Anti-psychotic drugs regulate Hedgehog signaling by modulation of 7-dehydrocholesterol reductase levels

Matthias Lauth, Verena Rohnalter, Åsa Bergström, Mahsa Kooshesh, Per Svenningsson, Rune Toftgård

Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Emil-Mannkopff-Str. 2, 35032 Marburg, Germany (M.L., V.R.).

Karolinska Institutet, Center for Biosciences, Department of Biosciences and Nutrition, Novum Research Park, Hälsvägen 7, SE-14157 Huddinge, Sweden (M.L., Å.B., M.K., R.T.).

Karolinska Institutet, Center for Molecular Medicine, Department of Physiology and Pharmacology, 17177 Stockholm, Sweden (P. S.).
Running title: Dhcr7 modulates the mammalian Hedgehog pathway

Corresponding author:
Matthias Lauth
Institute of Molecular Biology and Tumor Research (IMT),
Philipps University, Emil-Mannkopff-Str. 2, 35032 Marburg, Germany.
Phone: +49-6421-2866727; Fax: +49-6421-2865932.
Email: matthias.lauth@imt.uni-marburg.de

Number of text pages: 35
Number of figures: 7
Number of references: 33
Number of words in the abstract: 140
Number of words in the introduction: 677
Number of words in the discussion: 1228

Non-standard abbreviations:
HH=Hedgehog
Dhcr7=7-Dehydrocholesterol-reductase
GANT61=Gli-Antagonist 61
Abstract

Recently we identified GANT61, a small molecule antagonist of Gli transcription factors which are the final effectors of the mammalian Hedgehog (HH) signaling pathway. Here we describe a diamine substructure of GANT61 which carries the biological activity and show that this part of the molecule is structurally related to AY9944, an inhibitor of the enzymatic activity and transcriptional inducer of 7-dehydrocholesterol-reductase (Dhcr7, EC 1.3.1.21). Treatment of cells with the GANT61 diamine, AY9944 or overexpression of DHCR7 results in attenuation of Smo-dependent and -independent HH signaling. Whereas GANT61 function is independent of Dhcr7, AY9944 does require upregulation of endogenous Dhcr7. In line with these findings, Dhcr7-modulating anti-psychotic (Clozapine, Chlorpromazine, Haloperidol) and anti-depressant (Imipramine) drugs regulate HH signaling in vitro and in vivo. Modulation of HH signaling may represent a hitherto undiscovered biological (side-) effect of therapeutics used to treat schizophrenia and depression.
Introduction

Hedgehog (HH) signaling activity is crucially required for embryonal processes such as pattern formation (Jiang et al., 2008). The best studied examples are the establishment of a dorso-ventral gradient which specifies cell identity in the neural tube or the patterning of the developing limb (Dessaud et al., 2008). Postnatally, HH activity is spatially restricted and is involved in maintenance of tissue stem cells such as those of the brain (e.g. hippocampus) and the cerebellum (Palma et al., 2005; Galvin et al., 2008).

Mammalian genomes contain three HH genes: Sonic (Shh), Indian (Ihh) and Desert (Dhh) Hedgehog. They all bind with comparable affinity to their common receptor Patched1 (Ptch1), which in its unliganded state may function as a molecular pump transporting small molecules across the cell membrane (Taipale et al., 2002). One candidate cargo molecule is Vitamin D3 which negatively modulates the function of another HH signaling molecule, Smoothened (Smo) (Bijlsma et al., 2006). Hedgehog ligand binding to Ptch1 releases Smo from its inhibition and allows for the signal to be conveyed to downstream pathway components such as Suppressor of Fused (Sufu) and the transcription factors Gli2 and Gli3. While Gli2 acts mainly as a transcriptional activator, Gli3 behaves mostly as a repressor. Eventually, HH-specific target genes are activated including members of the HH pathway itself such as Gli1, Hip1 and Ptch1; leading to a feedback control of signaling strength. Experimentally, these target genes can be utilized as a direct read-out for pathway activity since their expression status correlates with the level of HH signal transduction.
Vitamin D₃, which is synthesized from 7-dehydrocholesterol (7-DHC), is not the only link between the cholesterol biosynthetic pathway and Hedgehog signal transduction. In fact, a complex network of positive and negative interactions seems to tie cholesterol biosynthesis and HH signaling together: The Hedgehog ligands themselves are cholesterol-modified increasing their affinity for cell membranes and restricting their free dispersal (Li et al., 2006). Furthermore, oxidized versions of cholesterol (oxysterols) are potent inducers of Smo activity (Corcoran et al., 2006). In addition, overexpression of 7-dehydrocholesterol-reductase (Dhcr7, EC 1.3.1.21), the enzyme performing the last step in the cholesterol biosynthesis (converting 7-DHC into cholesterol), results in strong inhibition of the HH pathway in Xenopus embryos (Koide et al., 2006). Although these data were so far not repeated in mammals, these findings are contrasting results from another group suggesting that overexpression of Dhcr7 would result in decreased 7-DHC levels (and thus decreased levels of the Smo inhibitor Vitamin D₃) and would therefore be HH pathway stimulatory (Bijlsma et al., 2006). In summary, it seems that Dhcr7 possesses dual and opposing functions on HH signaling.

Dhcr7 is a nine-pass transmembrane protein residing in the endoplasmatic reticulum and mutations in the DHC7 gene are the underlying cause for Smith-Lemli-Opitz syndrome (SLOS), an autosomal recessive human disorder characterized by a failure to thrive, psychomotor retardation and organ malformation (Kelley & Hennekam, 2000). The spectrum of SLOS phenotypes can be recapitulated in animal models in which pregnant animals receive the Dhcr7 inhibitor AY9944 (Llirbat et al., 1997).
Here we show that the Dhcr7-inhibitor AY9944 displays structural similarity to the hexahydropyrimidine part of the GANT61 molecule. GANT61 was previously discovered in a cellular screen identifying small molecule inhibitors of Gli1 and Gli2 (Lauth et al., 2007a). Although AY9944 does not show potent direct inhibitory activity of Gli transcription factors, it does block HH signaling induced at the level of Smo or by loss of Sufu. We show that AY9944 functions by induction of Dhcr7 expression and not by its similarity to GANT61. Conversely, we verify that GANT61 has Dhcr7-independent inhibitory potential.

Anti-psychotic drugs such as Clozapine, Chlorpromazine and Haloperidol and anti-depressants such as Imipramine are able to activate the sterol regulatory element-binding proteins (SREBP) and subsequently the transcription of SREBP-controlled genes such as DHCR7 (Raeder et al., 2006; Ferno et al., 2005). We demonstrate that these DHCR7-regulating substances modulate the HH pathway in vitro and in vivo, raising the possibility that interference with the HH pathway might represent a previously unrecognized biological aspect of clinical drugs used to treat schizophrenia and depression.
Materials and Methods

Cell lines and regents

NIH3T3 cells, ShhL2 cells and Sufu-/− MEFs were cultured in DMEM (high Glucose) and 10 % heat-inactivated FBS plus 1 mM Na-Pyruvate. C3H10T1/2 cells were grown in DMEM (low Glucose) plus 10% heat-inactivated FBS and AsPC1 cells in F12Ham (50 %)/DMEM (low Glucose) (37 %) plus 1 mM Na-Pyruvate and 0.1 mM non-essential amino acids. All cell line media contained Penicillin/Streptomycin.

The GANT61 hydrolysis product GANT61-D and compound D8 were obtained from Actar AB (Solna, Sweden). D8-D was purchased from TimTec Corp. (Newark, USA) D8-A, AY9944, SANT1, TPA, Imipramine, Clozapine, Haloperidol, Chlorpromazine were purchased from Sigma and/or Calbiochem.

Cloning of expression constructs

A full length human DHCR7 expression clone was purchased from RZPD/imaGenes. Because this construct was poorly expressed, we transferred the coding sequence to a pEF6/V5-His-TOPO backbone (Invitrogen). The deletion construct DHCR7ΔC was constructed by means of PCR in the same plasmid backbone. All constructs were verified by sequencing. Stable cell lines were obtained by plasmid transfection using Fugene 6 reagent (NIH3T3) or by Amaxa electroporation (Sufu-/− MEFs) and subsequent antibiotic selection.
HH reporter assays

Cells grown to 50-60 % confluency were transfected with a firefly luciferase Gli reporter plasmid (Lauth et al., 2007a) and a renilla luciferase plasmid for normalization. The following day the cells reached full confluency and were treated with 100 nM SAG for 48 h. Subsequently cells were lysed and luciferase activities were measured using the Dual Luciferase kit from Promega.

C3H10T1/2 cells were grown to full confluency and exposed to SAG and the test compounds for 4 d. Subsequent cell lysis was done using the Passive Lysis Buffer (Promega). 75 % of the lysate was used to measure alkaline phosphatase activity (Alkaline Phosphatase Blue Microwell Assay, Sigma) while 25 % was used to measure protein concentration (Bio-Rad Protein Assay).

RNA preparation and Real-time PCR

RNA was prepared from cultured cells using the RNeasy kit from Qiagen with on-column DNaseI-digest. Subsequently, cDNA was synthesized with OligodT primers (Promega) and Superscript II reverse transcriptase (Invitrogen). QPCR was performed on an Applied Biosystems 7500 Fast Real time PCR machine using Taqman probes (Applied Biosystems; see supplementary information).

Immunoblotting

Confluent Sufu-/ cells were treated with test compound for 48 h in full growth medium. Subsequently, cells were lysed in SDS-Buffer, proteins were separated on SDS gels and transferred onto PVDF membranes. Detection of blotted proteins was by incubation of the
membranes using the following antibodies: α-Hip1 (R&D Systems (AF1568)); α-Gli3 (Santa Cruz (sc-20688)); α-βActin (Sigma (A5441)); α-V5 (Invitrogen (R960-25)).

GANT61 hydrolysis study

A 10 mM stock solution of GANT61 was prepared in DMSO. Using the DMSO stock solution, 100 µM GANT61 was prepared in PBS (pH 7.0) or PBS (pH 2.0). The PBS solutions were incubated in the dark at room temperature. Aliquots of the solutions were analyzed at the time interval of 0, 4, 12, and 24 h by LC-MS. The corresponding peak areas were recorded for each analyte. The ratio of the GANT61 remaining at each time point relative to the amount determined at time 0, expressed as percent, is reported as chemical stability. The entire analysis was performed by Anthem Biosciences.

Animal experiments

Male C57Bl6 mice (25-30 g) were injected intraperitoneally with a single dose of either saline, Imipramine (20 mg/kg), Clozapine (30 mg/kg), Haloperidol (2.5 mg/kg) or Chlorpromazine (2.5 mg/kg). Animals were sacrificed 48 h after injection and brain frontal cortices were dissected out for RNA preparation. All animal experiments were done according to institutional and Swedish ethical guidelines.
MOL #66431

Results

Identification of a biologically active substructure of GANT61

We recently described the hexahydropyrimidine derivative GANT61 as a small molecule inhibitor of GLI1 and GLI2 (Lauth et al., 2007a). The Gli transcription factors constitute the final effectors of the Hedgehog (HH) signaling pathway and pharmacological inhibitors are interesting candidates for a targeted anti-cancer therapy (Rubin and De Sauvage, 2006; Lauth et al., 2007b). Based on its structure, we predicted that GANT61 would be unstable under acidic conditions and be subject to hydrolysis giving rise to a diamine and a benzaldehyde product (Fig. 1a). In order to investigate if the proposed hydrolysis products carried some HH-inhibitory potential, we made use of the compound D8, a GANT61 analogue, which would also be capable of hydrolyzing to a diamine (D8-D) and an aldehyde (D8-A) and of which we could obtain hydrolysis products for testing (Fig. 1b).

We first treated ShhL2 cells (a NIH3T3 clone stably expressing HH luciferase reporter constructs; Taipale et al., 2000) with the synthetic Smoothened agonist SAG (Chen et al., 2002) to induce HH signaling and exposed these cells to increasing concentrations of D8, D8-A and D8-D (Fig. 1c). The phorbol ester and HH inhibitor TPA was included as positive control (Lauth et al., 2007c). As expected for a close GANT61 analogue, compound D8 could antagonize SAG-induced HH signaling in a dose-dependent manner. Intriguingly, only the diamine of D8 (D8-D), but not the aldehyde (D8-A) was capable of inhibiting signaling. Adding D8-A and D8-D simultaneously (D8-D+A) gave identical results as ‘D8-D only’ (Fig. 1c). Next we wanted to verify this result by treating Sufu-/- mouse embryonic fibroblasts (MEFs). These cells have a homozygous deletion of
Suppressor of Fused leading to a strong Smo-independent activation of HH signaling (Svard et al., 2006). As can be seen in figure 1d, D8 and its proposed diamine hydrolysis product (D8-D), but not the aldehyde D8-A, could block signaling as measured by the induction of the HH target genes Gli1 and Hip1. In agreement with the concept that the HH pathway inhibition is mediated by the diamine substructure, the corresponding GANT61 diamine (GANT61-D; Fig. 1a) was able to suppress signaling in Sufu-/- cells with the same efficacy as the parent compound GANT61 (Fig. 1d). We verified this finding by testing a series of GANT61-related hexahydropyrimidine derivatives which would give rise to relatively similar diamines but structurally very different aldehydes. As can be seen in supplementary figure 1a and 1b, all GANT61 analogues inhibited HH signaling in a dose-dependent manner, arguing against an important role of the aldehyde portion of the molecule.

In order to elucidate the chemical stability of GANT61 in acidic pH we performed liquid chromatography-mass spectrometry (LC-MS) of GANT61 samples kept at neutral pH or at pH2 for 0 h, 4 h, 12 h and 24 h (Fig. 1e and Suppl. Fig. 2a, 2b). Surprisingly, GANT61 proved very stable and did not show signs of hydrolysis at any pH or timepoint.

In summary, despite the fact that the hexahydropyrimidine derivative GANT61 is chemically very stable in low pH we were able to identify a substructure of GANT61 which appears to be exclusively responsible for the biological effects of GANT61 on the HH pathway.
GANT61-D displays structural similarity to AY9944

Since we found that the diamines GANT61-D and D8-D were biologically functional and blocked HH signaling, we were intrigued by the observation that GANT61-D has some structural resemblance to AY9944, an inhibitor of 7-dehydrocholesterol-reductase (Dhcr7) (Fig. 2a). AY9944 has previously been reported to inhibit HH signaling at the level of Smo (Bijlsma et al., 2006) and we could verify inhibition by AY9944 in SAG-induced ShhL2 cells (Fig. 2b). Interestingly, we could also observe a weaker degree of inhibition of HH signaling in Sufu-/ cells in which pathway activity is independent of Smo function (Fig. 2c and 2d). In addition, through its inhibitory effect on the cholesterol biosynthesis pathway, AY9944 gave rise to a significant feedback induction of Dhcr7 itself. This induction was not observed for GANT61, demonstrating that its impact on cholesterol synthesis is minimal (Fig. 2c). We verified the inhibition of HH signaling downstream of Smo by treating the pancreatic cancer cell line AsPC1 with GANT61 and AY9944. AsPC1 cells are insensitive to the SMO inhibitor SANT1 but express GLI1, indicating an activation of the pathway downstream of SMO. As can be seen in figure 2e, both GANT61 and AY9944 led to an inhibition of signaling as measured by a reduction in GLI1 mRNA levels. In line with previous results, only exposure to AY9944, but not GANT61, induced the cholesterol pathway genes HMGCR and DHCR7. Whereas the induction of the latter genes by AY9944 was dose-dependently increased, reduction of GLI1 levels was not, suggesting that the maximal inhibition by AY9944 has been achieved (Fig. 2e).

Since GANT61 was initially identified in a cellular screen designed for GLI inhibitors, we went on to investigate if AY9944 showed some effect on transfected GLI1 or a dominant active version of GLI2 (GLI2ΔN). However, whereas GANT61 potently inhibited GLI1
and GLI2ΔN function, AY9944 was ineffective in the same concentration range, suggesting that AY9944 blocks HH signaling upstream of the Gli transcription factors (Fig. 2f). In summary, the two structurally comparable compounds GANT61 and AY9944 seem to block HH signaling by different mechanisms.

Overexpression of DHCR7 negatively modulates mammalian HH signaling

Since AY9944 treatment leads to an induction of Dhcr7 expression and also inhibits the HH pathway, we wondered if the increased Dhcr7 expression might mediate the antagonistic effect of AY9944 on the HH pathway. Dhcr7 has previously been shown to be a potent inhibitor of HH signaling in *Xenopus* embryos (Koide et al, 2006). In order to elucidate if a similar mechanism applies to the mammalian situation, we cloned two different DHCR7 constructs (Fig. 3a and 3b): Full length DHCR7 and a C-terminally truncated version (DHCR7ΔC). This deletion mutant resembles the most frequent mutation in SLOS patients (DHCR7IVS8-1G>C) leading to a partially truncated sterol-sensing domain and a significantly reduced enzymatic activity (Witsch-Baumgartner et al., 2000). Thus, this version can be used to address the relevance of DHCR7’s reductase function.

In transient transfection experiments in NIH3T3 cells, we found that DHCR7 and DHCR7ΔC overexpression resulted in a 40-50 % reduction of HH signaling (Fig. 3c). This result is in agreement with data from *Xenopus*, where DHCR7-mediated inhibition of HH signaling is independent of DHCR7’s enzymatic function (Koide et al., 2006).

To confirm the negative modulation of HH signaling by DHCR7, we generated NIH3T3 cells stably expressing DHCR7 and measured Gli1 levels upon SAG induction. As can be seen in figure 3d, ectopic expression of DHCR7 resulted in an attenuation of HH pathway
activity in these cells. In favor of an inhibitory potential of Dhcr7, cerebellar medulloblastomas (induced through genetic deletion of Ptc1) show a reduction in Dhcr7 mRNA levels in pre-neoplastic and tumor cells compared to normal cerebellar granule cells (Fig. 3e; Oliver et al., 2005). This is accompanied by an increase in Gli1 mRNA levels, supporting our findings of an inverse relationship between Dhcr7 and Gli1 also in pathogenic situations.

In order to see whether overexpression of DHCR7 would dampen signaling also in cells devoid of Suppressor of Fused, we stably expressed DHCR7 in Sufu/- MEFs (Fig. 4a). QPCR analysis revealed that expression of SUFU as a positive control led to a strong downregulation of Gli1, Hip1 and Ptc1 levels, indicative of pathway inhibition. Expression of DHCR7 gave rise to a moderate but detectable suppression of signaling in Sufu/- cells (Fig. 4a). Cells lacking Sufu express very low levels of Gli3 protein, suggesting that Sufu is required for Gli3 protein production or stability (Jia et al., 2009; Chen et al., 2009). Stable transfection of Sufu/- MEFs with a SUFU plasmid restored expression of Gli3 with the truncated repressor form of Gli3 (Gli3R) being more abundant (Fig. 4b). Expression of DHCR7 did not restore Gli3 protein levels, suggesting that the inhibitory mechanisms of Sufu and Dhcr7 are likely different.

The ability of DHCR7 to inhibit signaling in a Smo-independent manner was verified by transfection of the pancreatic cancer cell line AsPC1 with DHCR7 plasmid. AsPC1 cells are GLI1 positive but they are resistant to SMO inhibitors such as SANT1, indicating a downstream activation of the pathway (Fig. 2e). QPCR analysis demonstrated that transfection of these cells with DHCR7 expression plasmid resulted in an inhibition of HH
signaling as measured by the decrease in GLI1 and PTCH mRNA levels (Suppl. Fig. 3a, 3b).

DHCR7 is a nine-pass transmembrane protein residing in the endoplasmatic reticulum (ER) (Moebius et al., 1998). In order to elucidate if overexpressed DHCR7 can also be seen in other cellular compartments (e.g. nucleus) where it could theoretically interfere with HH signaling, we performed confocal microscopy on Sufu-/ cells stably expressing a tagged version of DHCR7 (Fig. 4c). However, no DHCR7 staining was observed in the nuclei of transfected cells and the pattern seen was in agreement with a predominant ER localization. Finally, we wanted to investigate the effect of DHCR7 and its deletion mutants on transfected GLI1, GLI2\(\Delta N\) and full length GLI2. As can be seen in figure 4d, transfection with SUFU led to a strong inhibition of the transcription-inducing activity of all GLI constructs whereas expression of any of the two DHCR7 variants did not result in a blockade of activity.

In summary, we found that ectopic expression of DHCR7 attenuated the HH pathway in mammalian cells which have activated signaling by Smo-dependent and Smo–independent mechanisms.

Induction of endogenous Dhcr7 by anti-psychotic drugs attenuates HH signaling

Previously it was reported that anti-psychotic and anti-depressant drugs augment DHCR7 levels in several cell types such as glial and hepatic cells (Raeder et al., 2006; Ferno et al., 2005). DHCR7 induction in these cells occurs via activation of the sterol regulatory element-binding protein (SREBP), which is a master switch for the regulation of lipogenic genes. In order to elucidate if members of these drug classes could impact on HH
signaling in a Dhcr7-dependent manner, we investigated the effects of the tricyclic anti-depressant Imipramine and the antipsychotics Clozapine, Haloperidol and Chlorpromazine (chemical structures are given in figure 5a).

As can be seen in figure 5b, all of these drugs were capable of significantly inhibiting HH signaling in SAG-treated ShhL2 cells. In order to investigate if the inhibition observed was indeed due to upregulation of endogenous Dhcr7, we performed a rescue experiment in C3H10T1/2 cells (we used this cell line since it is HH-responsive and better transfectable with siRNA constructs than NIH3T3 cells). Knocking down endogenous Dhcr7 levels and thus preventing the Dhcr7 upregulation mediated by the anti-psychotic drugs should reduce the HH pathway inhibition. Importantly, our siRNA construct targeting Dhcr7 resulted in a modest knock-down which was sufficient to block the induction of Dhcr7 by the anti-psychotics. However, the knock-down was not efficient enough to completely eliminate Dhcr7 from the cell which would have resulted in the stacking of 7-dehydrocholesterol and consequently the accumulation of the Smo antagonist VitaminD3 (Bijlsma et al., 2006). As can be seen on the left side of figure 5c, all analyzed compounds augmented endogenous Dhcr7 levels in C3H10T1/2 cells and this induction was blocked by transfection of siRNA against Dhcr7. In this experiment, also GANT61 (at 20µM) induced Dhcr7 expression, which is probably caused by its structural relatedness to AY9944. All compounds tested reduced Gli1 levels to varying degrees (Fig. 5c, right side). Importantly, when the induction of Dhcr7 was blocked by transfection of siDhcr7, the capability to inhibit the HH pathway was greatly reduced. An exception was GANT61, which could still function as a HH pathway antagonist without Dhcr7 induction. Taken together these data show that the tested anti-depressant/anti-psychotics attenuate
HH signaling by upregulation of endogenous Dhc7. While GANT61 displayed a similar pattern in the tested cell line it also possessed a strong Dhc7-independent inhibitory function.

Since overexpression of DHCR7 and AY9944 treatment had a suppressive impact on HH signaling in Sufu-/ cells we tested if the anti-psychotics/depressant showed a similar effect. QPCR analysis demonstrated that all of these compounds induced Dhcr7 expression and in addition interfered with HH signaling as measured by a reduction in Gli1 and Hip1 mRNA levels (Fig. 6a). Reduction of Hip1 was also verified on the protein level (Fig. 6b).

Next, we were interested to see if the neuroleptics were capable of interfering with a physiological process driven by endogenous HH pathway activity. The murine mesenchymal progenitor cell line C3H10T1/2 enters an osteogenic differentiation program with concomitant upregulation of alkaline phosphatase upon activation of HH signaling. C3H10T1/2 cells were induced with SAG and simultaneously treated with AY9944, Imipramine, Clozapine, Chlorpromazine or Haloperidol. As can be seen in figure 6c, all compounds suppressed alkaline phosphatase expression in a dose-dependent manner, suggesting that HH-dependent physiological processes can be modulated by these drugs.
Anti-psychotics modulate HH signaling in neuronal cells and tissues

The primary target organ for anti-depressants/anti-psychotics is the brain. In an attempt to verify that the DHCR7-regulating drugs also function in neuronal cells, we applied these compounds to the glioblastoma cell line T98G. In line with the previous findings in non-neuronal cells Haloperidol, Clozapine and Imipramine lead to an upregulation of endogenous DHCR7 and a concomitant downregulation of GLI1 (Fig. 7a). Finally, we aimed at testing the effects of anti-psychotics/anti-depressants on HH signaling in an in vivo situation. Mice were treated intraperitoneally with saline, Imipramine, Haloperidol, Chlorpromazine or Clozapine and HH pathway activity in the brain was monitored by measuring Gli1 mRNA in the frontal cortex. As can be seen in figure 7b and 7c, an inverse correlation between Dhcr7 and Gli1 was also detected in these in vivo samples. Unexpectedly, treatment with the anti-psychotics/anti-depressants resulted in a reduction of Dhcr7 (Fig. 7b) and a subsequent induction of Gli1 (Fig. 7c). This shows that despite the fact that the neuroleptic drugs behaved dissimilar in the in vivo situation compared to in vitro experiments the correlation between altered Dhcr7 levels and HH/Gli signaling are similar.
Discussion

Hedgehog signaling activity is of crucial importance for several key steps in embryogenesis and widespread HH activity can be detected during the development of numerous organs. In the adult organism, HH activity is associated with tissue maintenance and stem cell control and is therefore spatially restricted. Erroneous HH pathway activity in the adult organism has been implicated in the etiology of several cancer types such as basal cell carcinoma of the skin, cerebellar medulloblastoma, glioblastoma multiforme as well as in tumors of the gastrointestinal tract (Rubin and De Sauvage, 2006). Previously we identified GANT61, a small molecule inhibitor of GLI1 and GLI2, which are the final effectors of the HH pathway and which are overactivated in many tumors (Lauth et al., 2007a). Here, we identify the hexahydropyrimidine part of the molecule as the bioactive substructure of GANT61. A theoretically proposed hydrolysis reaction towards a diamine product could experimentally not be found, but the corresponding diamines were biologically as effective as the parent compound. Furthermore, the Dhcr7 inhibitor AY9944 bears a certain degree of structural resemblance to the GANT61 diamine. However, despite the fact that both compounds could block HH signaling when initiated at the level of Smo or Sufu, AY9944 was a poor inhibitor in situations of GLI overexpression. Although we interpret this result in a way that these two compounds have dissimilar mechanisms of action we cannot rule out a possible effect of AY9944 on low levels of endogenous Gli.

AY9944 is a specific inhibitor of Dhcr7, the enzyme catalyzing the last step in the biosynthesis of cholesterol (Suppl. Fig. 4). Inhibition of cholesterol biosynthesis results in decreasing cholesterol levels which are sensed by the cell via a sterol-sensing mechanism
involving the SCAP/ SREBP proteins which are residing in the endoplasmatic reticulum. Upon activation, SCAP/SREBP are translocated to the Golgi compartment where SREBP is proteolytically cleaved and enters the nucleus to induce transcription of lipogenic genes. Since one of these genes is \textit{Dhcr7}, which itself has been shown to act as an antagonist of \textit{Xenopus} HH signaling, it was unclear whether the inhibition observed with AY9944 is a result of the properties of the compound or the secondary upregulation of \textit{Dhcr7}. In support of the latter we could show that overexpression of DHCR7 attenuates HH signaling in SAG-induced NIH3T3 and in \textit{Sufu-/} cells. Intriguingly, \textit{Dhcr7} levels are reduced in HH-induced mouse medulloblastoma cells which is paralleled by an increase in \textit{Gli1} levels, suggesting that the \textit{Dhcr7-Gli1} axis might even play a role in tumorigenesis.

Importantly, the catalytic function of DHCR7 was not required for HH pathway inhibition which is in agreement with data from \textit{Xenopus} (Koide et al., 2006). Moreover, Vitamin D$_3$ (derived from DHCR7’s substrate 7-DHC) did not block signaling in \textit{Sufu-/} cells and oxysterols (derived from DHCR7’s product cholesterol) did not induce signaling in \textit{Smo-/} MEFs, underscoring the Smo-specificity of DHCR7’s enzymatic substrates (7-DHC and thus Vitamin D$_3$) and products (oxysterols) (data not shown). This suggests that in mammals, as in \textit{Xenopus}, the inhibitory function of DHCR7 is independent of its enzymatic activity and is integrated most likely downstream of Smo. In contrast, the effects of its catalytic function (Vitamin D$_3$/oxysterols) are acting on the level of Smo.

It is interesting to note that DHCR7 contains a sterol-sensing domain (SSD) and that another SSD-containing protein, PTCH, is able to inhibit HH signaling downstream of SMO (Rahnama et al., 2006). This raises the possibility that, although not required in \textit{Xenopus} (Koide et al., 2006), in mammals the SSD of DHCR7 might be mediating some
aspects of the HH inhibition (Fig. 3c). However, future research is needed to address the exact mechanism of inhibition by DHCR7 and how its effects are linked to other interactions between the Hedgehog and the cholesterol biosynthesis pathways (Suppl. Fig. 4).

Anti-psychotic drugs, which are used for treating schizophrenia and related conditions, are considered to act mainly as Dopamine D₂ antagonists. Both “typical” neuroleptics, including Haloperidol and Chlorpromazine, and “atypical” neuroleptics, including Clozapine, have high affinities for Dopamine D₂ receptors. Clozapine has also a high affinity for several different serotonin receptors. The anti-depressant Imipramine targets preferentially serotonin (5-HT) and norepinephrine transporters and increases the synaptic availability of these monoamines by inhibiting their reuptake. The fact that these compound classes have distinct preferences for neuronal membrane proteins (which are not expressed in fibroblasts) makes a common receptor-based mechanism of action with regard to HH signaling unlikely. Furthermore, the described substances are structurally diverse, supporting the concept of action via an indirect effect on the HH pathway through upregulation of Dhcr7. Indeed, we could show that blocking Dhcr7 induction abolishes the negative effect of these drugs on the HH pathway.

The transcriptional induction of lipogenic genes was also reported for other tricyclic anti-depressants such as Amitriptyline and Clomipramine, raising the possibility that the HH effects described here are applicable to a larger group of clinical neuropharmaceuticals (Raeder et al., 2006).
Our finding that drugs used to treat schizophrenia or depression modulate HH signaling in numerous cell lines and in the brain raises the possibility that alterations in HH signaling might occur in the etiology of the disease or its therapy. Most of the psychotropic drugs are highly lipophilic leading to accumulation in fatty tissues. As a consequence, 10-30 times higher concentrations of Haloperidol and Clozapine have been documented in the CNS compared to serum concentrations (Baselt et al., 1995; Weigmann et al., 1999). In liver tissue, concentrations of Clozapine were shown to reach up to 30 µM (Baselt et al., 1995) being similar to what we have used for in vitro testing. Hence, the impact on HH signaling might as well be part of the spectrum of non-neuronal side-effects of neuroleptics, including the metabolic syndrome.

In our in vivo experiment using intermediate concentrations of the drugs, Dhcr7 was unexpectedly induced upon treatment with anti-psychotics/anti-depressants. It is currently unclear why the outcome was different than in the in vitro situation but it might involve aspects of different cell types, drug doses, altered cholesterol metabolism or time points of analyses. With regard to the latter it was shown that a single administration of clozapine led to an initial rise followed by a down-regulation of SREBP target genes in the liver (Ferno et al., 2009). Hence, the difference between our in vitro and in vivo data could result from the chosen time point at which we harvested the tissue. It will be interesting to see how the DHCR7/GLI levels are modulated in patients receiving long-term treatment with anti-depressants/anti-psychotics. Importantly, correlating to the in vivo downregulation of Dhcr7 in our experiment, HH signaling (Gli1) was upregulated, supporting our finding of an inverse correlation of Dhcr7 and Gli1 levels.
With respect to schizophrenia, the underlying reasons are not fully elucidated but one hypothesis is that the differentiation process of neural stem cells into more restricted descendants is altered affecting the wider neural network in which these neurons integrate (Kalkman, 2009). Interestingly, SHH has been implicated in neural stem cell proliferation as well as in differentiation of several types of neurons, such as dopaminergic and serotonergic neurons (Stecca et al., 2005; Dellovade et al., 2006). In addition, HH acts as a neuronal guidance cue in the developing nervous system (Charron and Tessier-Lavigne, 2005).

Taken together, there is reason to suggest that hitherto unrecognized alterations in HH pathway activity may occur during the etiology and/or the current therapy of psychiatric disorders.

Acknowledgements

We are indebted to Drs. Maximilian Muenke, Phil Beachy, Fritz Aberger, Matthias Löhr and Jan Bergman for kind provision of reagents, plasmids and cell lines. We would also like to thank Jacob Westman for expert advice on medicinal chemistry issues, Actar AB for provision of chemicals and Bernhard Wilke for technical assistance.
References

Koide T, Hayata T and Cho KW (2006) Negative regulation of Hedgehog signaling by the
cholesterogenic enzyme 7-dehydrocholesterol reductase. Development 133(12):2395-2405.

Oliver TG, Read TA, Kessler JD, Mehmeti A, Wells JF, Huynh TT, Lin SM and Wechsler-Reya RJ (2005) Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development

Footnote

We are grateful for grant support from the Swedish Cancer Society, the Swedish Research Council, Swiss Bridge, the Wenner-Gren-Foundation, the Lars Hiertas Minne Foundation, the Karolinska Institutet and L.O.E.W.E. (Tumor & Inflammation).
Legends for Figures

Figure 1

Hydrolysis reaction of GANT61 and biological activity of its proposed hydrolysis products

(a) Predicted hydrolysis reaction of GANT61 into a diamine and a benzaldehyde under acidic conditions.

(b) Structures of the GANT61 analogue D8 and its predicted hydrolysis products.

(c) Compound D8 as well as its substructure D8-D, but not D8-A inhibit HH signaling in SAG-induced ShhL2 cells. As positive control, TPA (160 nM) was added. D8-D+A denotes the simultaneous addition of D8-D and D8-A. Treatment time was 48 h. Shown is one representative experiment of three.

(d) QPCR of *Sufu*-/MEFs treated with the indicated compounds for 48 h. The bracketed numbers indicate the concentration (µM). (n = 3± st.dev)

(e) GANT61 stability as a function of pH and time. Note that GANT61 is very stable even under strong acidic conditions. Shown is the mean of two independent experiments.

Figure 2

The biologically active diamine substructure of GANT61 resembles the structure of AY9944

(a) Chemical structures of the Dhcr7 inhibitor AY9944 in comparison to the diamine part of GANT61
(b) AY9944 (‘AY’) blocks SAG-induced HH signaling in ShhL2 cells. TPA (160 nM) was included as positive control (n = 3± st.dev)

(c) GANT61 (‘61’) as well as AY9944 (‘AY’) inhibit HH signaling in Sufu-/ cells as measured by QPCR. Note that treatment with AY9944 induces Dhcr7 mRNA. (n = 3± st.dev)

(d) Immunoblot showing reduction of Hip1 protein expression upon exposure of Sufu-/ MEFs to AY9944, GANT61 (‘G61’) or GANT61-D (‘61-D’). Beta-actin levels are shown as loading control.

(e) AY9944 (‘AY’) and GAN61 (‘61’) reduce GLI1 mRNA levels in the pancreatic cancer cell line AsPC1, which is unresponsive to the Smo inhibitor SANT1 (0.2 μM—which is sufficient to fully block SAG-induced signaling in NIH3T3, not shown). Note the strong induction of the cholesterol synthesis genes *HMGCR* and *DHCR7* by AY9944. (n = 3± st.dev)

(f) GANT61 (‘61’) but not AY9944 (‘AY’) can significantly inhibit transfected GLI1 and GLI2ΔN (‘GLI2dN’) in a Gli-responsive luciferase assay in HEK293 cells. (n = 3± st.dev)

Figure 3

Overexpression of DHCR7 results in attenuation of the HH pathway

(a) Scheme of the DHCR7 constructs used. DHCR7ΔC lacks the C-terminal part which is required for catalytical activity. The black box indicates the V5 protein tag. SSD = Sterol sensing domain.
(b) Immunoblot of NIH3T3 cells transiently transfected with V5-tagged DHCR7 and DHCR7ΔC. Control cells were non-transfected.

(c) Hedgehog reporter assay in NIH3T3 cells transiently transfected with the indicated constructs (n = 3± st.dev).

(d) QPCR analysis of NIH3T3 cells stably overexpressing full-length DHCR7. (n = 3± st.dev)

(e) Microarray data from cerebellar cells of a mouse Ptch1+/- medulloblastoma model depicting the changes in Dhcr7 mRNA levels. GCPs=Normal granule cell precursors; PNP=Pre-neoplastic cells; Tumor=Tumor cells; MB=Medulloblastoma. The data shown in this panel were taken from GEO (Gene Expression Omnibus) and were generated by Oliver et al., 2005. The mean value is indicated by a black bar.

(f) Microarray data from cerebellar cells of a mouse Ptch1+/- medulloblastoma model depicting the changes in Gli1 mRNA levels. GCPs=Normal granule cell precursor cells; PNP=Pre-neoplastic cells; Tumor=Tumor cells; MB=Medulloblastoma. The data shown in this panel were taken from GEO (Gene Expression Omnibus) and were generated by Oliver et al., 2005. The mean value is indicated by a black bar.

Figure 4

DHCR7 possesses Smoothened-independent inhibitory properties.
(a) QPCR of HH pathway target genes in Sufu-/- cells stably transfected with the indicated constructs. SUFU was transfected as positive control (n = 3± st.dev).

(b) Western blot showing Hip1, Gli3 activator (‘Gli3 A’) and Gli3 repressor (‘Gli3 R’) levels in Sufu-/- cells stably expressing either DHCR7 or SUFU. Note that Gli3 becomes only visible after ectopic expression of SUFU.

(c) Confocal fluorescence microscopy of Sufu-/- cells stably expressing V5-tagged DHCR7 (pseudocolored in white). Control cells are non-transfected. No DHCR7 localization could be seen in the nuclei (which appear solid light gray in the left panel and punctate light gray in the right panel).

(d) Luciferase assay of NIH3T3 transfected with different GLI and DHCR7 constructs. SUFU was included as positive control. GLI2dN=GLI2ΔN; GLI2fl=full-length GLI2. (n = 3± st.dev)

Figure 5

Anti-psychotics affecting DHCR7 levels modulate HH signaling

(a) Chemical structures of the anti-psychotics Clozapine, Haloperidol, Chlorpromazine and the anti-depressant Imipramine. Note the structural dissimilarity of the compounds.

(b) HH reporter assay in ShhL2 cells treated with the indicated compounds. Shown is the fold induction of luciferase activity compared to non-induced cells. The concentration of the respective compound is given after the underscore; e.g. Imi_10=Imipramine 10 µM; Clozap=Clozapine; Halo=Haloperidol;
Chlor=Chlorpromazine; AY=AY9944. GANT61 (20 µM) was included as positive control. Chlorpromazine showed some toxicity and could not be used at higher doses. Shown is one representative experiment of three.

(c) Rescue experiment in SAG-treated C3H10T1/2 cells. Cells were transfected with siRNA and subsequently treated with SAG and the indicated compounds for 48 h before Gli1 and Dhcr7 levels were measured by qPCR. Concentrations used were: GANT61 (20 µM); Imipramine (Imi, 30 µM); Clozapine (Clozap, 40 µM); Haloperidol (Halo, 20 µM); AY9944 (10 µM). Shown is one representative experiment of three. The DMSO-treated siControl sample was set to 1.

Figure 6

Neuroleptics affect physiological HH pathway responses

(a) QPCR of Sufu-/− cells treated for 48 h with the indicated compounds. Note that all compounds lead to an induction of Dhcr7 expression. The DMSO-treated sample was set to 1. (n = 3± st.dev)

(b) Immunoblot showing the reduction of Hip1 protein in Sufu-/− MEFs after 48 h exposure to 40 µM Imipramine or 40 µM Clozapine. An unspecific band serves as loading control.

(c) C3H10T1/2 differentiation assay. Depicted is the fold induction of alkaline phosphatase activity (‘AP’; normalized against total protein amount) upon SAG treatment relative to uninduced samples. Shown is one representative experiment (performed in triplicate ± st.dev) of three independent experiments. The
concentration in µM is given for each compound: e.g. Imi_10=Imipramine 10 µM; Clozap=Clozapine; Halo=Haloperidol; Chlor=Chlorpromazine. GANT61 (20 µM) and SANT1 (0.2 µM) were included as positive controls.

Figure 7

Regulation of HH signaling by anti-psychotics/anti-depressants in neuronal cells and tissues

(a) QPCR of T98G glioma cells treated for 48 h with the indicated compounds: SANT (0.2 µM); GANT61 (10 µM); Haloperidol (10 µM); Clozapine (40 µM); Imipramine (40 µM); AY9944 (5 µM). (n = 3± st.dev)

(b) Dhcr7-qPCR of mouse brain (frontal cortex; n=6) treated with the indicated compounds (for concentrations see material and methods). The black bar indicates the mean±SEM.

(c) Gli1-qPCR of mouse brain (frontal cortex; n=6) treated with the indicated compounds (for concentrations see material and methods). The black bar indicates the mean±SEM.
Figure 2

(a) Molecular structures of GANT61 and AY9944.

(b) Graph showing Hh reporter activity for different treatments.

(c) Bar graph of mRNA/GAPDH levels in Sufu−/− MEFs treated with various concentrations of 61 and AY.

(d) Western blot of Hip1 expression in different cell lines treated with DMSO, AY9944, G61, and 61-D.

(e) Heatmap of mRNA/GAPDH levels in AsPC1 treated with different concentrations of 61 and AY.

(f) Graph of Hh reporter activity in HEK293 cells treated with AY and 61 at different concentrations.
Figure 5

(a) Chemical structures of Imipramine, Clozapine, Haloperidol, and Chlorpromazine.

(b) Graph showing HH reporter activity for ShhL2 + SAG treated with different compounds.

(c) Graph showing mRNA levels of Dhcr7 and Gli1 in C3H10T1/2 + SAG treated with DMSO, GANT61, Imi, Clozap, Halo, and AY9944.
Supplementary information

Anti-psychotic drugs regulate Hedgehog signaling by modulation of 7-dehydrocholesterol reductase levels

- Molecular Pharmacology -

Matthias Lauth, Verena Rohnalter, Åsa Bergström, Mahsa Kooshesh, Per Svenningsson, Rune Toftgård

Institute of Molecular Biology and Tumor Research (IMT), Philipps University, Emil-Mannkopff-Str. 2, 35032 Marburg, Germany (M.L., V.R.).

Karolinska Institutet, Center for Biosciences, Department of Biosciences and Nutrition, Novum Research Park, Hälsovägen 7, SE-14157 Huddinge, Sweden (M.L., Å.B., M.K., R.T.).

Karolinska Institutet, Center for Molecular Medicine, Department of Physiology and Pharmacology, 17177 Stockholm, Sweden (P. S.).
Suppl. Figure 1

(a) Chemical structures of GANT61 analogues. Structures of D8 and GANT61 can be found in figures 1a and 1b of the main body of the manuscript. The predicted aldehyde part is indicated by a pink circle while the predicted diamine part is underlined by green. Note the structural similarity between the diamine parts but not between the aldehyde parts.
(b) HH reporter assay in SAG-induced ShhL2 cells. Treatment time was 48 h. Shown is the fold induction compared to a ‘-SAG’ sample. TPA (160 nM) was included as a positive control. Depicted is one representative experiment of three independent experiments.
Suppl. Figure 2

a

Typical Chromatogram of pH 2.0 0.0Hr

Typical Chromatogram of pH 2.0 24.0Hr
Suppl. Figure 2

Typical Chromatogram of pH 7.0 0.0 Hr

Typical Chromatogram of pH 7.0 24.0Hr
Suppl. Figure 2

(a) Typical chromatograms of the GANT61 hydrolysis experiment at pH 2 after 0h and 24 h. Upper panel: Solvent (LC); Middle panel: GANT61 (LC); Lower panel: MS of GANT61.

(b) Typical chromatograms of the GANT61 hydrolysis experiment at pH 7 after 0h and 24 h. Upper panel: Solvent (LC); Middle panel: GANT61 (LC); Lower panel: MS of GANT61.

Suppl. Figure 3

(a) QPCR of AsPC1 cells transfected with mock (lacZ) or DHCR7 plasmid (n=3±StDev).

(b) Verification of transfected DHCR7 by RT-PCR. Phosphoglycerate kinase (PGK) is shown as loading control.
Suppl. Figure 4

Overview chart illustrating the complex regulatory interplay between the cholesterol biosynthesis pathway and the Hedgehog pathway identified so far. Green lines indicate positive effects whereas red lines indicate negative effects. The repression by Dhcr7 described in this manuscript is highlighted. Note: The drawing does not intend to compare the relative potencies of the different regulators.
Suppl. Materials and Methods

Taqman probes used in this study:

<table>
<thead>
<tr>
<th>Transcript</th>
<th>Applied Biosystems #</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLI1</td>
<td>Hs00171790_m1</td>
</tr>
<tr>
<td>Glil</td>
<td>Mm00494645_m1</td>
</tr>
<tr>
<td>Hip1</td>
<td>Mm00469580_m1</td>
</tr>
<tr>
<td>PtcH1</td>
<td>Mm00436026_m1</td>
</tr>
<tr>
<td>Ptch1</td>
<td>Hs00181117_m1</td>
</tr>
<tr>
<td>Dhcr7</td>
<td>Hs00154732_m1</td>
</tr>
<tr>
<td>DhcR7</td>
<td>Mm00514571_m1</td>
</tr>
<tr>
<td>Hmgcr</td>
<td>Hs00168352_m1</td>
</tr>
<tr>
<td>Gapdh</td>
<td>4326317E</td>
</tr>
<tr>
<td>Rps18</td>
<td>Mm00507222_s1</td>
</tr>
</tbody>
</table>

qPCR Primer sequences (5’->3’):

mGli1_For	TGCACTCTCGCTTTTCGAGGTGT
mGli1_Rev	AATGCAATGGATGATCAGCCAGGAAGG
mP0_For	CCCATAGGGTCTCGGGGTCTCAAC
mP0_Rev	GGAGGACCTCGGCTGAATGTGAAA

siRNA sequences:

<table>
<thead>
<tr>
<th>Construct</th>
<th>Sense</th>
<th>Antisense</th>
</tr>
</thead>
<tbody>
<tr>
<td>siControl (Dharmacon D-001210-02)</td>
<td>UAAGGCUAUGAAGAGAUAACUU (targeting Firefly Luciferase)</td>
<td>GUAUCUCUUAUGCCUUCAUUU (targeting Firefly Luciferase)</td>
</tr>
<tr>
<td>siDhcr7 (Ambion ID#61058)</td>
<td>GGUGCUGCUUUUAUUCUGGTT</td>
<td>CCAGAUAUAAACGACGCACCTG</td>
</tr>
</tbody>
</table>