The AHR Regulates Cell Cycle Progression in Human Breast Cancer Cells Via a Functional Interaction with CDK4

Melissa A. Barhoover, Julie M. Hall, William F. Greenlee, and Russell S. Thomas*

The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (M.A.B., J.M.H., W.F.G., R.S.T.)
Running Title: AHR Regulation of the Cell Cycle Via CDK4

*Corresponding Author:
Russell S, Thomas, Ph.D., The Hamner Institutes for Health Sciences,
6 Davis Drive, PO Box 12137, Research Triangle Park, NC 27709
Ph: (919) 558-1311, Fax: (919) 558-1303
Email: rthomas@thehamner.org

Number of Text Pages: 27
Number of Tables: 0
Number of Figures: 7
Number of References: 32
Number of Words in Abstract: 243
Number of Words in Introduction: 750
Number of Words in Discussion: 836

Abbreviations: aryl hydrocarbon receptor (AHR), aryl hydrocarbon nuclear translocator (ARNT), AHR-interacting protein (AIP), cyclin dependent kinase 4 (CDK4), estrogen receptor α (ERα), estrogen receptor negative (ER-), estrogen receptor positive (ER+), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), retinoblastoma protein (RB1), cyclin D1 (CCND1), charcoal-stripped FBS (C/D FBS), 17-β-estradiol (E2)
Abstract

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor with constitutive activities as well as those induced by xenobiotic ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). One unexplained cellular role for the AHR has been its ability to promote cell cycle progression in the absence of exogenous ligands, while treatment with exogenous ligands induces cell cycle arrest. Within the cell cycle, progression from G1 to S phase is controlled by sequential phosphorylation of the retinoblastoma protein (RB1) by cyclin D-CDK4/6 complexes. In this study, the functional interactions between the AHR, CDK4, and CCND1 were investigated as a potential mechanism for the cell cycle regulation by the AHR. Time course cell cycle and molecular experiments were performed in human breast cancer cells. The results demonstrated that the AHR and CDK4 interact within the cell cycle and the interaction was disrupted upon TCDD treatment. The disruption was temporally correlated with G1 cell cycle arrest and decreased phosphorylation of RB1. Biochemical reconstitution assays using in vitro translated protein recapitulated the AHR and CDK4 interaction and showed that CCND1 was also part of the complex. In vitro assays for CDK4 kinase activity demonstrated that RB1 phosphorylation by the AHR:CDK4:CCND1 complex was reduced in the presence of TCDD. The results suggest that the AHR interacts in a complex with CDK4 and CCND1 in the absence of exogenous ligands to facilitate cell cycle progression. This interaction is disrupted by exogenous ligands, such as TCDD, to induce G1 cell cycle arrest.
Introduction

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor and a member of the basic helix-loop-helix, per/ARNT/Sim (PAS) superfamily. In the canonical model for AHR signaling, the unliganded form of the receptor exists in the cytoplasm in a stable complex with HSP90, the AHR-interacting protein (AIP), and p23 (Petrulis and Perdew, 2002). Following ligand binding, the AHR translocates to the nucleus and binds with the AHR nuclear translocation protein (ARNT). The AHR:ARNT heterodimer binds to xenobiotic response elements and regulates a diverse set of genes (Hankinson, 1995; Hsu et al., 2007; Kolluri et al., 1999; Poland and Knutson, 1982; Thomsen et al., 2004). Although it is widely believed the majority of biological effects resulting from AHR ligand activation are driven through direct binding to XREs (Bunger et al., 2008), regulation of the AHR effects through protein interactions and other non-genomic mechanisms have been proposed as an important route of AHR activity. For example, ligand activation of the AHR has been shown to induce proteosome degradation of estrogen receptor α (ERα), thereby reducing the ability of the cell to respond to estrogens (Wormke et al., 2003). Additionally, the AHR can repress acute-phase gene expression by inhibiting the recruitment of RELA and CEBPB to the promoters of target genes (Patel et al., 2009). Other non-genomic effects of the AHR have been proposed in regulating the CUL4B (Ohtake et al., 2009), MAPK (Tan et al., 2002), PKA (Dong and Matsumura, 2009), and SRC (Dong and Matsumura, 2009; Haarmann-Stemmann et al., 2009) signaling pathways.

There is considerable evidence indicating the AHR plays a role in regulating cell growth (Hahn et al., 2009). Early studies using the AHR-deficient variant of the mouse
Hepa1c1c7 cell line identified an increased doubling time and prolonged G1 progression compared to the wild-type cell line (Ma and Whitlock, 1996). Additionally, cell cycle progression of murine or human hepatoma cells from G1 to S is prolonged by transfection of antisense cDNA or siRNA targeting the AHR (Abdelrahim et al., 2003; Ma and Whitlock, 1996). These and other studies suggest a role for the AHR in facilitating progression through G1 in the absence of an exogenous ligand. In a seemingly contradictory role, treatment with the exogenous AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibited DNA synthesis in rat primary hepatocytes and in the 5L rat hepatoma cell line (Hushka and Greenlee, 1995). In the 5L rat hepatoma cell line, the inhibition of proliferation by TCDD was linked to G1 cell cycle arrest (Elferink et al., 2001; Hushka and Greenlee, 1995; Weiss et al., 1996).

To date, no unifying model exists that explains the apparent contradictory roles of the AHR in the cell cycle. However, multiple models have been proposed to explain the mechanism of G1 arrest by the ligand-activated AHR. The generally accepted model holds that in an unliganded state, HSP90 binding masks the LXCXE motifs within the PAS domain of the AHR (Elferink et al., 2001). Upon ligand binding, the AHR sheds HSP90, translocates to the nucleus, and performs two separate functions that lead to G1 arrest. First, the ligand-bound AHR interacts with a hypophosphorylated RB1 (Elferink et al., 2001; Ge and Elferink, 1998; Puga et al., 2000). The interaction of the ligand bound AHR with RB1 inhibits the recruitment of EP300 and maintains its interaction with E2F resulting in the repression of cell cycle progression genes (Marlowe et al., 2004). Second, the ligand-bound AHR interacts with ARNT and stimulates transcription of the cell cycle inhibitory protein CDKN1B (p27Kip1) (Kolluri et al., 1999). Together,
the non-genomic and genomic roles of the ligand-activated AHR result in cell cycle arrest.

Advancement through G1 of the cell cycle is primarily regulated by RB1. The active, hypophosphorylated RB1 arrests cells in G1 through repressive interactions with E2F and the inhibition of genes involved in cell cycle progression (Flemington et al., 1993). Entry into S phase occurs following RB1 inactivation by cyclin D-CDK4/6 mediated hyperphosphorylation (Kato et al., 1993). The present study investigated the functional interactions between the AHR, CDK4, and CCND1 as a potential mechanism for the AHR-mediated cell cycle effects. The results show AHR, CDK4, and CCND1 physically interact in the absence of exogenous ligands. The interaction is disrupted following treatment with TCDD and the disruption was temporally correlated with G1 cell cycle arrest and decreased phosphorylation of RB1. The AHR:CDK4 interaction and its disruption by TCDD was confirmed using biochemical reconstitution assays. In vitro assays for CDK4 kinase activity also demonstrated that RB1 phosphorylation by the AHR:CDK4:CCND1 complex was reduced in the presence of TCDD.
MATERIALS AND METHODS

Chemicals - 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; C_{12}H_{4}Cl_{4}O_{2}) was purchased from AccuStandard (New Haven, CT). Dimethyl sulfoxide (DMSO; Me_{2}SO_{4}) and (17β)-estra-1,3,5(10)-triene-3,17-diol (E2; C_{18}H_{24}O_{2}) was purchased from Sigma-Aldrich (St. Louis, MO).

Cell Lines and Growth Conditions – Two human breast cancer cell lines were employed in this study: the estrogen receptor negative (ER-) cell line, MDA MB-231; and the estrogen receptor positive (ER+) cell line, MCF-7. Both cell lines were maintained in a 50:50 mixture of Dulbecco’s Modified Eagle’s Medium and Ham’s F-12 with L-glutamine (DMEM/F-12 50/50) (Cellgro, Manassas, VA). The media was supplemented with 8% fetal bovine serum (FBS), 1% 100X MEM Nonessential Amino Acids, and 1% 100X MEM Sodium Pyruvate Solution (Invitrogen, Carlsbad, CA). The cells were maintained in a humidified environment at 37ºC and 5% CO_{2}. Prior to experiments, cells were split into DMEM/F-12 50/50 without phenol red (Cellgro) and supplemented with 8% charcoal-stripped FBS (C/D FBS) (Hyclone, Logan, UT), 1% 100X MEM Nonessential Amino Acids, and 1% 100X MEM Sodium Pyruvate Solution. For cell cycle and co-immunoprecipitation experiments, cells were synchronized for 24 hours in DMEM/F-12 50/50 without phenol red and supplemented with 0.2% C/D FBS and 1% 100X HEPES (Invitrogen). When specified, cells were treated with TCDD to a final concentration of 10 nM. Control cells were treated with an equal volume of the DMSO vehicle (0.1% of the total volume).

Cell Cycle Experiments – The MDA MB-231 and MCF-7 cell lines were plated in 6-well culture dishes in phenol-red free media at a density of 0.1 \times 10^6 cells/mL. For the
synchronized cell studies, the cells were allowed to incubate overnight prior to serum starvation in 0.2% C/D FBS media for 24 hours. The cells were then stimulated with 8% C/D FBS medium and treated with 10 nM TCDD or DMSO vehicle. For asynchronous cell studies, cells were allowed to incubate overnight following plating, and then the media was changed to treated medium as mentioned above. E2 was also added to the media of MCF-7 treated and control cells. Following treatment, cells were fixed in 70% ethanol at the indicated time points and stored at 4 ºC for cell cycle analysis. For the dose response studies, synchronized cells were treated with 0.1, 0.3, 3 or 10 nM TCDD or DMSO vehicle and harvested at the 24 hour time point. Cells were stained with Guava Cell Cycle Reagent (Guava Technologies, Hayward, CA) according to the manufacturer’s instructions. Cell cycle data was obtained using the Guava Personal Cell Analysis System (Guava Technologies). A total of three experimental replicates in each cell line were performed.

Cellular Co-immunoprecipitation and Western Blotting – The MDA MB-231 and MCF-7 cell lines were plated at a cell density of 1.0 x 10^6 cells/mL in 100 mm cell culture plates. The cells were treated simultaneously with the cell cycle experiments as described above. At the indicated time points, cells were harvested by scraping in ice-cold PBS. Cells were pelleted and stored at -80ºC until analysis was performed. Cells were lysed in 1 mL M-PER Mammalian Protein Extraction Reagent (Thermo Scientific, Waltham, MA) supplemented with 1% 100X Halt Protease Inhibitor Single-Use Cocktail (Thermo Scientific). The total protein concentration was measured based on the absorbance at 260 nm. For Western blot experiments, 10-50 μg of total protein per sample was analyzed by SDS-PAGE and transferred to PVDF as described above. The
membranes were probed with α-Phospho-RB1 (Ser780) antibody (Cell Signaling Technology, Danvers, MA). An antibody for β-actin (Santa Cruz Biotechnology, Santa Cruz, CA) was used as a loading control. For the co-immunoprecipitation experiments, 500-1,000 μg of total protein per sample was allowed to incubate overnight with 2 μg antibody, α-CDK4 (DCS-35) (Santa Cruz Biotechnology) or a negative control α-GAL4 (DBD) (N-19) (Santa Cruz Biotechnology). The antibody-bound protein was incubated with 50 μL Immobilized Protein A/G resin (Pierce, Rockford, IL) for 2 hours while rotating at ambient temperature. The immobilized Protein A/G resin was washed 4 times by adding 1 mL BupH Tris Buffered Saline (IP Buffer) (Pierce) and centrifuged at 2,500 g for 5 minutes. The supernatant was then discarded. The complex-bound Protein A/G resin was washed with 1 mL deionized water, centrifuged at 2,500 g for 5 minutes and the supernatant was discarded. Electrophoresis Loading Buffer (Pierce) was added to the complex-bound Protein A/G resin, incubated at 95°C for 5 minutes, and centrifuged at 2,500 g for 5 minutes. The supernatant was separated by SDS-PAGE on an 8% Tris-Glycine Gel (Invitrogen). The gel was transferred to PVDF membrane (Bio-Rad Laboratories, Hercules, CA) and probed with α-AHR (N-Term) (Zymed, San Francisco, CA) followed by ECL detection (GE Healthcare, Piscataway, NJ). For densitometry, the films were scanned on the Bio-Rad VersaDoc Imaging System and the acquired images were analyzed for band density using Bio-Rad’s PD Quest 2-D Analysis Software.

In vitro Transcription/Translation – Plasmids were constructed using polymerase chain reaction (PCR) and the Gateway system (Invitrogen). Primers were designed for the AHR, CDK4, and CCND1 with DNA recombination sequences (att sites) flanking the open reading frames. The primers were as follows: AHR, 5’
The open reading frames for each gene were transferred by recombination cloning into the pcDNA3.1nV5-DEST vector (Invitrogen).

For the in vitro transcription/translation reaction, 2 µg of plasmid was used in a 50 µL in vitro TNT Quick Coupled Transcription/Translation system (Promega, Madison, WI). Reactions were incubated at 30ºC for 1.5 hours. Total protein concentration was determined using the Bio-Rad Protein Assay Kit (Bio-Rad, Hercules, CA), using BSA as the protein standard. Protein expression was confirmed by Western blotting and the translated proteins were used in the complex reconstitution and kinase assays.

Biochemical Reconstitution Assays – To our knowledge, no stoichiometric studies have been performed for AHR, CDK4, and CCND1 proteins. As a result reconstitution
assays were carried out using equal amounts of protein (200 μg) based on total protein concentration. The proteins were incubated for 30 minutes on ice either in the presence of 10 nM TCDD or an equal volume of DMSO vehicle (0.1% of the total reaction volume). Following the incubation, 2 μg of α-CDK4 agarose conjugate (DCS-35) or α-CCND1 agarose conjugate (DCS-6) (Santa Cruz Biotechnology) was added and allowed to incubate overnight while rotating at 4°C. The complexes were washed 3 times with IP buffer and once with de-ionized water. The washed complexes were boiled for 5 minutes in protein loading buffer, run on an 8% Tris Glycine gel (Invitrogen), and transferred to PVDF membrane (Bio-Rad Laboratories). The membrane was probed with α-AHR (N-Term) (Zymed) and detected with ECL Chemiluminescence (GE Healthcare). Densitometry was performed as described in the preceding sections.

In Vitro CDK4 Kinase Assays – Equal amounts of each protein (200 μg) were combined and allowed to form complexes on ice for 30 minutes. Following the incubation, 2 μg of anti-CDK4 agarose conjugate (DCS-35) (Santa Cruz Biotechnology) was added and allowed to incubate overnight while rotating at 4°C. Complexes were washed with 200 μL kinase buffer (Cell Signaling Technology, Danvers, MA). The agarose beads were pelleted and the buffer removed. The complexes were resuspended in 45 μL kinase buffer containing adenosine 5′-triphosphate (ATP; C_{10}H_{16}N_{5}O_{13}P_{3}) (Cell Signaling Technologies) to a final concentration of 0.3 mM, 2.5 μg of retinoblastoma protein (p110RB) (QEDBiosciences, San Diego, CA), and 10 nM TCDD or DMSO (0.1% of total reaction volume). Reactions were incubated for 30 minutes at 30°C with slow shaking. The agarose beads were pelleted, and the supernatant removed and prepared for SDS-PAGE analysis as described below. Complexes were washed three times with IP
Buffer and once with de-ionized water. Pellets were resuspended in protein loading buffer, boiled for 5 minutes, separated by SDS-PAGE on an 8% Tris-Glycine gel (Invitrogen), and transferred to PVDF membrane (Bio-Rad Laboratories). The membrane was probed with α-RB1 (C-15) (Santa Cruz Biotechnologies) and α-Phospho-RB1 (Ser780) (Cell Signaling Technology) and detected with ECL Chemiluminescence (GE Healthcare). Densitometry was performed as described in the preceding sections.
RESULTS

AHR Ligand Activation Inhibits the Progression of ER+ and ER- Human Breast Cancer Cells at the G₁ → S Transition in the Cell Cycle. The presence of AHR protein was verified by Western blotting in both MCF-7 (ER+, PR+, HER2-) and MDA MB-231 (ER-, PR-, HER2-) breast cancer lines (data not shown). The biological activity of the AHR was assessed based on the induction of CYP1A1 mRNA using quantitative real-time PCR. In both cell lines, CYP1A1 mRNA was upregulated following TCDD treatment (data not shown).

To evaluate the cell cycle effects of AHR ligand activation, time course flow cytometry measurements were performed in both MCF-7 and MDA MB-231 breast cancer cell lines following treatment with 10 nM TCDD or the DMSO vehicle. 17β-estradiol (E2) was also added to the medium for the estrogen-dependent MCF-7 cells. The results showed that TCDD treatment resulted in G₁ arrest in both synchronous and asynchronous cells and in both cell lines (Fig. 1). For synchronous cells, neither the MDA MB-231 cells nor the MCF-7 cells treated with TCDD significantly progressed out of G₁ arrest over the 48 hour time period. In contrast, only ~40% of the MDA MB-231 vehicle control cells and ~45% of the MCF-7 E2/vehicle control cells remained in G₁ arrest at the end of 48 hours. For asynchronous cells, an increasing percentage of cells in G₁ was observed over the 48 hour period for both cell lines following treatment with TCDD. Control cells maintained a stable percentage of cells in G₁. Thus, ligand activation of the AHR inhibits cell cycle progression in both ER- and ER+ human breast cancer cell lines.
Dose response studies of the cell cycle effects of TCDD were performed at the 24 hour time point in both MCF-7 and MDA MB-231 breast cancer cell lines. In both cell lines a dose response trend was observed (Fig. 2). In the MDA MB-231 cells, significant G1 arrest was observed at 0.1 nM TCDD while in MCF-7 cells significant G1 arrest was observed at 0.3 nM.

RB1 phosphorylation is decreased by TCDD. To investigate the temporal association of the TCDD-induced G1 arrest with RB1 phosphorylation, time course Western blot analysis was performed using an RB1 phospho-specific antibody. The results show a significant increase in RB1 phosphorylation at the 24 hour time point in both breast cancer cell lines treated with the DMSO vehicle (Fig. 3). A small amount of RB1 phosphorylation was present at other time points in the MDA MB-231 cells and may be due to reduced synchronization in this cell line. The extent of RB1 phosphorylation was decreased by TCDD treatment in both cell lines and the results were temporally correlated with G1 cell cycle arrest (Fig. 1). The TCDD-related decrease in RB1 phosphorylation is consistent with a previous study in MCF-7 cells (Wang et al., 1998).

Co-immunoprecipitation of AHR with CDK4 is Disrupted Following Treatment with TCDD. Progression from G1 to S phase is controlled by sequential phosphorylation of RB1 by cyclin D-CDK4/6 complexes. Although previous studies have shown a physical interaction between AHR and the hypophosphorylated form of RB1 (Elferink et al., 2001; Ge and Elferink, 1998; Puga et al., 2000), no published studies have demonstrated a functional interaction with CDK4. In parallel with the cell cycle studies, time course co-immunoprecipitation experiments were performed to examine both the physical interaction between AHR and CDK4 and the ligand-dependent
nature of the interaction. The results show that the AHR interacts with CDK4 in both MDA MB-231 and MCF-7 human breast cancer cells. At time zero following synchronization, a strong interaction between AHR and CDK4 was observed in both treated and untreated cells and in both the ER+ and ER- cell lines. Following treatment with TCDD, the AHR:CDK4 interaction was diminished by the 12 hour time point for both cell lines (Fig. 4A and B) and at the 24 hour time point greater than an 80% reduction was observed (Fig. 4C). The disruption of the AHR:CDK interaction temporally correlated with the decreased RB1 phosphorylation and G1 cell cycle arrest. The data suggest that disruption of the AHR:CDK4 interaction has functional consequences within the cell cycle.

In vitro Reconstitution of the AHR:CDK4:CCND1 Complex. To confirm the interaction between AHR and CDK4, biochemical reconstitution experiments were performed using *in vitro* translated proteins. The AHR:CDK4 interaction was examined in the presence and absence of ligand and the CDK4 binding partner, Cyclin D1 (CCND1). The results demonstrate that the AHR and CDK4 can form protein complexes *in vitro* and support the time course co-immunoprecipitation experiments in the breast cancer cells (Fig. 5). Further, the AHR can be pulled down with both α-CDK4 and α-CCND1 antibodies, indicating that these three proteins are part of a larger complex. Treatment with the exogenous AHR ligand TCDD completely disrupts the AHR:CDK4 interaction, while the addition of CCND1 partially rescues the interaction. It should be noted that the actual interaction of these proteins inside cells may depend on their concentrations and relative ratios. It is possible that the conditions in the reconstitution experiments may be outside the range of the conditions existing within cells. Therefore,
interpretation of the reconstitution experiments must be performed together with the cellular co-immunoprecipitation experiments.

CDK4 Kinase Activity by the AHR:CDK4:CCND1 Complex is Inhibited by TCDD In Vitro. To evaluate the functional effects of the AHR:CDK4:CCND1 interaction, the biochemical reconstitution experiments were expanded to include the addition of RB1. The phosphorylation status of RB1 was measured using a phospho-specific antibody. The data demonstrates the ability of the AHR:CDK4:CCND1 complex to phosphorylate RB1 (Fig. 6). The extent of phosphorylation is decreased in the presence of TCDD compared to the vehicle control. To ensure this kinase activity is specific to the protein complex, each of the proteins were assayed individually for their ability to phosphorylate RB1 and none of the proteins alone were unable to phosphorylate RB1 (data not shown). The results of the kinase reconstitution experiments demonstrate that AHR:CDK4:CCND1 complex is functional and that disruption of the complex by TCDD inhibits RB1 phosphorylation.
DISCUSSION

The developmental and cancer-related effects of exposure to exogenous AHR agonists have been widely investigated. Multiple studies and review articles have attempted to link these endpoints with the known effects of AHR agonists on the cell cycle, regulation of oncogenic pathways, and interference with apoptosis [e.g., (Marlowe and Puga, 2005; Ray and Swanson, 2009)]. Despite the multitude of studies, fundamental questions still remain regarding the role of the AHR in the cell cycle. One of these questions is how the AHR both facilitates cell cycle progression in the absence of exogenous ligands, while exposure to exogenous ligands arrests cells in G1. Due to the role of CDK4 and CCND1 in the G1 to S progression of the cell cycle, the functional interaction between the AHR, CDK4, and CCND1 was investigated as a potential mechanism.

The results demonstrate that in the absence of exogenous ligands, the AHR interacts with CDK4 through the G1 to S transition of the cell cycle and the interaction correlates with RB1 phosphorylation. Biochemical reconstitution assays confirm that the AHR exists in a complex with CDK4 and CCND1. The reconstitution assays also demonstrate that AHR:CDK4:CCND1 complex can phosphorylate RB1. Taken together, these results suggest that the AHR may act as a scaffolding protein and aid in the recruitment of RB1 to the AHR:CDK4:CCND1 complex (Fig. 7). The recruitment of RB1 allows its phosphorylation by CDK4 and facilitates cell cycle progression.

Upon exposure to the exogenous ligand TCDD, the interaction between the AHR and CDK4 is inhibited and the temporal nature of the inhibition correlates with decreased RB1 phosphorylation and G1 cell cycle arrest. In the biochemical reconstitution assays,
exposure to the exogenous ligand TCDD causes the AHR to dissociate from CDK4 and CCND1 and the phosphorylation of RB1 is inhibited (Fig. 7). Based on previous studies, the ligand bound receptor would subsequently bind to hypophosphorylated RB1 leading to the inhibition of EP300 recruitment (Marlowe et al., 2004). This assembly of proteins at E2F-responsive promoters leads to the repression of S-phase genes aiding in G1 arrest. The ligand-bound AHR would also bind to ARNT and promote transcription of the cell cycle inhibitor CDKN1B (p27Kip1) (Kolluri et al., 1999). The combination of these events would result in G1 cell cycle arrest.

The role of an endogenous ligand for AHR in this process is unknown. In cells treated with only the vehicle, the AHR binds with CDK4 to facilitate RB1 phosphorylation and cell cycle progression. The interaction between AHR and CDK4 was replicated in reticulocyte lysate translations. If an endogenous ligand was present in both systems, it is clear that it is either required for the interaction to occur or at least does not hinder the process.

Although the present study expands the role for the AHR in cell cycle regulation, there are conflicting studies in the literature on the role of the receptor in the cell cycle. For example, one study reported that treatment of MCF-7 cells with TCDD did not induce G1 cell cycle arrest and that knockdown of the AHR using RNAi resulted in increased G0/G1 to S phase progression (Abdelrahim et al., 2003). This study is inconsistent with our results; however, there are several methodological and technical issues which hinder a direct comparison. First, the previous study employed serum-free conditions following synchronization which would keep the cells in growth arrest. In our study, cells were released from growth arrest with 8% charcoal-dextran stripped FBS in
the media following synchronization. Second, the previous study was performed in
duplicate and only observed less than a 2% change in the percentage of cells in G0/G1
following treatment with TCDD and a 5% change in the percentage of cells in G0/G1
following knockdown of the AHR. This is significantly smaller than the differences
observed in our study and consistent with a lack of growth release following
synchronization. The study also did not include validation with a second, independent
siRNA duplex to eliminate the possibility of off-target effects (Jackson et al., 2003).
Nonetheless, our results are consistent with a separate study using MCF-7 cells and similar
synchronization methods that showed a 15 to 20% increase in the percentage of cells in G1
following treatment with TCDD (Marlowe et al., 2004).

In summary, we have demonstrated a functional interaction between the AHR and
CDK4 in both ER- and ER+ human breast cancer cell lines that allows the receptor to
function as a molecular switch within the cell cycle. This switch-like function is
compatible with the existing model of the role of the AHR in the cell cycle, while
extending the model to provide a mechanism by which the receptor can also facilitate cell
cycle progression. Within mammary epithelial cells, the integrated model can explain
both the lack of mammary development in the AHR knockout mice where facilitation of
cell cycle progression by the receptor is absent (Hushka et al., 1998) as well as the
epidemiological and rodent data demonstrating the inhibition of mammary tumorigenesis
by exogenous AHR ligands (Bertazzi et al., 1997; NTP, 2006; Viel et al., 2008).
REFERENCES

FOOTNOTES

The funding for this project was provided by The Hamner Pilot Projects Initiative, The Hamner Institutes for Health Sciences.
FIGURE LEGENDS

Figure 1: TCDD induced G1 arrest in both ER- (MDA MB-231) and ER+ (MCF-7) human breast cancer cells. Subconfluent, synchronous populations of (A) MDA MB-231 and (B) MCF-7 cells were serum stimulated and treated with either DMSO or 10 nM TCDD. Subconfluent, asynchronous populations of (C) MDA MB-231 and (D) MCF-7 cells were treated with either DMSO or 10 nM TCDD. For both synchronous and asynchronous experiments, E2 was added to the media of MCF-7 cells. Cells were harvested at the indicated time points, fixed in ethanol and stained with Guava Technologies Cell Cycle Reagent. DNA content was determined using the Guava Technologies Personal Cell Analysis (PCA) System. The data represent the mean ± SD from three separate experiments. *p < 0.05 based on a two-sample Student's t-test.

Figure 2: Dose response changes in G1 arrest in both ER- (MDA MB-231) and ER+ (MCF-7) human breast cancer cells following exposure to TCDD. Subconfluent, synchronous populations of (A) MDA MB-231 and (B) MCF-7 cells were serum stimulated and treated with either DMSO or different concentrations of TCDD. E2 was added to the media of MCF-7 cells. Cells were harvested at the 24 hour time point, fixed in ethanol and stained with Guava Technologies Cell Cycle Reagent. DNA content was determined using the Guava Technologies Personal Cell Analysis (PCA) System. The data represent the mean ± SD from three separate experiments. *p < 0.05 based on a two-sample Student's t-test.

Figure 3: TCDD decreases RB1 phosphorylation in human breast cancer cells.

Subconfluent, synchronous populations of (A) MDA MB-231 and (B) MCF-7 cells were
serum stimulated in the presence of DMSO or 10 nM TCDD. E2 was added to the media of MCF-7 cells. Total cell lysates were evaluated for total RB1 phosphorylation by SDS-PAGE and Western blotting with a α-Phospho-RB1 antibody. The blots are representative of three independent experiments. (C) Densiometric measurements on the 24 hour time point and normalized as a percent of the DMSO vehicle control. The results are mean ± SD from three separate experiments. *$p < 0.05$ based on a one-sample Student's t-test.

Figure 4: The AHR associates with CDK4 in the cell cycle and the interaction is disrupted by TCDD. Subconfluent, synchronous populations of (A) MDA MB-231 and (B) MCF-7 cells were serum stimulated in the presence of DMSO or 10 nM TCDD. E2 was added to the media of MCF-7 cells. Cells were harvested at the indicated time points by scraping in ice-cold PBS, pelleted, and frozen. Cell pellets were lysed with M-PER Mammalian Protein Extraction Reagent, and protein complexes were pulled down with anti-CDK4 agarose conjugated resin. Immunoprecipitates were analyzed by SDS-PAGE and Western blotting for AHR. The blots are representative of three independent experiments. No AHR protein was detected when an irrelevant antibody was used for the immunoprecipitation (data not shown). (C) Densiometric measurements on the 24 hour time point and normalized as a percent of the DMSO vehicle control. The results are mean ± SD from three separate experiments. *$p < 0.05$ based on a one-sample Student's t-test.

Figure 5: Formation of the AHR:CDK4:CCND1 complex is disrupted by TCDD *in vitro*. AHR, CDK4, CCND1 were *in vitro* translated and allowed to form a complexes in the presence or absence of 10 nM TCDD or 0.1% DMSO vehicle control. (A) The
protein complexes were pulled down with α-CDK4 or α-Cyclin D1 agarose conjugated beads and analyzed by SDS-PAGE and Western blotting. The results are representative of three independent experiments. (B) Densiometric measurements were normalized as a percent of the DMSO vehicle control. The results are mean ± SD from three separate experiments. *p < 0.05 based on a one-sample Student's t-test.

Figure 6: CDK4 kinase activity by the AHR:CDK4:CCND1 complex is inhibited by TCDD *in vitro*. AHR, CDK4, CCND1 were *in vitro* translated and allowed to form a complex. Following overnight co-immunoprecipitation with α-CDK4 agarose conjugated beads, recombinant RB1 protein, 10 nM TCDD or 0.1% DMSO vehicle control, kinase buffer, and ATP were added and allowed to incubate at 30 ºC for 30 minutes with shaking. (A) The protein complexes were washed, eluted and analyzed by SDS-PAGE and Western blotting. The results show a representative of three separate experiments. (B) Densiometric measurements were normalized as a percent of the DMSO vehicle control. The results are mean ± SD from three separate experiments. *p < 0.05 based on a one-sample Student's t-test.

Figure 7: Conceptual model of the role of the AHR in cell cycle regulation. The proposed model depicts the dual role of the AHR in both facilitating and inhibiting cell cycle progression based on both the present investigation and previous studies (Kolluri et al., 1999; Marlowe et al., 2004). In the absence of an exogenous ligand (ExL), the AHR assists in the formation of the CDK4:CCND1:RB1 complex leading to RB1 hyperphosphorylation and cell cycle progression. Conversely, in the presence of an exogenous ligand, such as TCDD, a conformation change in the AHR causes it to dissociate from CDK4:CCND1 and bind to the hypophosphorylated RB1 (Marlowe et al.,
2004). The AHR:RB1 complex prevents the recruitment of EP300 inhibiting the expression of S-phase dependent E2F1 regulated genes, such as CDK2 and CCNE (Cyclin E). In addition, ligand bound AHR also binds ARNT and promotes the transcription of the cell cycle inhibitor CDKN1B (p27Kip1) (Kolluri et al., 1999).
FIGURE 2

A

MDA MB 231 Cells

% of Cells in G1

DMSO 0.1 nM TCDD 0.3 nM TCDD 3 nM TCDD 10 nM TCDD

B

MCF-7 Cells

% of Cells in G1

DMSO 0.1 nM TCDD 0.3 nM TCDD 3 nM TCDD 10 nM TCDD
Figure 4

A

MDA MB-231 Cells α-Cdk4 Co-IP

TCDD

AHR

β-Actin

Time (hrs)

0 3 6 12 24 48

B

MCF-7 Cells α-Cdk4 Co-IP

TCDD

AHR

β-Actin

Time (hrs)

0 3 6 12 24 48

C

% of DMSO Control

MDA MB-231 MCF-7

DMSO TCDD

*
Figure 6

A

<table>
<thead>
<tr>
<th>α-CDK4 Co-IP</th>
<th>Unbound Fraction</th>
<th>RB1 protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Phospho-RB1

RB1

B

<table>
<thead>
<tr>
<th>α-CDK4 Co-IP</th>
<th>Unbound Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>100%</td>
</tr>
<tr>
<td>TCDD</td>
<td>20%</td>
</tr>
</tbody>
</table>

% Of DMSO Control

* Signifies statistical significance

AHR
CDK4
CCND1
TCDD
E2F1-regulated cell cycle genes (e.g., CDK2, CCNE)

Facilitation of Cell Cycle Progression

Inhibition of Cell Cycle Progression

E2F1-regulated cell cycle genes (e.g., CDK2, CCNE)
(Marlowe et al., 2004)

AHR-regulated cell cycle genes (e.g., CDKN1B)
(Kolluri et al., 1999)

S Phase

Figure 7