Dependence on the microtubule network and heat shock protein 90 of phenobarbital-induced nuclear translocation of the rat constitutive androstane receptor

Yuichiro Kanno*, Yasuo Miyama, Mina Ando and Yoshio Inouye.

Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan (Y. K., Y. M., M. A., Y. I.)
Running title: Requirement of microtubule and hsp90 in nuclear translocation of CAR

Address correspondence to: Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 247-8510, Japan Phone: +81 47 476 6195. Fax: +81 47 476 6195. Email: ykanno@phar.toho-u.ac.jp

Number of text pages (including references): 28
Number of tables: 0
Number of figures: 5 (+1 supplemental figure)
Number of references: 30
Number of words in the abstract: 201
Number of words in the introduction: 599
Number of words in the discussion: 345

ABBREVIATIONS:
Abstract

The role of the microtubule network in the constitutive androstan receptor (CAR)-mediated transactivation of CYP2B induced by phenobarbital (PB) in rat primary hepatocytes was investigated using the microtubule-disrupting agent nocodazole (NCZ). In human hepatocytes, it was reported that CAR mRNA expression was decreased by a microtubule-disrupting agent through the inhibition of glucocorticoid receptor (GR)-mediated transactivation. However, in the present study we showed that the rat CAR gene was unaffected by the GR-mediated pathway in rat primary hepatocytes treated with NCZ. The PB-induced expression of CYP2B mRNA was repressed in the presence of NCZ for 2 hr prior to and during 4 hr of PB-treatment; whereas, the CAR mRNA and protein expression levels were not affected. Furthermore, the transactivation of the PBREM-luciferase reporter gene and the nuclear transport of CAR induced by PB were also repressed in the presence of NCZ. Based on these findings, microtubular integrity might be required for PB-induced nuclear translocation of CAR in rat primary hepatocytes. In the same procedures except that NCZ was replaced with radicicol (RAD), the CYP2B mRNA expression induced by PB was also repressed. Taking these into consideration, PB-mediated nuclear translocation of rCAR might be dependent on heat shock protein 90 (Hsp90) as well as microtubule network.
Introduction

The constitutive androstane receptor (CAR), a member of the nuclear hormone receptor superfamily of ligand-activated transactivation factors, was originally classified as a xenobiotic-sensing transcription factor along with the pregnane x receptor (PXR) (Honkakoski P et al, 1998). CAR regulates numerous genes including those encoding CYP2B enzymes in response to any of a large group of xenobiotics and endobiotics represented by phenobarbital (PB) and 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), and bilirubin, respectively (Sueyoshi T et al, 1999; Tzameli I et al, 2000). The PB response is mediated by the constitutive androstane receptor (CAR) but they do not bind directly to each other; whereas, TCPOBOP is an agonist ligand of CAR (Sueyoshi T et al, 1999; Moore LB et al, 2000; Tzameli I et al, 2000). In addition to CYP2B, CAR regulates the expression of multiple drug and hormone-metabolizing enzymes and transporter proteins such as CYP3A, CYP2C, glutathione S-transferases, sulfotransferases, UDP-glucuronosyltransferases, and Mrp2 (Ferguson SS et al, 2002; Goodwin B et al, 2002; Sugatani J et al, 2001; Kast HR et al, 2002; Saini SP et al, 2004).

Unlike other steroid receptors such as the estrogen receptor (ER), which is located in the nucleus in the absence of ligand, the androgen receptor (AR) and glucocorticoid receptor (GR) are distributed predominantly in the cytoplasmic compartment. Following ligand
binding, AR and GR translocate to the nucleus (Roy AK et al, 2001; Hache RJ et al, 1999).

Nuclear translocation of GR has been well investigated. The GR contains two nuclear localization signals (NLS): NL1, which is located in the area from the DNA-binding domain (DBD) to the hinge region, is similar in sequence to the monopartite SV40 NLS, while NL2 is poorly defined and resides in the ligand-binding domain (LBD) (Cadepond F et al, 1992; Savory JG et al, 1999; Picard D et al, 1987). GR is complexed with heat shock protein 90 (Hsp90), Hsp70, and FK506 binding protein 52 in the cytoplasmic compartment (Yang J et al, 1996; Czar MJ et al, 1997). Upon binding of ligands such as cortisol and dexamethasone, GR translocates from the cytoplasm to the nucleus through nuclear pores (Pratt WB et al, 2004). The movement to the nuclear membrane of GR is dependent on the Hsp90 and dynein motor complex (Harrell JM et al, 2004). Furthermore, this nuclear transport of GR requires intact microtubules (Galigniana MD et al, 1998). At the nuclear membrane, the NLS of GR are recognized by transport proteins called importins and undergo facilitated diffusion through nuclear pores.

Dvorak et al. showed that the microtubule disrupting reagent colchicine (COL) inhibited PB-inducible CYP2B6 mRNA expression in human primary hepatocytes (Dvorak Z et al, 2003; Dvorak Z et al, 2007). Since human CAR is known to be a target gene of GR (Pascussi JM et al, 2000; Pascussi JM et al, 2003), COL might repress GR-mediated mRNA
expression of CAR by blocking GR nuclear translocation, affecting the GR-CAR-CYP2B cascade.

CAR is complexed with cytoplasmic CAR retention protein (CCRP) and Hsp90 on microtubules in the cytoplasmic compartment (Kobayashi K et al, 2003; Yoshinari K et al, 2003). In the livers of mice, pretreatment with the Hsp90 inhibitor geldanamycin (GA) inhibits the nuclear translocation of CAR and cyp2b10 mRNA expression induced by TCPOBOP. Furthermore, we identified two NLS, NLS1 and NLS2, in the DBD and LBD of the rat CAR (rCAR) molecule, respectively (Kanno Y et al, 2005; Kanno Y et al, 2007). Based on these observations, the PB-induced nuclear translocation of CAR might require an intact microtubule network as in the case of GR.

In this study, we will show that PB-induced nuclear translocation of CAR requires an intact microtubule network and Hsp90.
Material and methods

Chemicals and plasmid construction

Nocodazole (NCZ) is a product of Calbiochem, USA. PB, colchicine(COL), radicicol (RAD) and dexamethasone (Dex) were purchased from WAKO Pure Chemical, Japan. The constructions of pEGFP-rCAR, pcDNA-rCAR, and pGL3-PBREM plasmids have been described previously (Kanno Y et al, 2005; Kanno Y et al, 2005).

Cell culture

The hepatocytes for primary culture were separated from the livers of 6-week-old male Wistar rats (Clea, Japan) using the collagenase perfusion method. After enumeration of the cells by Trypan blue dye exclusion, the hepatocytes were cultured in WE medium supplemented with 10% fetal bovine serum. Four hr after plating, the medium was exchanged with WE medium containing 10-8 M Dex. To evaluate the effects of glucocorticoid, Dex-free WE medium was used.

Real time RT-PCR

Rat primary hepatocytes were seeded in 6-well collagen-coated plates. The next day, the cells were treated with 10 μg/ml NCZ or DMSO (vehicle) for 2 hr prior to and for a further 4
hr after the addition of 1mM PB. In the case of Dex treatment, the cells were treated with 1μM Dex or DMSO for 24 hr. Total RNA was isolated with the SV Total RNA Isolation System (Promega, USA). The RNA concentration was quantified by spectrometry at 260 nm.

Reverse transcription (RT) was performed with 1 μg of total RNA and the Ready-to-Go T-Primed First-Strand Kit (GE Healthcare, England) according to the manufacturer’s protocol.

Real-Time PCR was performed with SYBR Green Realtime PCR Master Mix -Plus (TOYOBO, Japan). The oligonucleotide sequences of the primers used for PCR were as follows: sense: 5’-ACCAGTTTTGTGCAGTTCAGG-3’, antisense: 5’-CTTGAGAAGGGAGATCTGGT-3’ (CAR); sense 5’-GAGTTCTTCTCTGAGGTTTCTG-3’, antisense: 5’-ACTGTGGTCATGGAGAGCTG-3’ (CYP2B1/2); sense: 5’-GTTCAACCAGTGGAAGACTCA-3’, antisense 5’-CTGTGGGTCATGGAGAGCTG-3’ (CYP3A1); and sense: 5’-ACCACAGTCCATGCCATCAC-3’, antisense: 5’-TCCACCACCCCTGTGCTGTA-3’ (GAPDH).

Western blot analysis

The cells treated as described above were washed with PBS and harvested with buffer A (10 mM Hepes, pH 7.9, 10 mM KCl, 0.1 mM EDTA and 0.1 mM EGTA, and 0.5% NP40) supplemented with protease inhibitor cocktail. After being stood on ice for 15 min, the cells
were homogenized by pipetting. The cell homogenates were centrifuged (4°C, 15,000×G) for 10 min, and the pellets were suspended in 100μL buffer C (20 mM Hepes, pH 7.9, 0.2M NaCl, 1 mM EDTA, and 1 mM EGTA) after being washed with PBS. The suspended pellets were vortexed for 10 sec, placed on ice for 30 min, vortexed for 15 sec, and then placed on ice for 10 min. After centrifugation (4°C, 15,000×G) for 15 min, the supernatants were collected and stored at -80°C until use (nuclear extract). Total protein was extracted with RIPA Buffer (50mM Tris-HCl, 1mM EDTA, 150mM NaCl, and 1% Triton X-100) supplemented with protease inhibitor cocktail. The protein concentration was measured with the 2-D Quant kit (GE Healthcare, England). Five μg protein samples were separated by SDS-PAGE (gel concentration:10%). Western blotting was performed with rabbit anti-hCAR antibody (1:1000 dilution; Perseus proteomics, JAPAN) or anti-lamin B antibody (1:200 dilution; Santa cruz biotechnology, USA) as a primary antibody and horseradish peroxidase-conjugated anti-rabbit IgG (1:2000 dilution; Cell Signaling, USA) as a secondary antibody. Protein bands were visualized using Immobilon Western Detection Reagent (Millipore, USA).

Luciferase reporter analysis

Rat primary hepatocytes were seeded in 24-well collagen-coated plates and transfected
with 500 ng of pGL3-PBREM reporter plasmids and 50 ng each of CAR-expression and pRL-SV40 plasmids using the TransFectin Transfection Reagent (BIO-RAD, USA). The next day, the cells were treated with 10μg/ml NCZ or DMSO (vehicle) for 2 hr and for a further 12 hr after the addition of 1mM PB. The cells were harvested, and luciferase activity was measured according to the manufacturer’s protocol (Promega, USA).

Immunofluorescence

Rat primary hepatocytes were treated with NCZ or DMSO for 6hr. The cells were fixed with ice cold methanol and then washed with PBS. The cells were incubated with monoclonal anti-β-tubulin antibody (SIGMA) overnight. The FITC-conjugated anti-mouse IgG (SIGMA) was used as a secondary antibody. Fluorescence was observed with a Zeiss LSM 510 (Carl Zeiss, Germany).

Intracellular localization analysis

Rat primary hepatocytes were seeded in 4-well collagen coated Chambered Coverglasses (IWAKI, Japan). The cells were transfected with pEGFP-rCAR plasmids on the day of plating using TransFectin Transfection Reagent (BIO-RAD). After overnight incubation, the cells
were treated with 1mM PB for 4hr after 2-hr pretreatment with NCZ or DMSO. The intracellular expression profiles of GFP-rCAR chimerical proteins were observed with a Zeiss LSM 510.

The cells were fractionated into 3 categories based on their subcellular distribution of fluorescence signals as follows: predominantly nuclear distribution (N>C), even distribution between cytoplasmic and nuclear regions (N = C), and predominantly cytoplasmic distribution (N<C).
Results

Microtubule-interfering agent NCZ inhibits PB-mediated CYP2B induction

Firstly, we examined the effect of microtubule-disrupting agents, NCZ and COL, on CYP2B mRNA induction by PB. The enhanced expression of CYP2B mRNA observed after 4 hr of PB treatment was repressed in the presence of NCZ or COL for 2 hr prior to PB treatment and during 4 hr PB treatment in a dose dependent manner (Fig.1A). Next, we tested whether NCZ-treatment disrupted the microtubule network by immunofluorescence staining of tubulin. Fig. 1B shows that the microtubule network disruption is caused with 10 μg/ml NCZ for 6 hr.

Microtubule network disruption does not affect CAR expression in rat primary hepatocytes

As disruption of the microtubule network was found to repress human CAR mRNA expression via inhibition of the GR-mediated pathway (Dvorak Z et al, 2003; Dvorak Z et al, 2007), we measured the CAR protein and mRNA expression levels with NCZ or COL in rat primary hepatocytes. Rat primary hepatocytes were incubated for 6 or 24 hr with either NCZ or COL. The expression levels of CAR and GR proteins detected by Western blot analysis using anti-CAR and anti-GR antibodies, respectively, were not affected by treatment with NCZ or COL (Fig.2A). Furthermore, CAR mRNA expression was only slightly decreased
with NCZ (Fig. 2B). These results suggested that CAR expression was not regulated by GR.

Thus, we analyzed whether rat CAR mRNA expression was regulated by GR in rat primary hepatocytes. Although mRNA expression of the GR-target gene (CYP3A1) was increased by treatment with a synthetic GR ligand (DEX) in rat primary hepatocytes (Fig. 2C-b), no simultaneous escalation of CAR mRNA expression was observed (Fig. 2C-a). These observations suggest that the transactivation of rat CAR is not regulated by GR, in contrast with the human CAR. Microtubule network disruption inhibits CAR-mediated induction of CYP2B mRNA in rat primary hepatocytes.

Microtubule network disruption inhibits PBREM-transactivation in rat primary hepatocytes

To investigate whether CAR mediates the PB-induced CYP2B mRNA expression that was found to be susceptible to NCZ-inhibition, we measured luciferase activity using PBREM-luciferase reporter plasmid. In accordance with the results found for CYP2B mRNA, the enhanced luciferase activity caused by PB treatment was repressed in the presence of NCZ and COL (Fig. 3). These results suggested that disruption of microtubule network interferes directly with the activation of CAR.
PB-mediated nuclear translocation of CAR requires an intact microtubule network

It is known that an intact microtubule network is required for the nuclear translocation of GR. Then, the effect of a disrupted microtubule network on CAR nuclear translocation was investigated using confocal microscopy. Rat primary hepatocytes transiently transfected with the expression plasmids for GFP-tagged rat CAR (GFP-rCAR) were treated with NCZ and PB simultaneously or individually as above 24 hr after transfection. A cytoplasmic-dominant distribution of GFP-rCAR was observed in the untreated cells (Fig.4A). The nuclear accumulation of GFP-rCAR induced by PB treatment was inhibited in the presence of NCZ (Fig.4A). In addition to these observations, the accumulation of endogenous CAR protein in the nuclear fraction induced by PB treatment was inhibited in the presence of NCZ, without change in total CAR protein levels (Fig.4B and Fig.2A). These results suggest that an intact microtubule network is a prerequisite for the nuclear translocation of CAR in rat primary hepatocytes.

PB-mediated nuclear translocation of CAR requires for hsp90

Microtubule-dependent nuclear translocation of GR required Hsp90 (Harrell JM et al, 2004; Galigniana MD et al, 1998). Similarly, the nuclear translocation of mouse CAR (mCAR) induced by TCPOBOP was inhibited by GA, suggesting the important role of Hsp90 in the
nuclear translocation of ligand-bound mCAR (Yoshinari K et al, 2003). Therefore, we examined whether nuclear translocation of CAR induced by PB, which was known as activator due to the lack of direct binding to CAR, was dependent on Hsp90 using its inhibitor RAD. The short-time treatment with RAD repressed the CYP2B mRNA expression induced by PB (Fig. 5AB). PB-dependent nuclear accumulation of rCAR was also inhibited by pretreatment with RAD (Fig. 5CD). Taking these observations into consideration, PB-mediated nuclear translocation of rCAR might be dependent on Hsp90 as well as microtubule network.
Discussion

In the present study, we showed that the microtubule-disrupting agent NCZ inhibits PB-elicited CYP2B induction in rat primary hepatocytes via inhibition of the nuclear translocation of CAR. Unlike in human primary hepatocytes, the expression levels of rat CAR mRNA and protein were not markedly changed by NCZ or COL treatment. Rat CAR protein was confirmed by a specific antibody, and the results are shown in supplemental figure 1. Disruption of the microtubule network by long-term colchicine treatment for 24 hr inhibited PB-mediated CYP2B6 and CYP3A4 induction, repressing CAR and PXR expression levels via the inhibition of GR-mediated expression of individual mRNA in human primary hepatocytes (Dvorak Z et al, 2003). In humans, we speculate that microtubule network disruption is affected by two step inhibition mechanisms on PB-mediated CYP2B induction. Since the CAR gene was the target of GR-mediated transactivation, the PB-induced expression of CAR target genes such as CYP2B6 and CYP3A4 is considered to be controlled by the microtubule network at dual steps: nuclear trafficking of GR and following nuclear trafficking of CAR. Unlike hCAR, rat CAR might not be the target gene of GR. Therefore, in rat primary hepatocytes the disruption of microtubule network would affect the PB-induced expression of CAR target genes by interfering with nuclear trafficking of CAR, of which the transcription might not be controlled by GR. The divergence in their
promoter sequences between human and rat might be responsible for the observed species-specific difference in the control by GR, and the susceptibility of expression of CAR to the microtubule network disruption.

Microtubule-dependent nuclear translocation of GR requires Hsp90 (Harrell JM et al, 2004; Galigniana MD et al, 1998). A previous report suggested that GA inhibited the induction of Cyp2b10 mRNA expression via the mouse CAR ligand TCPOBOP (Yoshinari K et al, 2003). In addition, pretreatment with the Hsp90 inhibitor radicicol inhibited both the expression of CYP2B mRNA and the CAR nuclear translocation induced by PB in rat primary hepatocytes. Thus, intact Hsp90 and an intact microtubule network might be required for the nuclear translocation of CAR induced by CAR activators and ligands as well as the cytoplasmic retention of CAR in the liver and primary hepatocytes in their absence. Although it is known that the GR-Hsp90 complex is linked to cytoplasmic dynein, a molecular motor that processes along microtubular tracks to the nucleus, the equivalent molecule for the CAR-Hsp90 complex has not yet been elucidated. Thus, further investigations are required to elucidate the nuclear translocation mechanism of CAR.
REFERENCES

Savory JG, Hsu B, Laquian IR, Giffin W, Reich T, Hache RJ, Lefebvre YA (1999) Discrimination between NL1- and NL2-mediated nuclear localization of the

This work was partially supported by the Ministry of Education, Science, Sports, and Culture, Grant-in-Aid for Young Scientists (B) and by the “Open Research Center” Project.
Figure legends

Figure 1 The effect of NCZ and COL on PB-mediated CYP2B1/2 induction

(A) Rat primary hepatocytes were treated with 0.1, 1, 10 μg/ml NCZ and 0.1, 1 μg/ml COL dissolved in DMSO for 2 hr prior to and during 4 hr of PB treatment. Total RNA was extracted, and the mRNA expression of CYP2B was measured by real-time RT-PCR. The results were normalized against those of GAPDH. The results are expressed as the mean±S.D. (*P<0.05; n=3).

(B) Microtubule visualization was performed with anti-β-tubulin antibody followed by FITC conjugated anti-mouse IgG. Fluorescence was observed with a confocal microscopy.

Figure 2 The effects of NCZ and Dex on the expression of CAR protein and mRNA.

A. The rat primary hepatocytes were incubated for 6h or 24h with 10 μg/ml NCZ or 1μg/ml COL. Whole cell lysates (20 μg) were resolved by SDS-PAGE, and the protein bands were detected by immunoblotting using anti-CAR and anti GR antibodies.

B. After 2 hr of pretreatment with 10 μg/ml NCZ, the culture of rat primary hepatocytes was continued for a further 4 hr in the absence or presence of 1 mM PB. The expression of CAR mRNA was measured by real-time RT-PCR. The results were normalized against those of GAPDH and expressed as the mean±S.D. (n=3).

C. Rat primary hepatocytes were treated with DMSO or 1μM Dex for 24hr. Total RNA was extracted, and the mRNA expression of CAR (a) and CYP3A1 (b) was measured by
real-time RT-PCR. The results were normalized against those of GAPDH. The results are expressed as the mean±S.D. (*P<0.05; n=3).

Figure 3 NCZ and COL inhibits PB-mediated PBREM-transactivation

Rat primary hepatocytes were transfected with PBREM-luc, pRL3-SV40, and pcDNA-rCAR plasmids. Rat primary hepatocytes were treated with 10 μg/ml NCZ and 1 μg/ml COL dissolved in DMSO for 2 hr prior to and during 12 hr of PB treatment, and then a luciferase assay was performed. The results are expressed as the mean ± S.D. (**p<0.01; n = 4).

Figure 4 The effect of NCZ on the PB-induced nuclear translocation of CAR.

A. Rat primary hepatocytes were transfected with the pEGFP-rCAR plasmid, which codes for GFP-rCAR. Twenty-four hr after the transfection, 10 μg/ml NCZ were added to the culture 2 hr prior to the addition of 1 mM PB. After 4 hr of PB treatment, the cells were observed with a confocal laser scanning microscope. Intracellular localization of fluorescence-positive cells was conducted based on the subcellular distribution of the fluorescence signal as follows: predominantly nuclear fluorescence (N > C), fluorescence evenly distributed between the cytoplasmic and nuclear regions (N = C), and predominantly cytoplasmic fluorescence (N < C). For Intracellular localization
analysis, at least 200 GFP-positive cells were observed. Error bar shows mean ± SE from three independent experiments.

B. Nuclear extracts (5 μg) of the cells treated as shown in (A) were resolved by SDS-PAGE, and CAR proteins were detected by Western blot analysis using anti-CAR antibody and anti-lamin B antibody.

Figure 5 Effect of RAD on the PB-induced CYP2B mRNA expression and nuclear translocation of CAR.

A. After 2 hr of pretreatment with 10 μM RAD dissolved in DMSO, the culture of rat primary hepatocytes was continued for further 4 hr in the absence or coexistence of 1 mM PB. Total RNA was extracted from cells and the mRNA expressions of CYP2B measured by real-time RT-PCR were normalized by those of GAPDH. The results are expressed as the mean±S.D. (*P<0.05; n=3).

B. Rat primary hepatocytes were transfected with plasmids encoding for GFP-rCAR for 24 hr. After 2 hr of pretreatment with 10 μM RAD dissolved in DMSO, the culture of rat primary hepatocytes was continued for further 4 hr in the absence or coexistence of 1 mM PB. The cells were observed with a confocal laser scanning microscope. Intracellular localization analysis was described in the legend to Fig. 4. Error bar shows
mean ± SE from three independent experiments.

C. After 2 hr of pretreatment with 10 μM RAD dissolved in DMSO, the culture of rat primary hepatocytes was continued for further 4 hr in the absence or coexistence of 1 mM PB. Nuclear extracts (20 μg) of the cells treated as shown in (A) were resolved by SDS-PAGE, and CAR proteins were detected by Western blot analysis using anti-CAR antibody and anti-lamin B antibody.
Figure 1

A

![Graph showing relative mRNA expression (CYP2B) to GAPDH for different conditions.]

B

![Images showing cell morphology with DMSO and NCZ treatments.]

Figure 1
Figure 2
Figure 3

The figure shows a bar chart titled "PBREM-Luc." The x-axis represents different treatments: DMSO, NCZ, and COL. The y-axis represents normalized luciferase activity. The chart includes error bars and asterisks indicating statistical significance between the treatments.
Figure 4