text{V}}3.1

Ca\textsubscript{\text{V}}3.2

B

\begin{align*}
\text{IT (pA)} & \quad \text{Time (s)} \\
0 & \quad 0 \\
500 & \quad 200 \\
1000 & \quad 400 \\
1500 & \quad 600 \\
2000 & \quad 800 \\
\end{align*}

\begin{align*}
\text{IT (pA)} & \quad \text{Time (s)} \\
0 & \quad 0 \\
500 & \quad 200 \\
1000 & \quad 400 \\
1500 & \quad 600 \\
2000 & \quad 800 \\
\end{align*}

C

\begin{align*}
\text{Percent block} & \quad \text{Time (s)} \\
6s & \quad 60s \\
50 & \quad 40 \\
40 & \quad 30 \\
30 & \quad 20 \\
20 & \quad 10 \\
10 & \quad 0 \\
\end{align*}

\text{* indicates significant difference.}