The Farnesyltransferase Inhibitor LB42708 Suppresses VEGF-induced Angiogenesis by Inhibiting Ras-dependent MAPK and PI3K/Akt Signal Pathways

Chun-Ki Kim, Yoon-Kyoung Choi, Hansoo Lee, Kwon-Soo Ha, Moo-Ho Won, Young-Guen Kwon, Young-Myeong Kim

Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine (C.-K.K, Y.-K.C., K.-S.H., Y.-M.K) and Division of Life Sciences, College of Natural Sciences (H.L.) Kangwon National University, Chuncheon, Kangwon-do, South Korea; Department of Anatomy and Neurobiology, College of Medicine, Hallym University, Chuncheon 200-702, South Korea (M.-H.W); Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea (Y.-G.K.)
Running title: Anti-angiogenic mechanism by FTase inhibitor LB42708

Corresponding author: Dr. Young-Myeong Kim, Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Kangwon-do 200-701, South Korea. Phone: 82-33-250-8831; Fax: 82-33-244-3286; Email: ymkim@kangwon.ac.kr.

Text pages (including references): 34
Table: 0
Figures: 7
References: 40 (out of 40 references max)
Abstract: 246 words (out of 250 words max)
Introduction: 530 words (out of 750 words max)
Discussion: 1,485 words (out of 1,500 words max)

Abbreviations: FTase, farnesyltransferase; VEGF, vascular endothelial growth factor; ERK, extracellular signal-regulated protein kinase; MAPK, mitogen activated protein kinase; MEK, mitogen-activated protein kinase; FAK, focal adhesion kinase; PI3K, phosphatidylinositol 3-kinase; eNOS, endothelial nitric oxide synthase; NO, nitric oxide; NOx, nitrite plus nitrate; HUVECs, human umbilical vein endothelial cells; Rb, retinoblastoma protein; NMA, NG-monomethyl L-Arginine, DAF-FM diacetate, 4-amino-5-methylamino-2',7'-difluorescein diacetate; CAM, chick chorioallantoic membrane; FBS, fetal bovine serum; PBS, phosphate buffered saline
Abstract

Farnesyltransferase (FTase) inhibitors induce growth arrest and apoptosis in various human cancer cells by inhibiting the post-translational activation of Ras. FTase inhibitors also function to suppress the release of vascular endothelial growth factor (VEGF) from tumor cells by inhibiting Ras activation; however, the effects of FTase inhibitors on VEGF-induced angiogenesis in endothelial cells have not been studied. We have investigated the anti-angiogenic effect and molecular mechanism of LB42708, a selective non-peptidic FTase inhibitor, using in vitro and in vivo assay systems. LB42708 inhibited VEGF-induced Ras activation and subsequently suppressed angiogenesis in vitro and in vivo by blocking the MEK/ERK/p38 MAPK and phosphatidylinositol 3-kinase (PI3K)/Akt/eNOS pathways in endothelial cells, without altering FAK/Src activation. In addition, this inhibitor suppressed VEGF-induced endothelial cell cycle progression at the G1 phase by suppressing cyclin D1 expression and Rb phosphorylation as well as upregulating the cyclin-dependent kinase inhibitors p21 and p27. Knockdown of Ras by siRNA revealed similar inhibitory effects on VEGF-induced angiogenic signal events as compared to LB42708. Moreover, the inhibitory effects of LB42708 were significantly higher than those of SCH66336, a well-known FTase inhibitor. LB42708 suppressed tumor growth and tumor angiogenesis in both xenograft tumor models of Ras-mutated HCT116 cells and its wild-type Caco-2 cells, indicating its potential application in the treatment for both Ras-mutated and wild type tumors. These data indicate that the anti-tumor effect of LB42708 can be associated with direct inhibition of VEGF-induced tumor angiogenesis by blocking Ras-dependent MAPK and PI3K/Akt signal pathways in tumor-associated endothelial cells.
Introduction

Angiogenesis is the development of new blood vessels by sprouting from pre-existing endothelium of microvessels and is a significant component of a variety of pathological conditions (Folkman and Klagsbrun, 1987), including solid tumors. One of the most specific and critical regulators of angiogenesis is vascular endothelial growth factor (VEGF), which stimulates proliferation, migration, and survival through its receptors in endothelial cells (Ferrara, 2002). VEGF production is mainly upregulated in tumor cells under hypoxic conditions and plays a pivotal role in tumor angiogenesis by activating multiple angiogenic signaling cascades for endothelial cell proliferation, migration, and differentiation (Ferrara, 2002; Zachary, 2003). Tumor neovascularization is essential for tumor cell proliferation and metastasis by supplying metabolic requirements for tumor growth and circulating tumor cells to spread throughout the body (Des Guetz et al., 2006). Thus, interferences with the biological activity and signal cascade of VEGF using neutralizing VEGF antibodies and its receptor tyrosine kinase inhibitors have been shown to inhibit tumor angiogenesis and prevent tumor growth and metastasis (Idbaih et al., 2008; Greenberg and Cheresh, 2009).

Ras requires farnesylation, a post-translational modification at a cysteine residue located in a distinct C-terminal motif of CAAX, for translocation to the plasma membrane leading to the formation of an active Ras-GTP complex, which is an apical signal mediator. Thus, farnesylation of Ras is an important step in the intracellular signaling pathway between receptor tyrosine kinase and cytoplasmic signaling events in cells activated by growth factors and hormones (Adjei, 2001), contributing to tumor cell proliferation and survival. Many studies have shown that inhibition of farnesyltransferase (FTase) is an attractive approach for anti-cancer therapy by directly
inhibiting the Ras-dependent signal pathway for proliferation and survival of tumor cells (Adjei, 2001; Ravoet et al., 2008).

FTase inhibitors appears to inhibit VEGF expression and secretion from tumor cells under hypoxic conditions and by overexpression of mutant Ras (Rak et al., 2000; Han et al., 2005), indicating that Ras plays an important role in VEGF production in tumor cells. On the other hand, a recent study demonstrated that ectopic expression of the Ras effector mutants H-RasV12S35 or H-RasV12C40 in endothelial cells directly promotes in vitro angiogenesis by activating the ERK/MAPK and PI3K/Akt pathways (Serban et al., 2008), which are known angiogenic signal transduction pathways for endothelial cell proliferation and survival (Zachary, 2003). FTase inhibitors have been shown to inhibit in vitro endothelial cell function as well as in vivo angiogenesis in a rat corneal angiogenesis model (Gu et al., 1999; Scott et al., 2008). These evidences suggest that Ras likely involves both VEGF production in tumor cells and angiogenic signal transduction cascade in endothelial cells; however, the effect of FTase inhibitors on VEGF-induced tumor angiogenesis and its underlying molecular mechanism have not been elucidated in tumor-associated endothelial cells.

We here show that the new FTase inhibitor LB42708 inhibits VEGF-induced angiogenesis in vitro and in vivo by blocking the MEK/ERK/p38 MAPK and Akt/eNOS/NO pathways in endothelial cells, resulting in suppression of angiogenesis and tumor growth. Although FTase inhibitors have been generally proposed as an anticancer drug for the direct inhibition of tumor cell proliferation and survival, these results indicate that LB42708 inhibits tumor angiogenesis by blocking VEGF-induced signal pathways in tumor-associated endothelial cells.
Materials and Methods

Reagents and Antibodies

LB42708 and SCH66336 (Lonafarnib) were obtained from LG Life Science (Daejon, Korea) and Schering-Plough Inc. (Kenilworth, NJ), respectively. Culture media and antibiotics were purchased from Life Technologies Inc. (Invitrogen, Carlsbad, CA), and fetal bovine serum (FBS) was obtained from HyClone Labs (Logan, UT). VEGF and Src antibody were purchased from Upstate Biotechnology (Lake Placid, NY). Antibodies for phosphorylated (Ser473), ERK, p38 (Thr180/Tyr182), FAK, and Src (Tyr 416) as well as antibodies for Akt, ERK, and Ras were obtained from Cell Signaling Technology, Inc. (Beverly, MA). Antibodies for phospho-eNOS (Ser1177), eNOS, and phospho-tyrosine (PY20) were purchased from BD Transduction Laboratories (San Diego, CA). Antibodies for p38, FAK and FTase α-subunit were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Transwell plate was obtained from Corning Costar (Lowell, MA), and growth factor-reduced Matrigel was purchased from BD Biosciences (Bedford, MA). Thermanox disc was purchased from Nalge Nunc International (Naperville, IL). All other chemicals and proteins were purchased from Sigma (St. Louis MO), unless indicated otherwise.

Human Umbilical Vein Endothelial cell (HUVEC) Isolation and Cell Culture

Human umbilical vein endothelial cells (HUVECs) were isolated from human umbilical cord veins by collagenase treatment and grown in M119 as described previously (Lee et al., 2006) and used in passages 2-7. Human colorectal cancer cells (HCT116 and Caco-2) were cultured in Dulbecco's Modified Eagle's Medium and Eagle's Minimum Essential Medium containing 10% FBS, 100 U/ml penicillin, and 100 μg/ml
streptomycin, respectively.

In Vitro Angiogenesis Assay

Angiogenic activities of endothelial cells were determined by measurements of cell proliferation, migration, and tube formation as described previously (Lee et al., 2006; Namkoong et al., 2005). Cell proliferation was determined by \[^{3}H\]-thymidine incorporation assay. Cells pretreated with FTase inhibitors were stimulated by the addition of VEGF (10 ng/ml) for 24 h, followed by the addition of 0.5 µCi/ml \[^{3}H\]-thymidine for 6 h. \[^{3}H\]-labeled radioactive material was precipitated using 10% trichloroacetic acid at 4°C for 30 min. After washing twice with ice-cold H\(_2\)O, \[^{3}H\]-labeled radioactive material was solublized in 0.2 N NaOH containing 0.1% sodium dodecyl sulfate. \[^{3}H\]-labeled radioactivity was determined by a liquid scintillation counter. Migration assay was performed using Transwell plates with 6.5-mm diameter polycarbonate filters (8 µm pore size). The lower surface of the filter was coated with 10 µg of gelatin. Fresh M199 media (1% FBS) containing VEGF was placed in the lower wells. HUVECs pretreated with FTase inhibitors were trypsinized and suspended at a final concentration of 1 × 10\(^6\) cells/ml in M199 containing 1% FBS. One hundred µl of the cell suspension was loaded into each of the upper wells. After incubation at 37°C for 4 h, cells were fixed and stained with hematoxylin and eosin. Chemotaxis was quantified by counting the cells that migrated to the lower side of the filter at low power fields (x100) using a phase contrast microscope. Tube formation was determined following culturing HUVECs on a layer of growth factor reduced Matrigel. Twenty-four well culture plates were coated with Matrigel according to the manufacturer's instructions. HUVECs pretreated with FTase inhibitors were plated onto a layer of
Matrigel at a density of 2.0×10^5 cells/well, followed by the addition of VEGF. Matrigel cultures were incubated at 37°C for 20 h. Tube formation was observed using an inverted phase contrast microscope. The degree of tube formation was quantified using the Image-Pro Plus v4.5 (Media Cybernetics, San Diego, CA).

Ex Vitro and In Vivo Angiogenesis Assay

For aortic ring sprouting assay, rat aortas were transversely cut by 1 mm-thickness after harvesting from 6 week-old male Sprague Dawley rats (Orient, Sungnam, Korea) and placed in the 48-well plates coated with 100 μl of Matrigel. FTase inhibitors (200 nM) and/or VEGF (20 ng/ml) were added to the wells at a final volume of 200 μl of human endothelial serum-free medium. On day 6, microvessel outgrowth was photographed under a phase contrast microscope (Lee et al., 2006). Chick chorioallantoic membrane (CAM) assay was carried out as described previously (Lee et al., 2006). Briefly, Thermanox discs containing 5 μl of salt-free solution containing FTase inhibitor (200 nM) with or without 5 μl of VEGF (10 μg/ml) were loaded onto the CAM of 10-day-old embryos. After 70 h incubation at 37°C, the area around the loaded disc was photographed with a digital camera. Neovascularization was determined by intravital fluorescence microscopy as described previously (Lee et al., 2006; Namkoong et al., 2008). Matrigel (100 μl) containing VEGF (100 ng) alone or plus LB42708 (1 μmole) was injected into the inner space of window, which was surgically implanted between the skin and abdominal wall of male BALB/c mice (6-8 wks old). After 4 days, neovascularization was recorded by a Zeiss Axiovert 200M microscope following intravenous injection of 50 μl of 25 mg/ml FITC-labeled dextran (MW 250,000) via the tail vein. The relative angiogenic activity was scored from 0 (least positive) to 5 (most
positive) in a double-blinded manner.

Western Blot Analysis and Nitric Oxide (NO) assay

Lysates of HUVECs were separated by SDS-polyacrylamide gel electrophoresis and the levels of target proteins were determined by Western blot analysis (Lee et al., 2006). The intracellular NO level in HUVECs was measured *in situ* using DAF-FM diacetate (Molecular Probes Inc., Eugene, OR) using a confocal laser microscope (Lee et al., 2006). The levels of nitrite plus nitrate (NOx) were determined in the culture medium by a chemiluminescent NO analyzer (Antek, Houston, TX).

Ras Activation Assay

The activation of Ras was evaluated using a Ras Activation Assay Kit according to the manufacturer’s protocol (Upstate Biotechnology Inc., Lake Placid, NY). Briefly, cell lysates (400 μg protein) were incubated with 5 μg of Raf-1 RBD-conjugated agarose for 45 min at 4°C. The agarose beads were collected by centrifugation at 12,000 x g for 5 sec and washed three times with lysis buffer. The pellets were suspended with 2 x sample buffer and separated by 15% SDS-PAGE. Ras protein level was determined by Western blotting using a pan-Ras antibody.

Cell Cycle Analysis

HUVECs were pretreated with FTase inhibitors (100 nM) or transfected with siRNA (40 nM) in M199 containing 10% FBS for 12 h. For synchronization in G1/S boundary, cells were cultured in M119 containing 1% FBS plus 5 mM thymidine for 12 h, followed by stimulation with VEGF (10 ng/ml) for 18 h. The cells were collected by
trypsinization, washed with PBS, and fixed in 70% ethanol for 30 min at 4°C. After washing with PBS, cells were incubated with 500 μl propidium iodide staining solution (50 μg/ml propidium iodide, 10 μg/ml RNase, and 0.1% NP-40 in PBS) for 30 min at 37°C in the dark. Cell cycle was determined using a flow cytometer and cell fit software (Becton Dickinson, San Jose, CA).

Mouse Xenograft Experiments
Female nude mice (6-7 weeks old, Charles River Laboratories) were subcutaneously inoculated with 1×10^7 cells of the human colon carcinoma cells, HCT116 and Caco-2, and treatment was initiated after ~7 days when tumor volumes uniformly reached 60 to 80 mm^3. Mice were then intraperitoneally injected with LB42708 (20 mg/kg/day) or vehicle control (0.1% DMSO in 0.9% saline). Tumors were measured twice weekly in terms of length (L), width (W), and height (H) with a digital caliper, and their volumes were calculated according to the formula L x W x H x 0.5236. After 35 days of tumor cell inoculation, tumors were harvested by resection, and their weight was measured.

Immunohistochemistry
Tumor sections were incubated in 0.3% hydrogen peroxide in methanol for 15 min to block endogenous peroxidase, washed three times with phosphate-buffered saline (PBS), blocked for 2 hr at room temperature with 3% normal goat in PBS, and finally incubated overnight at 4°C with primary antibody against human CD31. Sections were washed three times with PBS and incubated with a secondary antibody conjugated with tetramethylrhodamine isothiocyanate (TRITC) for a CD31 antibody for 1 h. After washing three times with PBS and incubated with FITC-labeled isolectin B4 (5 μg/ml,
Vector Laboratories, Burlingame, CA) for 30 min. The sections were mounted with Permount solution after washing three times with PBS. Tumor vessels were photographed using a fluorescence microscope, and vessel density was quantified using the software Image-Pro Plus.

Transfection with siRNA

Oligonucleotide sequences of Ras-specific siRNAs were 5'-AATAGAGGATTCCCTACAGGAA-3' for H-/K-ras, and 5'-AAGTCTTTTGAGGACATCCAC-3' for H-ras. FTase α-subunit siRNA (#sc-35420) was purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Sequence of scramble siRNA was 5'-CAGTCGCGTTTGCGACTGGTT-3'. The siRNAs were synthesized with the Ambion silencer siRNA construction kit according to the manufacturer’s protocol. All siRNAs (mixture of 20 nM H-/K-Ras and 20 nM H-Ras or 40 nM scramble siRNA) were transfected into cells using a MicroPorator (Seoul, Korea). The transfected cells were cultured in complete media without antibiotics for 12 h and further cultured in complete media for 12 h.

Statistic Analysis

The data are presented as the mean ± standard deviation (SD) of at least three separate experiments. Comparisons between two groups were analyzed using Student’s t test, and significance was established at a P value < 0.05.
Results

LB42708 Inhibits VEGF-induced Angiogenesis *in vitro*

We first examined the *in vitro* effect of the FTase inhibitor LB42708 on VEGF-induced endothelial cell proliferation. Treatment of HUVECs with LB42708 resulted in an inhibition of VEGF-induced DNA synthesis in a dose-dependent manner up to 100 nM, with an IC₅₀ value of about 75 nM (Fig. 1A). We next determined whether LB42708 regulates endothelial cell migration in a Transwell assay system. Treatment with LB42708 inhibited VEGF-induced chemotactic motility of HUVECs, whereas this compound did not alter basal migration of endothelial cells devoid of VEGF stimulation (Fig. 1B). We further examined the effect of LB42708 on tube-like structure formation of endothelial cells on Matrigel-coated plates. LB42708 treatment effectively suppressed VEGF-induced increases in the formation of elongated and strong tube-like structures, while it had no significant effect on tube formation of control endothelial cells (Fig. 1C and D). When the inhibitor was removed during incubation with VEGF, its inhibitory effect on tube formation was not observed, but in part, reversed (data not shown), suggesting that farnesylation of Ras is a rate-limiting step in VEGF-induced angiogenesis. No cytotoxic effect was observed in HUVECs exposed directly to LB42708 up to 10 μM for 48 h (data not shown), indicating that the *in vivo* anti-angiogenic effect of LB42708 is not due to cytotoxicity. Interestingly, the inhibitory effects of LB42708 on VEGF-induced angiogenic events were significantly higher than those of the well-characterized FTase inhibitor SCH66336, which is currently being evaluated in clinical trials (Ravoet et al., 2008), at 100 nM (Fig. 1A to D). These results suggest that LB42708 has the ability to inhibit VEGF-induced *in vitro* angiogenesis and possesses higher anti-angiogenic activity than SCH66336.
LB42708 Inhibits VEGF-induced Angiogenesis

We next determined the *ex vivo* effect of LB42708 on vessel sprouting from aortic rings placed in Matrigel containing VEGF. LB42708 significantly inhibited vessel sprouting in the cut edge of rat aortic rings exposed to VEGF, as well as in part suppressed basal sprouting activity of control aortic rings, and this inhibitory effect was significantly higher than that of SCH66336 (Fig. 2A and B). We next investigated whether LB42708 is capable of regulating *in vivo* angiogenesis using the CAM assay. VEGF markedly increased the total surface density of capillaries compared with untreated control, and this increase was reduced to a similar level to that of control, by co-treatment with LB42708 (Fig. 2C and D). Treatment with LB42708 alone revealed partial inhibition of basal angiogenesis, but did not show an inhibitory effect on pre-existing larger vessels or signs of toxicity, such as thrombosis and hemorrhage (Fig. 2C and D). We further confirmed the anti-angiogenic capability of LB42708 in an animal model by intravital microscopy. VEGF increased angiogenic characteristics, such as capillary sprouting and bud formation, which were significantly inhibited by co-treatment with LB42708. Moreover, treatment with this inhibitor alone showed partial suppression of basal neovessel formation (Fig. 2E and F). These results indicate that LB42708 is capable of inhibiting VEGF-induced neovessel formation *in vivo*.

LB42708 Inhibits VEGF-induced Activation of MAPKs, Akt, and eNOS, but Not Src and FAK

We examined whether FTase inhibitor regulates VEGF receptor KDR/Flk-1 phosphorylation, which is the initial step in VEGF-induced angiogenic signaling
(Ferrara, 2002). Both LB42708 and SCH66336 did not inhibit KDR phosphorylation in VEGF-stimulated HUVECs up to 100 nM (Fig. 3A), indicating that these FTase inhibitors do not interfere with KDR activity. KDR/Flk-1 exhibits intrinsic protein tyrosine kinase activity, which may be involved in Ras activation and the subsequent generation of its GTP-bound form, resulting in the formation of the active Raf-1/Ras-GTP complex (Guo et al., 1995; Schubbert et al., 2007). To examine the effect of LB42708 on VEGF-induced Ras activation, HUVECs pretreated with LB42708 were exposed to VEGF and then examined for Ras activation by immunoprecipitation of Ras-GTP. LB42708 inhibited VEGF-induced formation of the GTP-bound form of Ras in a dose-dependent manner, with an IC50 value of about 50 nM, and its inhibitory activity was significantly higher than that of SCH66336 (Fig. 3B). We next examined the effect of LB42708 on VEGF-induced phosphorylation of Src and FAK, which are downstream mediators of KDR/Flk-1 autophosphorylation (Zachary, 2003). Both FTase inhibitors did not inhibit VEGF-induced phosphorylation of FAK and Src up to 100 nM (Fig. 3C and D). Since the MAPK and PI3K/Akt/eNOS pathways have been demonstrated to be critically involved in VEGF-induced angiogenesis (Ferrara, 2002; Lee et al., 2006; Zachary, 2003), the effects of LB42708 on VEGF-induced MAPK, Akt, and eNOS activation were examined. LB42708 inhibited the phosphorylation of ERK and p38 MAPK in VEGF-stimulated HUVECs in a dose-dependent manner (Fig. 3E and F). In addition, this inhibitor decreased VEGF-induced Akt and eNOS activation (Fig. 3G and H). Phosphorylation-dependent activation of eNOS increases NO production, which plays a key role in VEGF-stimulated angiogenesis (Lee et al., 2006). LB42708 inhibited VEGF-induced increases in intracellular NO production and accumulation of NOx in culture medium (Fig. 3I and J). NOx accumulation was revealed to be the result of
eNOS activation, since administration of the eNOS inhibitor NMA blocked NO production (Fig. 3J). Moreover, the inhibitory effects of LB42708 were higher than those of SCH66336 at 100 nM (Fig. 3E to H and J). These results suggest that LB42708 inhibits VEGF-induced angiogenesis by blocking Ras-dependent activation of ERK, p38 MAPK, Akt, and eNOS, without inhibiting the FAK and Src pathways.

Knockdown of FTase and Ras Inhibits VEGF-induced Signal Pathways and Angiogenic Events

To investigate the involvement of FTase and Ras in VEGF-mediated signal pathways and angiogenesis, we employed siRNA approaches to selectively knockdown the FTase α-subunit and Ras. Protein levels of the FTase α-subunit and Ras were specifically knockdown in HUVECs by transfection with siRNAs, but not with scrambled siRNA (Fig. 4A). We next examined whether the FTase α-subunit and Ras regulates VEGF-induced angiogenic signaling events. As expected, transfection with FTase α-subunit-specific siRNA inhibited VEGF-induced activation of ERK and Akt, but not FAK and Src (Fig. 4B). In addition, transfection with Ras-specific siRNA inhibited VEGF-induced activation of ERK, p38 MAPK, Akt, and eNOS, while these suppressive effects were not observed in scrambled siRNA-transfected HUVECs (Fig. 4C). VEGF-induced activation of FAK and Src was not affected by transfection with Ras siRNA (Fig. 4C). Furthermore, VEGF-induced increases in HUVEC proliferation and migration were effectively diminished by transfection with Ras-specific siRNA, but not by scrambled siRNA (Fig. 4D and E). These results suggest that FTase-dependent Ras activation is critically involved in VEGF-elicited angiogenic signal transduction and angiogenesis.
LB42708 and Ras-specific Knockdown Block VEGF-induced Endothelial Cell Cycle Progression by Arresting Cells at the G₁ Phase

Ras plays an important role in cell cycle progression via the regulation of cyclin expression (Pruitt and Der, 2001). We examined the effects of LB42708 and Ras-knockdown on cell cycle progression using FACS analysis. VEGF induced HUVECs into S phase from G₁ phase of the cell cycle, whereas treatment with LB42708 and Ras-specific siRNA, but not scrambled siRNA, markedly reduced S phase entry elicited by VEGF (Fig. 5A). Since cell cycle progression is regulated by expression levels of cyclins, we examined whether LB42708 and Ras knockdown regulated protein levels of cyclins. VEGF elevated the protein levels of cyclins D1, E, A and B, and these increases were inhibited by treatment with LB42708 and transfection with Ras-specific siRNA, but not by scrambled siRNA (Fig. 5B). Furthermore, LB42708 revealed stronger effects on cell cycle arrest and cyclin expression than SCH66336 (Fig. 5A and B). The cell cycle transition from G₁ phase to S phase is primarily regulated by up-regulation of cyclin D1 expression. Cyclin D1 is known to regulate the activity of cyclin-dependent kinase 4 (CDK4), which phosphorylates the retinoblastoma (Rb) protein (Sherr, 1995). Therefore, we next examined the phosphorylation state of Rb in endothelial cells. LB42708 and Ras siRNA-mediated knockdown inhibited the hyper-phosphorylation of Rb induced by VEGF at serine residues 780, 795, and 807/811 (Fig. 5C). We additionally examined the effect of LB42708 and Ras siRNA on protein levels of the cell cycle regulators, p53, p21, and p27, which arrest cell cycle at the G₁ phase. LB42708 and Ras siRNA, but not scrambled siRNA, blocked VEGF-induced decreases in expression levels of p53, p21, and p27 (Fig. 5D). These results indicate that LB42708 inhibits endothelial cell proliferation via arrest of the cell cycle at G₁ phase by
suppressing cyclin D1 expression and Rb phosphorylation as well as elevating protein levels of cell cycle inhibitors.

LB42708 Reduces Tumor Growth and Angiogenesis in Human Tumor Xenograft Models

To evaluate the effect of LB42708 on tumor growth and angiogenesis, we used a human colon cancer xenograft mouse model. Following tumor formation (60-80 mm³) in mice s.c. injected with Ras-mutated HCT116 and wild-type Caco-2 cells, mice were intraperitoneally injected with or without LB42708 and tumor sizes were measured twice weekly for 35 days. LB42708 administration significantly inhibited growth of both tumors (Fig. 6A and B) and microvessel formation surrounding tumors (Fig. 6C and D). At day 35, the tumors were removed and their size and weight were measured. Tumor weights in control groups of Caco-2 and HCT116 tumors were 0.62 ± 0.09 g and 0.81 ± 0.12 g, respectively, whereas LB42708 treatment reduced their weights to 0.31 ± 0.08 g and 0.15 ± 0.06 g (n = 7, data not shown). Thus, LB42708 treatment reduced tumor weight by 51% and 80% for Caco-2 and HCT116 tumors, respectively, compared with each control. These data indicate that the therapeutic effect of LB42708 is greater for Ras-mutated HCT116 tumors than wild type Caco-2 tumors. We next examined the effect of LB42708 on angiogenesis in both tumors by immunohistochemistry. The density and size of vessels were higher and larger in HCT116 tumors than Caco-2 tumors, and vessel density in both tumors was significantly decreased by treatment with LB42708 (Fig. 6E and F). These results together suggest that LB42708 inhibits tumor growth and angiogenesis in both Ras-wild type and mutated tumors.
Discussion

The oncogene Ras gene family consists of 3 functional genes, H-Ras, N-Ras, and K-Ras, which are involved in the receptor tyrosine kinase-mediated signal pathways critical for tumor growth and survival. Mutated Ras that remains in its active state longer than wild-type Ras exists in 20% to 30% of all cancers (Rodenhuis, 1992). Since farnesylation of Ras is the first and rate-limiting step for its membrane localization and subsequent activation, FTase inhibitors have been demonstrated to directly abrogate tumor promotion and growth. Therefore, FTase inhibitors are a very attractive target for anti-tumor drugs through the direct inhibition of tumor cell function (Head and Johnston, 2004). Results presented herein demonstrate that the new FTase inhibitor LB42708 directly inhibits VEGF-induced signal pathway and angiogenesis in vitro and in vivo, which is closely associated with tumor growth in human tumor xenograft models of Ras-mutated HCT116 and wild-type Caco-2 cells. These data indicate that LB42708 can inhibit tumor growth via suppression of tumor angiogenesis by directly targeting tumor-associated endothelial cells.

Angiogenesis is crucial for the pathogenesis or progression of human diseases, particularly solid tumors. Solid tumors produce VEGF, which promotes tumor angiogenesis leading to tumor growth and metastasis (Des Guetz et al., 2006; Greenberg and Cheresh, 2009). Therefore, therapies using anti-VEGF antibodies and VEGF-mediated signal blockers inhibit tumor growth and metastasis, leading to the improvement of cancer patient survival by blockade of tumor angiogenesis (Idbaih et al., 2008; Greenberg and Cheresh, 2009). These studies emphasize that VEGF is a major tumor angiogenic factor and plays an important role in the development and progression of solid tumors. The first generation of the nonpeptide pyrole-based FTase, LB42908,
inhibited FTase activities toward recombinant H-Ras and N-Ras with IC\textsubscript{50} values of 0.9 nM and 2.4 nM, respectively (Lee et al., 2001), and its advanced compound LB42708 used in this study was a more potent inhibitor \textit{in vitro} and \textit{in vivo} (Na et al., 2004; Kim et al., 2006). The inhibitory activity of LB42708 was higher than that of SCH66336, which blocked farnesylation of H-Ras and N-Ras with IC\textsubscript{50} values of 1.9 nM and 2.8 nM, respectively (Liu et al., 1998). Both inhibitors showed comparable inhibitory activities on the related geranylgeranyltransferase I (GGTase I) at concentrations as high as 50 \textmu M (Lee et al., 2001; Liu et al., 1998). These observations indicate that LB42708 is a more selective inhibitor of FTase (>50,000-fold) over GGTase I than SCH66336 (>25,000-fold). Our previous study demonstrated that LB42708 is a more potent inhibitor for post-translational modification of Ras (IC\textsubscript{50} = 10 nM) and inflammatory gene expression than SCH66336 (IC\textsubscript{50} = ~50 nM) in immune-activated RAW264.7 cells (Na et al., 2004). These observations suggest that LB42708 elicits a greater inhibitory effect on Ras activation than SCH66336. Indeed, we here found that LB42708 significantly inhibited VEGF-induced formation of an active Ras-GTP complex in primary cultured HUVECs, with an IC\textsubscript{50} of ~50 nM; however, SCH66336 slightly inhibited Ras activation at 100 nM in cultured endothelial cells (Fig. 3B). These values were significantly higher than IC\textsubscript{50} values calculated in an \textit{in vitro} incubation system of FTase, Ras protein, and farnesylpyrophosphate. This discrepancy may be due to their biological activities and chemical properties, such as selectivity for FTase over GGTase I, membrane permeability and solubility. We also found that the inhibitory effects of LB42708 on VEGF-induced angiogenic signal transduction were stronger than that of SCH66336. Although FTase inhibitors can suppress angiogenesis by blocking VEGF production from tumor cells (Rak et al., 2000; Han et al., 2005), our results showed that
LB42708 inhibited VEGF-induced angiogenic signaling pathways and subsequently blocked angiogenesis in vitro and in vivo. We also found that FTase inhibits VEGF expression and production from hypoxic tumors (data not shown), and the detailed regulating mechanism for the suppressive effect of FTase inhibitor on VEGF expression in tumors is now under investigation. Our results suggest that the suppression of tumor angiogenesis by LB42708 is associated with dual mechanisms, such as the inhibition of VEGF expression from tumors (Rak et al., 2000; Han et al., 2005) and the suppression of tumor angiogenesis by interfering with the Ras-dependent angiogenic signaling pathways triggered by VEGF produced from both Ras-mutated and wild type tumors.

VEGF promotes angiogenesis through the activation of multiple signal transduction pathways, such as Src/FAK, MAPKs, Akt/eNOS, and NO production, through the activation of its receptor-2 KDR//Flk-1 (Zachary, 2003). The ERK and p38 MAPK pathways are a requisite for the proliferative and migrating activities of VEGF in endothelial cells, and the Akt/eNOS/NO pathway is responsible for VEGF-induced endothelial survival and proliferation (Zachary, 2003; Lee et al., 2006). However, activation of Src and FAK is also important for endothelial cell migration in response to VEGF (Zachary, 2003). The angiogenic signal mediators ERK and p38 MAPK are known to be activated via the Raf-1/MEK pathway, and Akt phosphorylation is directly dependent on PI3K activation. Both signal pathways are downstream of Ras activation (Schubbert et al., 2007). Our data showed that LB42908 and Ras knockdown effectively inhibited the VEGF-induced classical angiogenic signaling pathways, such as ERK and p38 MAPK activation as well as the Akt/eNOS/NO pathway, but not VEGF-induced Src and FAK activation. Furthermore, transfection with siRNA specific for the active FTase α-subunit and Ras inhibited VEGF-induced activation of ERK and Akt, but not Src and...
FAK. In addition, LB42908 inhibited VEGF-induced formation of Ras-GTP complex, which is the active form of Ras. These results suggest that LB42908 effectively inhibited VEGF-induced Ras activation, which plays a role of a signal linker between KDR/Flk-1 and Raf-1/MEK/ERK/p38 MAPK as well as PI3K/Akt/eNOS in the VEGF-induced angiogenic signaling pathways (Fig. 7). However, activation of Src and FAK by VEGF is not associated with the Ras-dependent pathway.

Cell proliferation is closely associated with cell cycle progression, and chemicals that inhibit cell cycle progression are able to block endothelial cell proliferation, resulting in the suppression of angiogenesis (Hanai et al., 2002; Min et al., 2004). The well known anti-angiogenic molecule endostatin inhibits endothelial cell proliferation through cell cycle arrest at the G1 phase by suppressing cyclin D1 expression and Rb phosphorylation (Hanai et al., 2002). The cyclin D1 regulates the activity of CDK4, which phosphorylates Rb. Phosphorylated Rb releases E2F to activate genes whose functions are required for S phase entry, in turn leading to DNA synthesis and cell cycle progression (Sherr, 1995). We showed that the anti-proliferative effect of LB42908 correlates with G1 arrest of HUVECs stimulated with VEGF. Furthermore, our data revealed that LB42908 inhibited VEGF-induced expression of cyclins, particularly cyclin D1, and Rb phosphorylation. It indicates that LB42908 can suppress proliferation of VEGF-stimulated endothelial cells by inhibiting the cyclin D1 expression and Rb phosphorylation. On the other hand, the cell cycle check point G1 arrest is also mediated by upregulating the CDK inhibitors p21 and p27 (Sherr, 1995; Foijer and te Riele, 2006). Regulation of p21 is multifactorial, and the transcription factor p53 is one of the major upstream regulators of p21 (el-Deiry et al., 1994). Akt can also participate in the decrease of p53 protein levels via Mdm2 phosphorylation and suppress p21 expression.
(Sheikh et al., 1994; Shankar et al., 2008). In addition, the PI3K/Akt and MEK/ERK pathways can promote cell cycle progression through the up-regulation of cyclin D1 expression (Muise-Helmericks et al., 1998; Jirmanova et al., 2002) and direct inhibition of p27 protein levels (Collado et al., 2000; Li et al., 2009). Consistent with these studies, our data showed that LB42908 increased the protein levels of p53, p21, and p27 through suppression of VEGF-induced Akt and ERK activation. We also found that Ras knockdown revealed similar inhibitory effects on cell cycle progression and protein levels of these cell cycle regulators to those of LB42908, indicating that Ras is an important mediator for regulating VEGF-induced cell cycle progression. These results suggest that the anti-angiogenic effect of LB42908 is correlated with the down-regulation of cyclin D1 expression, CDK4-mediated Rb phosphorylation, and expression levels of cell cycle inhibitor proteins, whose events are coordinately controlled by the activation of both MEK/ERK and PI3K/Akt pathways in endothelial cells by VEGF (Fig. 7).

We further demonstrate the potential effects of LB42708 on tumor growth and angiogenesis in two xenograft tumor models of K-Ras-mutated HCT116 cells and wild-type Caco-2 cells. Tumor suppressive activity of LB42708 was significantly higher in K-Ras-mutated tumor than its wild type tumor, and its anti-tumor activity was highly correlated with an inhibitory effect on tumor angiogenesis in both tumors, indicating that LB42708 can inhibit the growth of both Ras-mutated and wild type tumors via the suppression of tumor angiogenesis.

In conclusion, our present data suggests that the anti-tumor effect of LB42908 is associated with multiple mechanisms, including direct inhibition of tumor cell proliferation and survival as shown in previous studies (Lubet et al., 2006; Agrawal and
Somani, 2009), the inhibition of VEGF expression (Rak et al., 2000; Han et al., 2005), and suppression of tumor angiogenesis by blocking signal transduction pathways of VEGF produced from both Ras-mutated and wild type tumors.

Acknowledgments

We thank Mrs. Elaine Por for helpful comments and critical reading of this manuscript.
References

Oncogene 21:5515-5528.

MOL 63586

carcinoma: role of p53-dependent and independent signal transduction pathways.

Oncogene 9:3407-3415.

Footnotes

This work was supported by the Korea Research Foundation Grant (Regional Research Universities Program/Medical & Bio-Materials Research Center) founded by the Korea government (MEST) and a National Research Laboratory grant (20090083119).
Figure Legends

Fig. 1. LB42708 inhibits VEGF-induced *in vitro* angiogenesis. HUVECs were pretreated with or without the indicated concentrations or 100 nM of LB42708 (LB) or 100 nM of SCH66336 (SCH) for 24 h. (A) Cells were stimulated with VEGF (10 ng/ml) for 30 h and incubated with 1 µCi/ml [³H]thymidine for 6 h. Cell proliferation was determined by [³H]-thymidine incorporation assay. (B) Cells were stimulated with VEGF (10 ng/ml) in Transwell plates for 4 h, and cell migration was determined in Transwell plates by counting the migrated cells. (C and D) Cells were cultured on a layer of Matrigel with VEGF (10 ng/ml) for 24 h. Tube formation was observed using an inverted phase contrast microscope with a video graphic system. All graphic data are the mean ± SD (n=4). *P < 0.05 and **P < 0.01 versus VEGF alone.

Fig. 2. LB42708 inhibits VEGF-induced angiogenesis *ex vivo* and *in vitro*. (A and B) Rat aortic rings were cultured with FTase inhibitors (200 nM) and/or VEGF (20 ng/ml) in 48-well plates coated with 100 µl of Matrigel. On day 6, microvessel outgrowth was determined using a phase contrast microscope. (C and D) FTase inhibitors (200 nM/5 µl) and/or VEGF (10 ng/5 µl) were loaded onto the CAMs of day 10 chick embryos. After 72 h incubation, discs and surrounding CAMs were photographed. (E and F) Matrigel (100 µl) containing LB42708 (1 µmoles) and/or VEGF (100 ng) was put into the abdominal windows of mice. After 4 days, neovascularization was recorded by intravital fluorescence microscopy. Relative angiogenic activities were scored from 0 (least positive) to 5 (most positive). Data shown are the mean ± SD (n≥7). **P < 0.01 versus VEGF alone.
Fig. 3. LB42708 regulates the VEGF-induced angiogenic signaling pathway. HUVECs were pretreated with the indicated concentrations or 100 nM FTase inhibitors for 24 h and then stimulated with or without VEGF (10 ng/ml) in the presence of the same concentrations of pretreated FTase inhibitors for 10 min (A-F) or 30 min (G-H). (A and C) Cell lysates (400 µg protein) were incubated with antibodies (25 µg) against KDR and FAK overnight and then treated with agarose-A/G for 4 h. (B) Cell lysates (400 µg protein) were incubated with agarose-conjugated Raf-1 RBD (5 µg) for 45 min. (A-C) After centrifugation at 12,000 x g for 5 sec, Western blot was performed with antibodies for target proteins and phosphotyrosine (PY). (D-H) Lysates were separated on SDS-PAGE, and targets proteins were determined by Western blotting. (I) After stimulation with 10 ng/ml VEGF for 1 h, cells were incubated with the NO-specific probe DAF-FM diacetate (5 µM) for 1 h. Intracellular levels of NO were determined by confocal microscopy. a, control; b, VEGF; c, VEGF + LB42708; d, VEGF + SCH66336. (J) The levels of NOx were measured in culture media from cells treated with VEGF (10 ng/ml) for 24 h using an NO analyzer. NMA (1.5 mM) was also added to the culture media during stimulation with VEGF. Data shown are the mean ± SD (n=3). *P < 0.05 and **P < 0.01 versus VEGF alone.

Fig. 4. Specific knockdown of FTase and Ras inhibits VEGF-induced signal transduction and in vitro angiogenesis. (A) HUVECs were transfected with 40 nM siRNA specific for the FTase α-subunit and Ras using a MicroPorator. After recovery of cells for 24 h, the protein levels of FTase α-subunit and Ras were determined by Western blotting. (B and C) Cells transfected with siRNA specific for the FTase α-subunit and Ras were treated with VEGF (10 ng/ml) for 10 min (ERK and p38) or 30
min (other proteins). The levels of phosphorylated proteins were determined by Western blotting analysis using antibodies for target proteins and phosphotyrosine (PY). Cell proliferation (D) and migration (E) were determined in siRNA-transfected cells by [³H]-thymidine incorporation assay and using Transwell plates, respectively, as described in Fig. 1. Data shown are the mean ± SD (n=3). **P < 0.01 versus VEGF in scrambled siRNA-transfected cells.

Fig. 5. LB42708 and Ras knockdown blocks VEGF-induced endothelial cell cycle progression by arresting cells at the G1 phase. (A) HUVECs were pretreated with FTase inhibitors (100 nM) or transfected with siRNA (40 nM) for 24 h and further incubated with 5 mM thymidine in M119 containing 1% FBS for 12 h. Cells were stimulated with VEGF (10 ng/ml) in M119 containing 1% FBS for 18 h. Cell cycle was analyzed by FACS. Data shown are average values (n=2). (B) HUVECs pretreated with FTase inhibitors (100 nM) or transfected with siRNA (40 nM) were cultured in M119 containing 1% FBS for 6 h. Cells were incubated with 10 ng/ml VEGF for 8 h and 12 h to determine the levels of cyclins D1 and E and cyclins A and B, respectively. The levels of cyclins were determined by Western blot analysis. After incubation with VEGF for 8 h, the levels of p-Rb (C) and cell cycle regulators such as p53, p21, and p27 (D) were determined by Western blot analysis.

Fig. 6. LB42708 reduces tumor growth and angiogenesis in human tumor xenograft models. Human colon cancer Caco-2 cells and HCT116 cells were implanted into the right flank of nude mice. From seven days post-implantation, mice were injected daily with LB42708 (20 mg/kg intraperitoneally) or vehicle control (0.1% DMSO in 0.9%
saline). (A and B) Tumor volumes were monitored twice weekly for 35 days. Data shown are the mean ± SD (n=6). (C and D) At day 35, the mice were sacrificed, and tumors and surrounding vasculature were photographed. (E and F) Tumor vessels were determined by immunohistochemistry using a FITC-labeled isolectin B4 and an anti-CD31 antibody. Vessels density was quantified using the software Image-Pro Plus. Data shown are the mean ± SD (n=4). **P < 0.01 versus control.

Fig. 7. The possible regulatory mechanism by which LB42708 inhibits VEGF-induced angiogenesis and signal pathways in tumor-associated endothelial cells. VEGF produced by tumors under low oxygen condition activates its receptor KDR/Flk-1 in tumor-associated endothelial cells and elicits the Ras-dependent angiogenic signaling pathways such as Raf-1/MEK/ERK/p38 MAPK and PI3K/Akt/eNOS. Both pathways may be coordinately involved in the control of cell cycle progression by regulating the expression of cyclins, p21, and p27, as well as controlling Rb phosphorylation. LB42708 can directly suppress VEGF production from tumor cells (Rak et al., 2000; Han et al., 2005) as well as inhibits farnesylation-mediated activation of Ras, which is downstream of VEGF receptor activation.
Fig. 1
Fig. 2

A

CTRL LB SCH
V V+LB V+SCH

B

<table>
<thead>
<tr>
<th>VEGF</th>
<th>FTI</th>
<th>Ring Sprouting Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>1 ± 0.5</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>3 ± 0.5</td>
</tr>
<tr>
<td>-</td>
<td>LB</td>
<td>3 ± 0.5</td>
</tr>
<tr>
<td>-</td>
<td>SCH</td>
<td>2 ± 0.5</td>
</tr>
</tbody>
</table>

C

CTRL VEGF LB VEGF+LB

D

<table>
<thead>
<tr>
<th>VEGF</th>
<th>Angiogenic Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1 ± 0.5</td>
</tr>
<tr>
<td>+</td>
<td>5 ± 0.5</td>
</tr>
<tr>
<td>-</td>
<td>LB</td>
</tr>
<tr>
<td>+</td>
<td>VEGF+LB</td>
</tr>
</tbody>
</table>

E

CTRL VEGF LB VEGF+LB

F

<table>
<thead>
<tr>
<th>VEGF</th>
<th>Angiogenic Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>1 ± 0.5</td>
</tr>
<tr>
<td>+</td>
<td>5 ± 0.5</td>
</tr>
<tr>
<td>-</td>
<td>LB</td>
</tr>
<tr>
<td>+</td>
<td>VEGF+LB</td>
</tr>
</tbody>
</table>

This article has not been copyedited and formatted. The final version may differ from this version.
Fig. 3
This article has not been copyedited and formatted. The final version may differ from this version.
Fig. 5

A

Bar graph showing the relative cell population (%)

- **VEGF Treatment**
 - -
 - LB
 - SCH
 - SRC
 - siRNA

B

Table showing the expression levels of various proteins:

- **Cyclin D1**
- **Cyclin E**
- **Actin**
- **Cyclin A**
- **Cyclin B**

C

Table showing the expression levels of various proteins:

- **S780**
- **S795**
- **S807**
- **S811**
- **Rb**

D

Table showing the expression levels of various proteins:

- **p53**
- **p27**
- **p21**

Legend

- G0/G1
- S
- M

Columns

- **VEGF**
- **LB42708**
- **SCH66336**
- **SCR**
- **siRNA**

Rows

- **S780**
- **S795**
- **S807**
- **S811**
- **Rb**

Actin
Fig. 6

A

Caco-2
- CTRL
- LB42708

B

HCT116
- CTRL
- LB42708

C

![Caco-2](image)

D

![HCT116](image)

E

Isolectin B4

CD31

Mergence

F

Isolectin B4

CD31

Mergence
Fig. 7

Low O₂ → HIF-1α

Tumor cells

O₂ nutrients

Endothelial cells

VEGF → VEGFR

Src FAK

Ras

FTI

PI3K Akt

eNOS NO

Cyclins

p-Rb

p53/p21/p27

↑ HIF-1α

↑ Cyclins

↓ p-Rb

↓ p53/p21/p27

Angiogenesis

Tumor vessel

FTI