The Mu-Opioid Receptor Variant N190K is Unresponsive to Peptide Agonists
Yet Can be Rescued by Small Molecule Drugs

Jean-Philippe Fortin, Lei Ci, Jonathan Schroeder, Carmit Goldstein, Maria Claudia Montefusco,
Inga Peter, Steven E. Reis, Gordon S. Huggins, Martin Beinborn
and Alan S. Kopin

Molecular Pharmacology Research Center, Molecular Cardiology Research Institute, Tufts Medical
Center, Tufts University School of Medicine, Boston, MA 02111. (JPF, LC, JS, CG, MCM, GSH,
MB, ASK), Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New
York, USA (IP), University of Pittsburgh, Pittsburgh, PA 15261, USA (SER)

Equal contributions were made by these authors. (JPF, LC)
Running Title: Small molecules rescue function of an inactive MOR variant

Corresponding author: Dr. Alan S. Kopin, 800 Washington Street,
P.O. Box 7703, Boston, MA 02111; Tel.: 617-636-4834; Fax: 617-636-8692;
Email: akopin@tuftsmedicalcenter.org

Number of text pages: 33
Number of tables: 1
Number of figures: 8
Number of references: 40
Number of words in Abstract: 250
Number of words in Introduction: 480
Number of words in Discussion: 1404

Abbreviations: Mu-opioid receptor (MOR), G protein-coupled receptor (GPCR), transmembrane domain (TMD), hemagglutinin (HA), horseradish peroxidase (HRP), high density lipoprotein (HDL), single nucleotide polymorphism (SNP).
Abstract

The mu-opioid receptor (MOR) plays an important role in modulating analgesia, feeding behavior and a range of autonomic functions. In the current study, we investigated the degree to which thirteen naturally-occurring missense mutations affect the pharmacological properties of the human MOR. Following expression of each receptor in HEK293 cells, signaling (Gαi/o-mediated) induced by peptide agonists was assessed utilizing luciferase reporter gene assays. Multiple mutants (S66F, S147C, R260H, R265C, R265H and S268P) show a significant reduction in agonist potency. At the N190K variant, agonist-mediated signaling was essentially absent. ELISA, microscopic analysis and radioligand binding assays revealed that this mutant shows markedly reduced cell surface expression, whereas all other receptor variants were expressed at normal levels. Surface expression of the N190K variant could be increased by incubation with the alkaloid agonist buprenorphine, or with either of the structurally related MOR antagonists, naltrexone or naloxone. Surprisingly, both putative antagonists, despite being inactive at the wild type MOR, triggered a concentration-dependent increase in N190K receptor mediated signaling. In contrast, peptidic ligands failed to promote expression or rescue function of the N190K mutant. Subsequent analysis of the N190K variant in an ethnically diverse cohort identified this isoform in a subgroup of African Americans. Taken together, our studies reveal that the N190K mutation leads to severe functional alterations and, in parallel, changes the response to established MOR ligands. The extent to which this mutation results in physiological abnormalities or affects drug sensitivity in selected populations (e.g. those with chronic pain or addiction) remains to be investigated.
Introduction

The human mu-opioid receptor (MOR) plays a central role in the modulation of pain perception. This G protein coupled receptor (GPCR) mediates many of the analgesic and addictive properties of opiate drugs including morphine (Le Merrer et al., 2009). Activation of the MOR has also been shown to modulate a range of autonomic functions including body temperature control, intestinal motility and respiratory drive (Przewlocki and Przewlocka, 2001; Le Merrer et al., 2009). In addition to nociception and autonomic function, long-standing evidence suggests that MOR modulates feeding behavior (Bodnar, 2004). Administration of MOR agonists tends to enhance food intake whereas antagonists inhibit feeding.

Targeted disruption of the MOR gene in mice abolishes morphine-induced analgesia, as well as the accompanying respiratory depression, constipation, and physical dependence (Sora et al., 1997; Matthes et al., 1998; Roy et al., 1998). In addition, work using MOR knock-out mice suggests a role for this receptor in modulating body weight. Depending on diet composition, absence of the MOR in rodents confers protection against obesity (Tabarin et al., 2005; Zuberi et al., 2008).

The MOR is activated by a series of endogenous peptides including endomorphin 1 and 2, β-endorphin, leucine-enkephalin and methionine-enkephalin. In addition, synthetic MOR agonists, including peptide (e.g. DAMGO) and non-peptide (e.g. morphine, buprenorphine, methadone) compounds, have been identified. At the cellular level, activation of the MOR primarily results in Gαi/o mediated inhibition of adenylate cyclase leading to a reduction in intracellular cAMP, inhibition of calcium channels and activation of inwardly rectifying potassium (Kir) channels (North et al., 1987; Moises et al., 1994). In addition, MOR agonist induced signaling triggers β-arrestin dependent activation of mitogen-activated protein kinases (MAPK) (Zheng et al., 2008).
It is well established that missense polymorphisms in GPCRs can result in a variety of pharmacologic abnormalities (e.g. alteration in receptor mediated signaling, affinity, expression) which may in turn predispose to physiologic changes and/or disease (Seifert and Wenzel-Seifert, 2002; Conn et al., 2007). It has been proposed that the occurrence of MOR missense mutations in the human population may underlie variability in the pharmacologic response to endogenous as well as synthetic MOR ligands and at the same time affect susceptibility to the development of drug addiction (Lotsch and Geisslinger, 2005).

In the current study, thirteen non-synonymous single amino acid changes in the MOR were selected for pharmacological analysis from the NaVa (Natural Variants) database, which catalogs known human GPCR polymorphisms (frequency >1%) as well as rarer mutations (Kazius et al., 2008). Our investigations suggest that selected MOR variants show reduced or absent agonist function. Among the abnormal MORs, we demonstrate that the previously uncharacterized N190K isoform has markedly impaired membrane trafficking and as a result does not signal in response to endogenous peptide agonists. Furthermore, our studies reveal that the MOR antagonists, naltrexone and naloxone, can not only restore cell surface expression but can also induce receptor mediated signaling of this otherwise “dead” receptor.
Materials and Methods

Materials. DAMGO ([D-Ala2, N-MePhe4, Gly-ol]-enkephalin) was purchased from Bachem (Bubendorf, Switzerland). Beta-chlornaltrexamine (β-CNA), CTAP (H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2), naltrexone, naloxone, endomorphin 1 and leucine-enkephalin were from Sigma (Saint Louis, MO). Buprenorphine was obtained from Reckitt Benckiser Pharmaceuticals (Richmond, VA). Cell culture media, fetal bovine serum, and Lipofectamine reagent were obtained from Invitrogen (Carlsbad, CA). Peroxidase-conjugated, anti-hemagglutinin (HA) monoclonal antibody (3F10), and BM-blue, a peroxidase substrate, were purchased from Roche Applied Science (Indianapolis, IN). The plasmids encoding a serum response element (SRE5x) or a cAMP response element (CRE6x) ligated upstream of a luciferase reporter gene have been described previously (Hearn et al., 2002; Fortin et al., 2010)

Construction of Human Mu-Opioid Receptor Plasmids. After subcloning of the MOR in pcDNA1.1, missense mutations were introduced into the receptor cDNA using oligonucleotide-directed site-specific mutagenesis as described previously (Blaker et al., 1998). To enable assessment of receptor expression, an HA epitope (YPYDYPDYA) was introduced following the initiator methionine of each receptor isoform. The nucleotide sequences of all receptor coding regions were confirmed by automated DNA sequencing.

Cell Culture. Human embryonic kidney (HEK) 293 cells were grown in Dulbecco’s modified Eagle’s medium (Invitrogen, Carlsbad, CA) supplemented with 10% fetal bovine serum, 100 U/ml penicillin G, and 100 µg/ml streptomycin. The cells were maintained at 37°C in a humidified environment containing 5% CO2.
Luciferase Reporter Gene Assays. Receptor-mediated signaling via inhibitory $G_{\alpha_{i/o}}$ proteins was assessed using a luciferase reporter gene assay as described previously (Al-Fulaij et al., 2008). In brief, HEK293 cells were plated at a density of 1000-2000 cells per well onto clear-bottom, white 96-well plates and grown for 2 days to ~ 80% confluency. Cells were then transiently transfected using LipofectamineR reagent (Invitrogen, Carlsbad, CA) with cDNAs encoding (i) a wild type or mutant MOR (or an empty expression vector), (ii) a cAMP responsive element-luciferase reporter gene (CRE6X-luc) and (iii) β-galactosidase, to enable correction for interwell variability. Twenty four hours following transfection, cells were incubated for 6 hours (unless specified otherwise) with or without the appropriate concentration of ligand diluted in serum-free medium supplemented with 0.5μM forskolin. As an alternative strategy to measure $G_{\alpha_{i/o}}$-mediated signaling, cells were transfected as described above, however with replacement of CRE6X-luc with a combination of a serum-responsive element-luciferase reporter gene (SRE5x-luc) and a chimeric G alpha protein ($G_{\alpha_{q5i}}$). Introduction of the 5 C-terminal residues of $G_{\alpha_{i/o}}$ in the G_{α_q} protein ($G_{\alpha_{q5i}}$) allows detection of $G_{\alpha_{i/o}}$-coupled receptor-mediated signaling using the SRE-luc reporter gene (Conklin et al., 1993). Twenty four hours after transfection, cells were stimulated for 18 hours with or without naltrexone, naloxone, buprenorphine, CTAP or DAMGO in serum-free medium. In both protocols (using either CRE6X-luc or SRE/$G_{\alpha_{q5i}}$ as a reporter system), the medium was gently aspirated following ligand treatment and luciferase activity was measured using SteadyliteR reagent (PerkinElmer, Boston, MA). A β-galactosidase assay was then performed after adding the enzyme substrate, 2-Nitrophenyl β-D-galactopranoside. Following incubation at 37 ºC for 30-60 minutes, substrate cleavage was quantified by measurement of optical density at 420 nm using a SpectraMaxR microplate reader (Molecular Devices, Sunnyvale, CA). Corresponding values were used to normalize the luciferase data.
Assessment of Receptor Expression Using ELISA. Receptor expression levels were determined using a procedure described by Al-Fulaij et al. (2008). In brief, HEK293 cells grown in 96-well plates were transiently transfected with either pcDNA1.1 or a plasmid encoding an HA-tagged WT or mutant MOR receptor. In selected experiments, a dominant-negative mutant of dynamin (DynK44N) construct was cotransfected with the control or receptor encoding plasmids. Forty-eight hours post-transfection, the cells were washed once with phosphate-buffered saline (PBS), pH 7.4, and fixed with 4% paraformaldehyde in PBS for 10 min at room temperature. Cells were permeabilized with 0.1% Triton-X100 in PBS for 2 minutes to enable detection of total receptor expression levels; cell surface expression was measured without the permeabilization step. After washing with PBS/100 mM glycine, the cells were incubated for 30 min in blocking solution (PBS/20% bovine serum). A horseradish peroxidase-conjugated monoclonal antibody (Roche; clone 3F10) directed against the HA-epitope was then added to the cells (1:500 dilution in blocking solution). After 1 h, the cells were washed five times with PBS, and BM-blue (3,3'-5, 5'-tetramethylbenzidine, Roche, Indianapolis, IN) solution (50 µl per well) was added. After incubation for 30 min at room temperature, conversion of this substrate by antibody-linked horseradish peroxidase was terminated by adding 2.0 M sulfuric acid (50 µl per well). Converted substrate (which correlates with the amount of receptor) was assessed by measuring light absorbance at 450 nm using a SpectraMax microplate reader (Molecular Devices, Sunnyvale, CA).

Confocal Microscopy. HEK293 cells were plated at a density of 50,000 cells per well onto poly-L-lysine coated 35mm glass bottom dishes (MatTek Corporation, Ashland, MA) and grown for 2 days to ~80% confluence. Cells were then transfected with cDNA encoding the N-terminally...
HA-tagged MOR (either WT or N190K mutant). Forty eight hours following transfection, the
cells were washed once with PBS and fixed with 4% paraformaldehyde in PBS for 10 minutes.
After an additional two washes with PBS, cells were incubated for 30 min at room temperature
in PBS with 10% FBS. Cells were then further incubated for 1h in PBS/10% FBS in the presence
of an Alexa 488-conjugated monoclonal antibody directed against the HA-epitope (Invitrogen)
at 1 μg/ml final concentration. The cells were then washed five times with PBS and subsequently
kept in the same solution. Images were obtained using confocal microscopy (Leica TCS SP2
instrument).

Radioligand Binding Assays. HEK293 cells were plated at a density of 30,000 cells per
well onto 24-well plates and grown for 18-24 hours to ~80% confluency. Cells were then
transiently transfected with either pcDNA1.1 or a plasmid encoding the WT MOR or N190K
variant and grown for an additional 48 hours. Whole cell binding studies were initiated by
washing cells once with 500 μl of low sodium binding buffer (1.25mM CaCl₂, 0.8mM MgSO₄,
5.37mM KCl, 0.4mM KH₂PO₄, 0.06M Choline Chloride, 0.34mM Na₂HPO₄, 5.55mM d-
Glucose, 25mM HEPES, 0.2% BSA, 0.15mM PMSF, 0.02% NaN₃) at room temperature,
followed by addition of 500 μl of the same media. Saturation curves were constructed by adding
increasing concentrations of [³H] DAMGO (0-10nM) to the appropriate wells. After a 3 hour
incubation at room temperature, the cells were washed three times with ice-cold PBS, solubilized
in 0.1N NaOH and neutralized with an equal volume of 0.1N HCl. Radioactivity in the resulting
suspension was then measured by scintillation counting. Specific [³H] DAMGO binding to cells
expressing the WT or N190K MOR was determined by subtracting non specific radioligand
binding as determined using cells transfected with the empty expression vector pcDNA1.1.
Presence of bound radioligand at the cell surface was confirmed by subjecting cells to an acid wash procedure (Laporte et al., 2002). In brief, cells were washed three times using ice-cold PBS supplemented with 0.2M acetic acid and 0.150mM NaCl following the 3 hour incubation period at room temperature. This approach revealed that 68 ± 6% (n=3) of the specifically bound [³H] DAMGO could be washed off, supporting that the majority of radioligand binding occurs at the cell surface (data not shown).

Cohort. *Heart Strategies Concentrating on Risk Evaluation* (Heart SCORE) is a single-site prospective community-based cohort study investigating the mechanisms underlying population disparities in cardiovascular disease (Aiyer et al., 2007b; Kelley-Hedgepeth et al., 2008). Our sample includes 1,191 individuals (425 African Americans and 766 Caucasians) who provided consent and a DNA sample. Demographics, physical examination data and laboratory measurements were obtained as reported elsewhere (Aiyer et al., 2007). This study was approved by the Tufts Medical Center Institutional Review Board.

Genotyping. The frequency of the rs34074916 SNP (encoding the N190K variant) in the Heart SCORE cohort was assessed by TaqMan analysis. TaqMan genotyping kits purchased from Applied Biosystems were used according to the manufacturer’s instructions. A 7900 real-time PCR system was utilized for amplification. The reaction volume was 5 μl and included 10 ng of DNA, 2.5 μl of Universal PCR master mix (2X) and 0.1 μl of 40X probes. The reaction conditions were as follows, 95° for 10 minutes followed by 40 cycles: 15 seconds at 92° C and 1 minute at 60° C. Real time PCR results were analyzed by the SDS 2.3 program by Applied Biosystems. Presence of the rs34074916 SNP was confirmed by Sanger sequencing.
Data Analysis. GraphPad Prism software version 5.0 (GraphPad, San Diego, CA) was used for non-linear curve fitting of receptor signaling and radioligand binding data, and for calculation of half-maximal effective concentrations (EC$_{50}$ values), dissociation constant (K$_d$) and density of binding sites (B$_{max}$). The pEC$_{50}$ and total/surface expression values for each of the mutants were compared to the corresponding control values at the WT receptor using one-way ANOVA followed by Dunnett’s post test (GraphPad INSTAT software). Multivariable linear regression analysis was used to determine the association between cardiovascular risk factors and rs34074916 allele carriage while controlling for age, gender, body mass index (BMI), smoking, alcohol consumption, and medication history. The nominal threshold for statistical significance was set at 0.05. Association analyses were performed using SAS/STAT (SAS Institute, Inc., Cary, North Carolina, USA).
MOL #64188

Results

Human MOR variants. Thirteen non synonymous single amino acid substitutions in the human MOR (A6V, N40D, D51N, G63V, S66F, S147C, N190K, R260H, R265C, R265H, S268P, D274N and V293I) were selected for analysis based on a review of the NaVa database (Kazius et al., 2008) and of the literature (Befort et al., 2001; Wang et al., 2001; Lotsch and Geisslinger, 2005). The position of each amino acid substitution is illustrated in a cartoon of the MOR (Figure 1). To enable pharmacological assessment of each human MOR missense variant, site-directed mutagenesis was utilized to introduce relevant amino acid substitutions into the corresponding wild type receptor. Each of the mutant receptor constructs was expressed in HEK293 cells and pharmacologically characterized.

MOR variants show alterations in DAMGO-induced signaling. MOR-mediated activation of the $\alpha_{i/o}$ signaling pathway was assessed utilizing a CRE$_{6X}$-luciferase reporter gene assay. Forskolin stimulates adenylate cyclase thereby triggering an increase in intracellular cAMP levels which in turn results in CRE-dependent luciferase activity. Simultaneous addition of a saturating concentration of the prototypic MOR agonist DAMGO results in a $\alpha_{i/o}$-mediated inhibition of forskolin-induced luciferase activity.

As an initial screen, basal and DAMGO-induced signaling were examined at each MOR isoform using a saturating concentration of agonist (10^{-5} M) (Figure 2A). The effect of forskolin alone, measured as an index of basal signaling, was similar in cells expressing WT or variant MORs (Fig. 2A, grey bars). At the wild-type receptor, DAMGO blocked 88% of forskolin-induced activity. The signaling efficacy of DAMGO was significantly reduced at the R265C, R265H and S268P relative to wild-type, and was essentially absent when assessed at the N190K
variant (Figure 2A, black bars). At each of the other variants, DAMGO efficacy was similar to wild type.

Selected variants exhibit reduced potency of both synthetic and endogenous MOR agonists.

To further explore the observed alterations in DAMGO-induced signaling, and to investigate whether these changes also apply to endogenous ligand function, concentration-response curves for DAMGO, endomorphin 1 and leucine-enkephalin were generated for each variant and compared to wild type (Table 1; Figure 2B illustrating selected variants). Five MOR variants showed a significant decrease in potency for DAMGO relative to wild type (S66F, R260H, R265C, R265H and S268P) (Table 1). A parallel reduction in endomorphin 1 and/or leucine-enkephalin EC₅₀ and efficacy was observed at each of these receptors (Table 1, Supplemental Fig. 1). Due to lack of efficacy, corresponding ligand potencies at the N190K variant could not be determined. Of note, agonist potency tended to be increased at the D274N variant; however this change only reached statistical significance with endomorphin 1. In contrast to these functional alterations, the EC₅₀ values for DAMGO, endomorphin 1 and leu-enkephalin at the A6V, N40D, D51N, G63V and V293I mutants were comparable to those at the wild type receptor.

The N190K variant shows decreased receptor expression. The expression level of HA tagged wild-type and variant MORs were determined by ELISA (Figure 3). For each receptor, transfection of increasing amounts of cDNA (0-16ng) led to an elevation in cell surface expression. Relative to wild type, the N190K variant showed a markedly lower cell surface expression (~20% of wild-type level). Total expression, measured in permeabilized cells, was
also decreased for the N190K mutant (~50% of wild-type level; data not shown). In contrast to the N190K variant, the surface expression level of other functionally abnormal receptors was comparable to wild type (Figure 3).

Absence of specific DAMGO binding on cells expressing the N190K variant. The observed loss of function of the N190K variant was further investigated by radioligand binding experiments using the tracer $[^3H]$DAMGO (Figure 4). High affinity saturable radioligand binding was measured using cells expressing the WT MOR (K_d: 8.6 nM, B_{max}: 8 fmol/well). In contrast, no specific DAMGO binding was detected in parallel studies with the N190K mutant.

Non peptidic ligands increase cell-surface expression of the N190K variant. Accumulating evidence supports that selected small molecule ligands may promote enhanced cell surface expression of wild-type and mutant GPCRs (Conn and Ulloa-Aguirre, 2009). We assessed the effects of the non peptidic MOR antagonist NTX on cell surface expression of the wild-type receptor and the N190K variant using an ELISA (Figure 5). Treatment with 10 μM NTX for 18 h led to a marked increase in the cell surface expression of the N190K mutant. In contrast, surface expression of the wild-type receptor was minimally up-regulated following NTX administration (Figure 5 and 7).

NTX-induced up-regulation of the N190K variant was further explored using confocal microscopy (Figure 6). Consistent with our ELISA data and radioligand binding data, microscopy provided further evidence that cell surface expression of the N190K variant was dramatically reduced in comparison to the wild-type MOR. These experiments also confirmed
that prolonged treatment (i.e. 18 hours) with NTX markedly increases surface expression of the abnormal N190K mutant.

To assess whether the effect of NTX on expression of the N190K MOR variant is restricted to this opioid ligand, a series of antagonists (naloxone, β-CNA, CTAP) and agonists (buprenorphine, DAMGO, leucine-enkephalin, endomorphin 1) were tested for their ability to modulate surface expression of the WT MOR and N190K variant (Figure 7). In parallel experiments, in order to explore whether decreased expression of the N190K variant results from constitutive endocytosis, we assessed the effect of a dominant negative dynamin mutant, DynK44N. Expression of this construct has been shown to block both spontaneous and agonist-dependent internalization of WT and mutant GPCRs by preventing the formation of endocytic vesicles (Rochdi et al., 2010) (Figure 7).

Surface expression of the wild-type MOR was not significantly altered following a prolonged incubation with naloxone, β-CNA, buprenorphine or CTAP (Figure 7A). In contrast, treatment with each of the peptide agonists (10 μM, 18h) led to a marked reduction in the number of wild-type MORs displayed at the cell surface. Consistent with its ability to interfere with endocytosis, overexpression of DynK44N efficiently inhibited agonist-induced internalization of the wild-type MOR (Figure 7A).

As observed with NTX, treatment with 10 μM naloxone, β-CNA or buprenorphine also led to increased expression of the N190K variant (Figure 7B). In each case, the compound-induced increase in expression was highly significant, however less pronounced compared to the effect of NTX. In contrast, the peptidic antagonist (CTAP) or agonists (DAMGO, leucine-enkephalin, endomorphin 1) did not modify the expression level of this mutant receptor. It is noteworthy that DynK44N potentiated buprenorphine-induced stabilization of the N190K mutant at the cell surface.
surface (Figure 7B), whereas it did not influence expression of this mutant receptor under basal conditions or in response to either NTX, naloxone or β-CNA. These observations may suggest that modulation of receptor trafficking by the alkaloid agonist buprenorphine is more complex than that induced by the structurally-related antagonist ligands. It is possible that buprenorphine induces some degree of receptor internalization in addition to rescuing surface expression of the N190K variant, and that the former effect is blocked by DynK44N expression.

Naltrexone displays agonist-like properties at the N190K variant. At the wild-type MOR, the established agonists, DAMGO and buprenorphine, induced receptor activation as reflected by a concentration-dependent inhibition of forskolin-induced luciferase activity (Figure 8A). In contrast, NTX, naloxone and CTAP had minimal if any effect, consistent with previous classification of these ligands as antagonists. Assessment of these compounds at the N190K variant revealed that this variant was essentially unresponsive to DAMGO, but could still be activated by buprenorphine (Figure 8B). Surprisingly, two of the three established MOR antagonists (NTX and naloxone) acted as agonists at the N190K variant, showing efficacy similar to buprenorphine.

To further support the involvement of inhibitory G proteins in the activity of naltrexone at the N190K variant, we used a complementary assay providing a positive readout of receptor mediated signaling. This assay relies on co-expression of a chimeric Gαq5i protein, which links MOR stimulation to activation of an SRE5x-luciferase reporter gene construct. (see methods). As observed with the forskolin inhibition assay (Figure 8), DAMGO-induced signaling was absent at the N190K variant whereas at the wild type receptor, this ligand resulted in concentration-dependent MOR activation (Supplemental figure 2). Conversely, NTX did not activate the wild-
MOL #64188

type MOR but induced a pronounced increase in receptor-mediated activity at the N190K variant (Supplemental figure 2). NTX induced signaling reached a level approximating 75% of the maximal activity triggered by DAMGO at the wild-type MOR.

The N190K MOR variant is associated with elevated HDL cholesterol levels. To assess the frequency of the N190K variant in Americans of either African or European descent, we genotyped 1191 subjects within the Heart SCORE cohort. The N190K variant occurred in three African American females (overall frequency of 0.25%), but was not found in people of European ancestry. Heart SCORE is a community-based observational study of individuals at risk for coronary artery disease. Analysis of metabolic factors recorded on all Heart SCORE participants revealed that N190K carriers had significantly elevated high density lipoprotein (HDL) levels compared with non-carriers (75.60±7.72 versus 54.79±1.30, p=0.0065). Differences between carriers and non-carriers exceeding 10% were also observed in a subset of other clinical parameter including body mass index (BMI), waist circumference, blood triglyceride levels, and systolic blood pressure (SP). However, none of these changes reached statistical significance (Supplemental Table 1).
MOL #64188

Discussion

The MOR modulates analgesia, feeding behavior as well as selected autonomic functions including respiratory rate and intestinal motility. It has been proposed that mutations in the MOR gene may underlie observed inter-individual variability in the response to opioids (Lotsch and Geisslinger, 2005). In this study, we investigated the effect of naturally-occurring polymorphisms on MOR function by comparing the corresponding pharmacological properties with those of the wild type receptor.

Sequential assessment of 13 missense mutations in the human MOR sequence revealed that selected variants showed significant alterations in ligand-induced signaling. The S66F, S147C, R260H, R265C, R265H and S268P mutations each resulted in altered DAMGO, endomorphin 1 and/or leucine-enkephalin potency or efficacy compared to wild-type values. Of particular note, receptor mediated signaling in response to these peptides was absent at the N190K isoform. At least four mechanisms may contribute to the observed mutation-induced pharmacological changes: (1) alteration of G protein coupling, (2) modification of the ligand-receptor interaction, (3) abnormal transitioning from the inactive to the active receptor state (a conformational change which triggers second messenger signaling) and/or (4) defective receptor trafficking (e.g. intracellular trapping)(Beinborn et al., 2004; Conn and Ulloa-Aguirre, 2009).

Previous studies using different signaling readouts (including GTPγS binding assays), showed that the R260H, R265H and S268P MOR mutations result in a loss-of-function phenotype despite normal surface expression (Koch et al., 2000; Befort et al., 2001; Wang et al., 2001). Our data obtained using a different approach confirm and extend these findings by demonstrating that such abnormalities also apply to the endogenous agonists endomorphin 1 and leucine-enkephalin. Furthermore, we showed that the previously uncharacterized R265C
Mutation reduces agonist potency to a similar extent as the three mutations discussed above. Consistent with the location of corresponding amino acid substitutions in the third intracellular loop, these observations collectively support that these sequence alterations may interfere with receptor/G protein interaction (Befort et al., 2001; Wang et al., 2001). A parallel mechanism (enhanced receptor/G protein interaction) may be responsible for the observed increase in potency observed at the D274N variant. In contrast, altered G protein coupling is unlikely to explain defective signaling of the S66F variant which results from an amino acid substitution within the receptor’s N-terminus. Given this location, the observed decrease in agonist potency could be due to an alteration in receptor-ligand interaction.

No major pharmacological abnormality was observed at the A6V, N40D, D51N, G63V, and V293I mutants. It must be noted that inconsistent/divergent results regarding ligand affinity and surface expression of the N40D variant have been reported (Kroslak et al., 2007; Oertel et al., 2009). Such differences between studies aimed at characterizing subtle alterations in GPCR function may be explained, at least to some degree, by methodological variation and/or the cellular model system used for receptor analysis (Oertel et al., 2009).

Pharmacological studies of the N190K mutation have not been reported previously. Our results for this second intracellular loop substitution mutant reveal that receptor-mediated signaling in response to endomorphin 1, leucine-enkephalin or DAMGO is absent. Taken together, ELISA, microscopic and radioligand binding studies of the N190K mutant suggest reduced surface expression as a plausible explanation for the lack of signaling. The decrease in N190K expression may be due to mutation induced structural instability and/or misfolding of the receptor protein. Conformationally defective proteins may either accumulate intracellularly.
or be targeted to the ubiquitination/proteosome pathway which ultimately leads to degradation (Conn et al., 2007). The marked reduction in total expression of the N190K variant (in addition to cell surface expression) suggests the latter scenario to be the case. It is of note that prolonged treatment with micromolar concentrations of a small molecule MOR antagonist (naltrexone, naloxone or β-CNA) or agonist (buprenorphine) led to a significant increase in cell surface expression of the N190K mutant. In contrast, peptidic ligands (agonist as well as antagonist) failed to modulate expression of this variant. Consistent with previous studies on other GPCRs (Conn et al., 2007), our data support that selected small molecule ligands may cross cell membranes and act intracellularly as pharmacological chaperones, facilitating correct folding and plasma membrane targeting of the MOR protein. Alkaloid ligands including naltrexone have previously been shown to promote maturation and membrane insertion of both WT and mutant delta opioid receptor isoforms which are retained in the endoplasmic reticulum (Leskela et al., 2007).

In addition to increasing surface levels of the N190K MOR variant, we show that application of selected small molecule antagonists lead to unexpected ligand induced signaling at this mutant receptor. It is possible that the same mutation that impairs surface expression at this receptor variant concomitantly converts naltrexone/naloxone from an antagonist to an agonist. Such mutation induced alterations in ligand function (albeit without affecting receptor expression) have been previously reported with other GPCRs including the β2-adrenergic and the cholecystokinin 2 receptor (Strader et al., 1989; Blaker et al., 1998). Corresponding changes in ligand function may reflect either an alteration in ligand-receptor interaction or an increase in basal receptor activity. The latter may result in a systematic amplification in the activity of
receptor selective ligands (resulting in apparent antagonists or weak partial agonists acquiring higher levels of activity) (Samama et al., 1993; Kopin et al., 2003).

If the N190K mutation induces constitutive receptor activity as considered above, it may in parallel trigger down regulation or impaired expression (e.g., as a consequence of structural instability as reported with other constitutively active GPCRs (Gether et al., 1997; Li et al., 2001; Fortin et al., 2010). In this scenario, the naltrexone induced rescue of expression could unmask basal receptor signaling thus contributing to the agonist function of this ligand. Consistent with this possibility, Li et al. have reported that a genetically engineered artificial mutation in the rat MOR (D164Q) confers not only constitutive activation but also increased basal endocytosis. Furthermore, the authors found that surface expression of this constitutively active mutant could be enhanced by naltrexone, possibly by stabilizing the protein structure and by preventing spontaneous internalization (Li et al., 2001).

To explore the possibility that decreased expression of the N190K variant results from constitutive endocytosis, we assessed the effect of DynK44N, a dominant negative dynamin mutant which is known to block basal and agonist-mediated internalization of various GPCRs. Such a construct was recently shown to prevent constitutive endocytosis, thus uncovering the elevated basal activity of naturally-occurring vasopressin V2 receptor variants (Rochdi et al., 2010). Our observation that DynK44N efficiently blocks agonist-induced endocytosis at the wild-type MOR, but fails to increase surface expression of the N190K variant under basal conditions, suggests that ligand-independent internalization does not explain the diminished expression of this mutant receptor. Taken together, our studies leave open the possibility that multiple mechanisms may underlie NTX function at the N190K mutant (e.g., rescued receptor expression/ mutation-induced conversion of this ligand to an agonist / amplification of trace
intrinsic activity / unmasking of constitutive activity). The relative contribution of these factors remains to be defined.

The finding that a naturally occurring MOR mutation enables a putative antagonist to trigger receptor mediated signaling is novel. It is of note that an artificial substitution of a conserved serine in either the mu or the delta opioid receptor has been shown to confer agonist properties to classical antagonists including naltrexone (Claude et al., 1996). This conserved residue (S196 in the MOR), is located at the junction of the second intracellular loop and transmembrane domain 4, in the same vicinity as N190. In mice genetically engineered to express a S196A MOR construct in the spinal cord, the putative “antagonist” naloxone induced antinociceptive responses without signs of tolerance or dependence (Chen et al., 2007). Based on this finding and our observations, it is possible that naltrexone will paradoxically induce antinociceptive actions in individuals harboring the N190K polymorphism.

Genotype analysis of an ethnically diverse cohort revealed occurrence of the N190K mutation in African-Americans. It is of note that these individuals have significantly elevated HDL cholesterol levels. We regard this association to be hypothesis-generating. A relationship between reduced MOR signaling and HDL, a cardioprotective cholesterol carrier, is plausible in light of recent clinical trials showing that a combination drug including naltrexone and buproprion led to increased HDL levels (Greenway et al., 2009). Genetic studies in additional cohorts as well as more detailed clinical evaluation of individuals with the N190K mutation (e.g. assessment of nociception, susceptibility to addiction and lipid profile) will be needed to define the frequency and phenotypic/pharmacogenomic impact of this functionally abnormal MOR variant in the human population.
MOL #64188

References

KCNMB1 E65K against hypertension is restricted to blood pressure treatment with beta-blockade. *J Hum Hypertens*.

vasopressin type 2 receptor substitutions (R137H/C/L) leading to nephrogenic diabetes insipidus and nephrogenic syndrome of inappropriate antidiuresis: implications for treatments. *Mol Pharmacol* **77**:836-45.

Footnotes

This work was supported by the Fonds de la Recherche en Santé du Québec, the Canadian Institutes of Health Research (Fellowship Awards to J.-P.F.) and the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK072497).

Send reprint requests to Dr. Alan S. Kopin, 750 Washington Street, Box 7703, Boston, MA 02111; Tel.: 617-636-4834; Fax: 617-636-8692;

Email: akopin@tuftsmedicalcenter.org.
Legends for Figure

Fig. 1. A cartoon of the MOR illustrating the position of missense mutations within the receptor protein. Respective residues in the wild type protein are indicated by the single letter code.

Fig. 2. Selected MOR missense mutations alter DAMGO-induced signaling. HEK293 cells were transiently transfected with either the WT or a MOR isoform and a CRE6x-Luc reporter gene construct. Twenty-four hours post-transfection, cells were incubated for 6 hours with or without a saturating concentration of DAMGO (1μM) (A) or increasing concentrations of DAMGO (B) diluted in serum-free medium supplemented with 0.5μM forskolin. After stimulation, luciferase activity was quantified as described in **Materials and Methods**. All activity values were normalized relative to the forskolin-stimulated maximum at the WT MOR (100% activity). Data represent the mean ± S.E.M. from at least four independent experiments, each performed in triplicate. Significance, efficacy of mutant vs. wild-type MOR, analysis of variance followed by Dunnett's post-test; *, p < 0.05; **, p < 0.01.

Fig. 3. The N190K MOR missense mutation alters cell surface expression. Cell surface expression of HA-tagged MORs increases as a function of cDNA concentration. HEK 293 cells were transfected with increasing amounts of plasmid encoding either the wild type or a mutant HA-tagged MOR. After 48 hours, surface expression was measured by ELISA as described in **Materials and Methods**. Expression data are shown as a percentage of the maximal value observed at the wild type MOR (transfection of 16 ng cDNA/well). Each data point represents the mean ± SEM from at least 4 independent experiments, each performed in triplicate.
Significance, surface expression of WT versus mutant MOR; one-way analysis of variance with Dunnett’s post test. **, \(p < 0.01 \).

Fig. 4. Cells expressing the N190K variant display no specific \(^{3}\text{H}\)DAMGO surface binding sites. HEK293 cells plated onto 24 well plates were transiently transfected with either pcDNA1.1 or a plasmid encoding the WT MOR or N190K variant. Forty-eight hours after transfection, cells were washed and incubated for 3 hours at room temperature with the indicated concentrations of \(^{3}\text{H}\) DAMGO. Incubations were performed and terminated as described under *Materials and Methods*. Non specific binding, established using HEK293 cells transfected with the pcDNA1.1 plasmid, was subtracted from the total binding values measured at receptor expressing cells. Data represent the mean ± S.E.M. from three independent experiments, each performed in triplicate.

Fig. 5. Cell surface expression of the N190K mutant is enhanced by the small molecule antagonist naltrexone. HEK293 cells were transiently transfected with plasmid encoding an HA-tagged version of the WT or N190K MOR. Twenty-four hours later, cells were treated for 18 h with media containing vehicle or increasing concentrations (1 or 10\(\mu\)M) of naltrexone. The levels of surface expression of each HA-tagged receptor were assessed using ELISA as described under *Materials and Methods*. Data represent the mean ± S.E.M. from at least four independent experiments, each performed in triplicate. Significance, surface expression of vehicle-treated WT or mutant MOR versus antagonist treated cells; one-way analysis of variance with Dunnett’s post test. **, \(p < 0.01 \).
Fig. 6. Cell surface expression of the N190K mutant can be rescued by the small molecule naltrexone. HEK293 cells were transiently transfected with a plasmid encoding either an HA-tagged WT or N190K MOR. Twenty-four hours later, cells were treated for 18 h with media containing vehicle or 10 µM of naltrexone. The levels of surface expression of each HA-tagged receptor were visualized using confocal microscopy as described under Materials and Methods.

Fig. 7. Expression of a dominant dynamin mutant (DynK44N) fails to rescue surface expression of the N190K mutant. HEK 293 cells were transiently transfected with either plasmid encoding the HA-tagged WT MOR or N190K variant in combination with pcDNA1.1 or the DynK44N-encoding plasmid. DynK44N rescued agonist induced internalization of the WT MOR (A), however had no effect on the surface expression of the N190K variant either in the presence or absence of ligands (B). After twenty-four hours, cells were treated with media containing vehicle or 10 µM of the indicated ligands. Receptor surface expression levels of the receptors were assessed by ELISA as described under Materials and Methods. Data represent the mean ± S.E.M. from at least four independent experiments, each performed in triplicate. Significance, one-way analysis of variance with Dunnett's post test, surface expression of vehicle versus ligand treated cells, ** p < 0.01; surface expression in the absence versus presence of DynK44N, # p < 0.01

Fig. 8. Naltrexone, naloxone and buprenorphine display agonist activity at the N190K variant. HEK293 cells were transiently transfected with either the WT (A) or N190K (B) MOR isoform and a CRE6x-Luc reporter gene construct. Twenty-four hours post-transfection, cells were incubated for 18 hours with increasing concentrations of either DAMGO, naltrexone,
naloxone buprenorphine or CTAP together with 0.5μM forskolin. After stimulation, luciferase activity was quantified as described in *Materials and Methods*. DAMGO activates the WT MOR but has minimal if any effect at the N190K variant. Conversely, NTX and naloxone are strong agonists at the N190K variant but show minimal if any activity at the WT MOR. All activity values were normalized relative to the forskolin-stimulated maximum at the WT MOR (= 100%). Data represent the mean ± S.E.M. from at least four independent experiments, each performed in triplicate.
Table 1 Agonist potency at wild-type vs. mutant MORs

<table>
<thead>
<tr>
<th>Receptor</th>
<th>DAMGO EC\textsubscript{50} (nM)</th>
<th>pEC\textsubscript{50}</th>
<th>Endomorphin 1 EC\textsubscript{50} (nM)</th>
<th>pEC\textsubscript{50}</th>
<th>Leu-Enkephalin EC\textsubscript{50} (nM)</th>
<th>pEC\textsubscript{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>hMOR</td>
<td>1.8</td>
<td>8.82 ± 0.11</td>
<td>1.7</td>
<td>8.77 ± 0.02</td>
<td>4.2</td>
<td>8.44 ± 0.16</td>
</tr>
<tr>
<td>A6V</td>
<td>3.1</td>
<td>8.62 ± 0.16</td>
<td>2.1</td>
<td>8.69 ± 0.07</td>
<td>7.1</td>
<td>8.23 ± 0.23</td>
</tr>
<tr>
<td>N40D</td>
<td>1.7</td>
<td>8.87 ± 0.15</td>
<td>1.3</td>
<td>8.91 ± 0.07</td>
<td>4.0</td>
<td>8.47 ± 0.19</td>
</tr>
<tr>
<td>D51N</td>
<td>3.0</td>
<td>8.60 ± 0.13</td>
<td>1.7</td>
<td>8.79 ± 0.08</td>
<td>4.9</td>
<td>8.40 ± 0.20</td>
</tr>
<tr>
<td>G63V</td>
<td>1.4</td>
<td>8.95 ± 0.13</td>
<td>1.4</td>
<td>8.92 ± 0.11</td>
<td>5.8</td>
<td>8.46 ± 0.35</td>
</tr>
<tr>
<td>S66F</td>
<td>8.4</td>
<td>8.18 ± 0.14*</td>
<td>5.7</td>
<td>8.34 ± 0.13*</td>
<td>36.8</td>
<td>7.66 ± 0.31</td>
</tr>
<tr>
<td>S147C</td>
<td>6.2</td>
<td>8.29 ± 0.12</td>
<td>4.1</td>
<td>8.41 ± 0.08*</td>
<td>15.2</td>
<td>7.88 ± 0.17</td>
</tr>
<tr>
<td>N190K</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>R260H</td>
<td>25.6</td>
<td>7.77 ± 0.18**</td>
<td>6.3</td>
<td>8.26 ± 0.11**</td>
<td>22.7</td>
<td>7.70 ± 0.25**</td>
</tr>
<tr>
<td>R265C</td>
<td>18.1</td>
<td>7.79 ± 0.11**</td>
<td>5.4</td>
<td>8.30 ± 0.07**</td>
<td>36.4</td>
<td>7.52 ± 0.21*</td>
</tr>
<tr>
<td>R265H</td>
<td>12.7</td>
<td>7.95 ± 0.11**</td>
<td>8.4</td>
<td>8.14 ± 0.12**</td>
<td>28.2</td>
<td>7.61 ± 0.18*</td>
</tr>
<tr>
<td>S268P</td>
<td>6.9</td>
<td>8.21 ± 0.11*</td>
<td>4.2</td>
<td>8.41 ± 0.08*</td>
<td>14.2</td>
<td>7.86 ± 0.08</td>
</tr>
<tr>
<td>D274N</td>
<td>0.9</td>
<td>9.12 ± 0.13</td>
<td>0.6</td>
<td>9.31 ± 0.13**</td>
<td>2.7</td>
<td>8.63 ± 0.19</td>
</tr>
<tr>
<td>V293I</td>
<td>2.2</td>
<td>8.82 ± 0.18</td>
<td>1.7</td>
<td>8.84 ± 0.12</td>
<td>5.3</td>
<td>8.38 ± 0.24</td>
</tr>
</tbody>
</table>

All values represent the mean ± SEM from at least 5 independent experiments. Significance versus wild type MOR value: * p < 0.05, ** p < 0.01
Figure 1
Figure 2

A.

Luciferase Activity (Basal Activity WT = 100%)

- Vehicle
- DAMGO

B.

Luciferase Activity (Basal Activity WT = 100%)

- WT
- N40D
- N190K
- R265C
Figure 3

![Graph showing surface expression of receptors with varying cDNA concentrations.](image)
Figure 4

Specific Binding (fmol/well)

[3H-DAMGO], (nM)

MOR WT

N190K
Figure 5

![Graph showing surface expression data for different treatments.]

- **HA-WT/ Vehicle**
- **HA-WT/ NTX 1μM**
- **HA-WT/ NTX 10μM**
- **HA-N190K/ Vehicle**
- **HA-N190K/ NTX 1μM**
- **HA-N190K/ NTX 10μM**

Surface Expression (Max WT/vehicle = 100%)

[Receptor cDNA], (ng/well)

This article has not been copyedited and formatted. The final version may differ from this version.
Figure 6

Control +NTX 10µM

MOR WT

N190K
Figure 7

A. WT

Surface Expression (WT Vehicle Mock = 100%)

- pcDNA1.1
- Dyn K44N

B. N190K

Surface Expression (WT Vehicle Mock = 100%)

- pcDNA1.1
- DynK44N
Figure 8

A. WT

B. N190K