THE NOVEL UDP GLYCOSYLTRANSFERASE 3A2: CLONING, CATALYTIC PROPERTIES AND TISSUE DISTRIBUTION.

Peter I. Mackenzie, Anne Rogers, David J. Elliot, Nuy Chau, Julie-Ann Hulin, John O. Miners and Robyn Meech.

The Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
Running Title: UGT3A2 glycosidates xenobiotics with glucose and xylose.

Address correspondence to:

Peter I Mackenzie,
Department of Clinical Pharmacology, Flinders Medical Centre, Bedford Park, SA 5042, Australia.
Telephone: +61-8-82045394.
Fax: +61-8-82045114.
Email: Peter.Mackenzie@flinders.edu.au

Number of text pages: 25
Number of tables: 2
Number of figures: 5
Number of references: 29
Number of words in Abstract: 250
Number of words in Introduction: 685
Number of words in Discussion: 969

The abbreviations used are: HEK, human embryonic kidney; 4-MU, 4-methylumbelliferone; UDPGlcUA, UDP glucuronic acid; UDPXyl, UDP xylose; UDPGlc, UDP glucose; UDPGlcNAc, UDP N-acetylglucosamine; UGT, UDP glycosyltransferase.
ABSTRACT

The human UDP glycosyltransferase (UGT) 3A family is one of 3 families involved in the metabolism of small lipophilic compounds. Members of these families catalyze the addition of sugar residues to chemicals, which enhances their excretion from the body. The UGT1 and UGT2 family members primarily use UDP glucuronic acid to glucuronidate numerous compounds, such as steroids, bile acids, and therapeutic drugs. We recently showed that UGT3A1, the first member of the UGT3 family to be characterized, is unusual in utilizing UDP N-acetylglucosamine as sugar donor, rather than UDP glucuronic acid or other UDP sugar nucleotides (Mackenzie et al., 2008). Here we report the cloning, expression and characterization of UGT3A2, the second member of the UGT3 family. Like UGT3A1, UGT3A2 is inactive with UDP glucuronic acid as sugar donor. However, in contrast to UGT3A1, UGT3A2 utilizes both UDP glucose and UDP xylose, but not UDP N-acetylglucosamine to glycosidate a broad range of substrates including 4-methylumbelliferone, 1-hydroxypyrene, bioflavones and estrogens. It has low activity towards bile acids and androgens. UGT3A2 transcripts are found in the thymus, testis and kidney, but are barely detectable in the liver and gastrointestinal tract. The low expression of UGT3A2 in the latter, which are the main organs of drug metabolism, suggests that UGT3A2 has a more select role in protecting the organs in which it is expressed against toxic insult, rather than a more generalized role in drug metabolism. The broad substrate and novel UDP sugar specificity of UGT3A2 would be advantageous for such a function.
INTRODUCTION

Many lipophilic chemicals are metabolized to water-soluble products via β-linkage with hexose groups such as glucose, glucuronic acid, galactose and xylose (Mackenzie et al., 2005). The UDP glycosyltransferases (UGT) that catalyze these reactions use UDP-sugars as the donor, and functional groups including hydroxyl, carboxyl, amine, thiol and carbon groups on the lipophilic chemical as acceptor. Conjugation with hexose groups generally reduces the biological activity of the aglycone and facilitates its removal from cells and from the body in urine and bile (Meech and Mackenzie, 1997; Miners and Mackenzie, 1991; Miners et al., 2004; Radominska-Pandya et al., 1999; Tukey and Strassburg, 2000). This function of UGTs is central to their pivotal roles in protecting cells against the accumulation of lipophilic toxins and unwanted products of metabolism, and in modulating cell signaling pathways controlled by chemical ligands.

UDP glycosyltransferases are present in animals, plants and microorganisms (http://www.flinders.edu.au/medicine/sites/clinical-pharmacology/ugt-homepage.cfm). In general, it appears that UDP glucuronic acid is the preferred sugar donor for conjugation of lipophilic chemicals in vertebrates, whereas UDP glucose is the preferred sugar donor in invertebrates, plants and microorganisms. The human genome contains 4 UGT families. The UGT1 and UGT2 families contain 9 and 10 members, respectively. Characterization of the catalytic properties of all members of these two families (Mackenzie et al., 1997) shows that, although the substrate profile for each member is unique, some substrates are almost exclusively metabolized by one UGT whereas other substrates are metabolized by several UGTs (Miners et
This broad, overlapping substrate selectivity is well suited to a role in modulating the concentrations of chemicals in cells and hence in protecting organs and tissues against the toxic effects of chemical overload. The UGT1 and UGT2 families preferentially use UDP glucuronic acid as sugar donor to aid in the removal of a myriad of endogenous and xenobiotic compounds. In contrast, relatively little is known about the function of the UGT3 family, which consists of two members, UGT3A1 and UGT3A2. Recently, we have shown that UGT3A1 preferentially uses UDP N-acetylglucosamine in conjugation reactions with several substrates, including ursodeoxycholic acid and 17-estradiol (Mackenzie et al., 2008). However, the second member, UGT3A2 has not been characterized, although its similarity in sequence to UGT3A1 (78%) suggested that it was also a UDP N-acetylglucosaminyltransferase (Meech and Mackenzie, 2010). The fourth UGT family, UGT8, contains only one member which uses UDP galactose to galactosidate ceramide, a key step in the synthesis of brain sphingolipids (Bosio et al., 1996). This UGT appears not to be involved in xenobiotic metabolism, as other substrates for this UGT have not been identified.

In mammals, UGTs are located in the membranes of the endoplasmic reticulum and nuclear envelope. Each cell, tissue or organ expresses a specific sub-set of UGTs, which is appropriate for its role in regulating the concentrations of chemical toxins and/or ligands involved in cell signaling pathways. Commensurate with their dominant role in the metabolism and elimination of lipophilic compounds from the body, the liver, kidney and gastrointestinal tract contain most members of the UGT1 and UGT2 families. However, there are differences in UGT content between these organs, as exemplified by the presence of UGT1A7, 1A8 and 1A10 in the gastrointestinal tract and their absence from the liver and kidney (Mojarrabi and Mackenzie,
1998). Other organs and tissues generally contain lower amounts of UGT and/or have a more restricted complement of UGTs. They may also contain UGTs that are expressed poorly in the liver or gastrointestinal tract, for example, UGT2A1 and 2A2 which are mainly found in nasal mucosa (Sneitz et al., 2009). The selective expression of UGTs in a tissue or organ, in comparison to the liver, kidney and gastrointestinal tract, may reflect a special need for selective glucuronidating capacity in that tissue or organ. For example, UGT2A1 and 2A2 glucuronidate phenolic compounds (Sneitz et al., 2009), which may aid in odourant signal termination, and steroid-responsive breast, prostate and adipose tissues express the steroid-metabolizing UGT2B15 or 2B17 (Barbier and Belanger, 2008; Ohno and Nakajin, 2009), which have been shown to be involved in steroid-signal termination (Chouinard et al., 2008). Hence, characterization of both the catalytic properties and tissue distribution of all UGTs are important in elucidating their role in endogenous biochemistry, as well as in drug metabolism and toxicity.

Based on an analysis of the human genome, UGT3A2 is the last member of the UGT superfamily whose function and tissue distribution have not been characterized. Here we report the cloning and expression of UGT3A2 and demonstrate that it is a xenobiotic-conjugating enzyme with a broad substrate selectivity but a unique UDP sugar selectivity and tissue distribution.

MATERIALS AND METHODS

Materials- Radioactive and non-radioactive UDP-sugars were obtained from the following: [C-14]UDP-galactose, -glucuronic acid and -xylose (PelkinElmer), [C-14]UDP-
glucose and -N-acetylglucosamine (GE Healthcare), UDP-glucose, -glucuronic acid, -galactose, -N-acetylglucosamine (Sigma-Aldrich) and UDP-xylose (Carbosource Services). 4-MU-glucoside, -glucuronide, -galactoside and -xyloside were purchased from Sigma-Aldrich. All other reagents and solvents were of analytical reagent grade.

cDNA Cloning and expression- RNA from HEK293 cells was used as template to synthesize first strand cDNA with the Superscript™ First Strand Synthesis System (Invitrogen). The UGT3A2 coding region (GenBank reference number NM_174914) was amplified from this cDNA using the forward primer, 5′- AGCA{ATG}GCTGGGCAGCGAGTGCTT-3′ and the reverse primer, 5′-TGGGC{T}TTA{T}GTCTCCTTCACCTTT-3′. The UGT3A2 initiation and stop codons in the forward and reverse primers respectively, are in italics. PCR was performed in a volume of 50 μl with 200 ng cDNA, 0.5 μM of the forward and reverse primers and the DNA polymerase, Pfu Turbo (Stratagene). The cycling parameters consisted of one cycle at 95°C for 2 min, then 35 cycles of 95°C for 0.5 min, 60°C for 0.5 min, 72°C for 2 min followed by a single 5-min cycle at 72°C. After electrophoresis on a 1% agarose gel, PCR products were excised and purified from the gel using the QIAquick gel extraction kit (Qiagen), and subcloned into the pCR2.1 shuttle vector (Invitrogen) for sequencing. Sequencing revealed the presence of two species of UGT3A2 cDNA, a full length sequence corresponding to NM_174914 and a sequence missing exon 2, corresponding to GenBank accession number NM_001168316. Both cDNAs were cloned into the pEF-IRESpuro6 expression vector which contains a puromycin resistance gene (Hobbs et al., 1998). Expression vectors containing UGT3A2 in either the forward or reverse direction were transfected into human embryonic kidney (HEK293T) cells, and cell lines stably expressing UGT3A2 proteins were selected with puromycin (2 μg/ml). Expressed UGT3A2 was analyzed by Western blotting and enzyme activity assays.
Western blotting - Proteins in lysates from HEK293T cells stably expressing UGT3A cDNA were separated on SDS-polyacrylamide gels and transferred to nitrocellulose membranes as previously described (Mackenzie et al., 2008; Udomuksorn et al., 2007). UGT3A2 protein was detected with UGT3A2 antibody and a secondary goat anti-rabbit antibody conjugated with peroxidase (Neomarkers). Immunocomplexes were visualized with the Supersignal West Pico chemiluminescent kit (ThermoFisher Scientific). The UGT3A2 antibody was prepared using amino acids 71-124 as antigen. This region was amplified from the UGT3A2 expression vector by PCR with 5’-GTAGGATCCGAAAAATCATATCAAGTTATC-3’ and 5’-GTACTCGAGTCTTCCTCCTGAATAAAATGACTGCACTGCAACGC-3’ as the forward and reverse primers, respectively. The BamH1 and Xho1 sites of the forward and reverse primers respectively (underlined) were used to clone the PCR product into the pET23a bacterial expression vector, which introduces a 6-His C-terminal tag to proteins (Novagen). E.coli (BL21-DE3) was transformed with this construct and UGT3A2 antigen was purified on a Ni-NTA column (Qiagen). The purified antigen was used to prepare antibody in rabbits.

Quantitative PCR - The FirstChoice Human Total RNA Survey Panel of Ambion Inc was used as template to quantify levels of UGT3A2 transcripts in various human tissues with the Rotor-Gene 300 (Corbett Life Sciences) thermal cycler. The forward and reverse primers specific for UGT3A2 were 5’-CATATCAAGTTATCAGTTGCTTG-3 and 5’-ACTGCCTGCAACGCAAGTA-3’ which correspond to nucleotides 218-241 and 346-366 of UGT3A2, respectively. The cycling parameters consisted of one cycle at 95°C for 15 min, then 40 cycles of 95°C for 10 sec, 59°C for 15 sec and 72°C for 20 sec. UGT3A2 plasmid was used as standard to determine transcript copy number.
Enzyme assays - For assays to assess substrate preference, glycosidation reactions were performed as previously described (Mackenzie et al., 2008). Briefly, incubations at 37°C for 1 hr, contained 100 mM phosphate buffer, pH 7.5, 4 mM magnesium chloride, 100 μg HEK293T cell lysate, 200 μM aglycone and 2 mM [C-14]UDP sugar (0.1 μCi/mMole). Radioactive products were separated by thin layer chromatography (Mackenzie et al., 2008) and quantified by exposure to a Phosphor Screen (Molecular Dynamics), which was scanned with a Typhoon 9400 scanner (GE Healthcare). Standard curves with known amounts of [C-14]UDP-sugar were constructed to quantify product formation. All reactions were carried out under conditions to give linear rates with respect to incubation time and protein concentration.

Kinetic studies with 4-MU and each of the UDP-sugars employed the same incubation conditions as those described for the activity screening experiments, except the incubation time was 15 min and non-radiolabelled UDP-sugars were used. Rates of 4-MU glycoside formation were determined at 9 or 10 4-MU concentrations over the ranges 10-250 μM (UDP-glucose as cofactor) or 30-1000 μM (UDP-galactose and UDP-xylose as co-factors). UDP-glucose and UDP-xylose kinetics were also characterized with 4-MU (2 mM) as the fixed substrate; incubations included 9 UDP-sugar concentrations in the range 25-5000 μM. All incubations were performed in duplicate (<10% variance between duplicate samples). 4-MU glycoside concentrations in incubation samples from kinetic experiments were analyzed by HPLC. Chromatography was performed with an Agilent 1100 HPLC system fitted with a NovaPak C18 column (3.9 x 150 mm, 4 μm particle size; Waters Corporation) with UV detection at 316 nm. The mobile phase consisted of an aqueous component (A), 10 mM triethylamine (adjusted to pH 2.5 with perchloric acid) and 10% acetonitrile, and (B), acetonitrile. Mobile phase was delivered
at a flow rate of 1 mL/min. For 4-MU glucoside and 4-MU galactoside, initial conditions were 100% A:0% B held for 5.5 min, after which time the composition was changed to 65% A:35% B for 1 min before returning to the initial conditions. Retention times for 4-MU galactoside and 4-MU glucoside were 5.1 and 6.3 min, respectively. For 4-MU xyloside, initial conditions were 90% A:10% B held for 3 min, followed by 70% A:30% B for 1 min before returning to the initial conditions. The retention time for 4-MU xyloside was 2.5 min. The concentration of 4-MU conjugate was determined by comparison of peak areas with those of a calibration curve constructed under the same conditions using authentic individual 4-MU conjugates. As the formation of each 4-MU glycoside exhibited hyperbolic kinetics, kinetic constants were derived by fitting the Michaelis-Menten equation to experimental data (EnzFitter, Biosoft).

RESULTS

Cloning and expression of UGT3A2. The UGT3A family, consisting of two adjacent genes of 7 exons on chromosome 5p13.2, was first identified in databases of the Human Genome Project in 2000\(^1\). As initial studies using PCR screening of various cell lines with UGT3A2-specific primers revealed low levels of UGT3A2 mRNA in HEK293 cells (data not shown), this cell line was used to clone the UGT3A2 cDNA. Recombinant UGT3A2 protein, when over-expressed in HEK293 cells, has an apparent molecular mass of 53 kDa (Fig 1, lane 3). Despite low but detectable levels of endogenous UGT3A2 transcripts in HEK293 cells, UGT3A2 protein was not detected in untransfected cells (fig 1, lane 1), or in cells ectopically expressing UGT3A1 (used as a control to demonstrate the specificity of the UGT3A2 antibody) (Fig 1, lane 2). The recombinant UGT3A2del-exon2 protein, which is missing the 34 amino acids of exon 2,
also over-expressed by transfection of HEK293 cells. This shorter protein migrated with an apparent molecular mass of about 49 kDa (Fig 1, lane 4).

Catalytic properties of UGT3A2. The two members of the UGT3 family are 78% identical in sequence. As UGT3A1 uses UDP-N-acetylglucosamine as sugar donor, we initially explored the hypothesis that UGT3A2 may also function as a UDP N-acetylglucosaminyltransferase. However, preliminary screens with a variety of potential substrates and UDP N-acetylglucosamine did not reveal an activity for UGT3A2 (data not shown). Both proteins contain a signal peptide, signature sequence, transmembrane domain and putative ER retention signal (Fig. 2). A more detailed comparison between the amino acid sequences of the two UGT3A proteins revealed that the putative substrate-binding domain (residues 23-250) and UDP sugar-binding domain (residues 251-486) of the two proteins vary by 22% and 20%, respectively. This contrasts to members of the UGT1A and 2 families, where the putative substrate-binding domain is much less conserved than the putative UDP sugar-binding domain. In the UGT1A family, the putative UDP sugar-binding domain is identical between all 9 members of this family, whereas their putative substrate-binding domains often vary by >50%. Similarly, members of the UGT2B family have much less variation in their UDP sugar-binding domains, as exemplified by a comparison between UGT2B4 and UGT2B7, where their putative substrate-binding and UDP sugar-binding domains vary by 18% and 8%, respectively (data not shown). This unexpected large variation in the putative UDP sugar-binding domains of UGT3A1 and UGT3A2 in comparison to the UGT1A and UGT2 families, prompted us to investigate whether UGT3A2 may have the capacity to use other UDP sugars in conjugation reactions. Indeed, preliminary screens with other UDP sugars revealed that UDP glucose and UDP xylose were effective sugar donors in UGT3A2-catalyzed glycosidations (see below).
UGT3A2 was active in the glucosidation of several hydroxylated xenobiots including 4-MU, 1-hydroxypyrene, 7-hydroxycoumarin and 1-naphthol, and the bioflavones, naringenin, genistein and chrysin. It also glucosidated estrogens such as 17α-ethinylestradiol, 17β-estradiol and diethylstilbestrol. However, UGT3A2 was inactive towards androgens and bile acids with UDP-glucose as the co-factor (Table 1). UGT3A2 could also use UDP xylose to conjugate the above substrates (Table 1), but was inactive when UDP glucuronic acid and UDP N-acetylglucosamine were used as sugar donors (Fig. 3). Although UGT3A2 was active with UDP galactose as co-factor, its activity with this sugar donor was substantially less than with UDP glucose and UDP xylose. For example, the rates of 4-MU xylosidation and galactosidation were 60% and 2% respectively of that for glucosidation, when incubations were conducted with 2 mM UDP-sugar for 15 min at 37°C.

To further examine the enzymatic characteristics of UGT3A2, its relative glycosidation activity with the three separate cofactors (UDP-galactose, UDP-glucose and UDP-xylose) was characterised kinetically with 4MU as the aglycone using an HPLC method that measured formation of the individual galactoside, glucoside and xyloside conjugates. Formation of 4MU-galactoside, 4MU-glucoside and 4MU-xyloside followed hyperbolic kinetics that were well described by the single enzyme Michaelis-Menten equation (Fig. 4). Derived kinetic constants are given in Table 2. 4MU-glucoside formation exhibited both the lowest apparent Km and highest Vmax. Consequently, the intrinsic clearance (CLint, calculated as Vmax/Km) for 4MU-glucoside was 2.4- and 80-fold higher than the intrinsic clearances of 4MU-xyloside and 4MU-galactoside, respectively. It should be noted, however, that 4MU-glucoside was also detected as
a product in incubations of 4MU with UDP-galactose, presumably due to the presence of UDP-glucose as a contaminant in the commercial source of UDP-galactose. Thus, Km and Vmax values for 4MU-galactoside may be over- and under-estimated, respectively, as a consequence of competition by the contaminating cofactor.

UDP-glucose and UDP-xylose kinetics were additionally characterised with 4MU as the fixed substrate. Both followed weak negative cooperative kinetics, which were modelled by the Hill equation. Derived values of S50, Vmax and n (the Hill coefficient) were 357 ± 11 µM, 25480 ± 242 pmol/min.mg and 0.86 ± 0.01, respectively for UDP-glucose, and 631 ± 21 µM, 3100 ± 42 pmol/min.mg and 0.90 ± 0.01, respectively for UDP-xylose. UDP-galactose kinetics were not characterised due to presumed contamination with the alternate sugar donor UDP-glucose. It should be noted that UDP-glucuronic acid also exhibits negative cooperative kinetics with UGT1A9 and UGT2B7 as the enzyme sources and 4MU as the fixed substrate (Tsoutsikos et al., 2004).

In contrast to UGT3A2, cells transfected with UGT3A2del-exon2 cDNA synthesized a 49 kDa protein (Fig 1, lane 4), that was devoid of glycosidation activity. The UGT3A2del-exon2 variant is missing all 34 amino acids of exon 2, including H35, the presumptive catalytic base required for catalysis (Kubota et al., 2007; Kerdpin et al., 2009).

Distribution of UGT3A2. Transcripts encoding UGT3A2 were detected in human thymus, testis and kidney, as assessed by quantitative PCR using a panel of 20 normal human tissue samples, each of which contained a pool of RNA from 3 donors (Fig. 5). Only traces of transcript were detected in the liver, gastrointestinal tract and other tissue samples.
DISCUSSION

Although the substrate profile, catalytic properties and tissue distribution of most human UGTs have been extensively characterized, this is the first report describing the function and distribution of UGT3A2. In common with UGT1 and UGT2 enzymes, UGT3A2 has a molecular mass in the 50-60 kDa range and broad substrate specificity, with the capacity to glycosidate a range of xenobiotics, including 4-MU, the classic “universal” substrate of most UGT1 and UGT2 forms (Uchaipichat et al., 2004). The kinetic parameters for UGT3A2 catalyzed 4-MU-glucoside formation (Km, 82 μM and Vmax, 3.9 nmol/min.mg) are comparable to those of UGT1 and UGT2 enzymes for 4-MU glucuronidation, measured under similar assay conditions (e.g. Km or S50 values of 59, 78, 13 and 462 μM and Vmax values of 0.4, 82, 8.3, and 1.0 nmol/min.mg for UGT1A1, UGT1A6, UGT1A9 and UGT2B7, respectively) (Uchaipichat et al., 2004). UGT3A2 is also active towards estrogens, but has little activity towards androgens and bile acids. However, unlike the other human UGTs, UGT3A2 preferentially uses UDP glucose and UDP xylose as sugar donors in glycosidation reactions. The preference for these UDP sugars is unique to this enzyme, as the major sugar donors for the other human UGTs are UDP glucuronic acid (UGT1 and UGT2 forms), UDP N-acetylglucosamine (UGT3A1) and UDP galactose (UGT8). The apparent affinities of UGT3A2, assessed as S50 values, for UDP glucose (S50 of 357 μM) and UDP xylose (S50 of 631 μM) are in the same range as those of UGT1 and UGT2 forms towards UDP glucuronic acid (e.g. S50 of 88 μM for UGT1A9 and Km of 493 μM for UGT2B7) (Tsoutsikos et al., 2004).
Given that quite divergent UGTs, (e.g. UGT1A and UGT2B forms which may differ in sequence by >50%), have the same UDP sugar preference, the finding that two closely related members of the same UGT family have different UDP sugar specificities was unexpected. The functional significance of this is obscure, but in the case of UGT3A2, may relate to the possibility of preserving UDP glucuronic acid for glycosaminoglycan (GAG) synthesis. GAGs are synthesized in most body tissues and have important roles in controlling cell growth and differentiation during embryogenesis and in the adult (Prydz and Dalen, 2000). As the synthesis of these compounds is regulated by UDP glucuronic acid availability (Lind et al., 1999) (Spicer et al., 1998), there is the potential for competition between drug glucuronidation and GAG synthesis for the intracellular pool of UDP glucuronic acid. Indeed, this principle underlies the use of 4-MU as a potent inhibitor of GAG synthesis (Kakizaki et al., 2004; Rilla et al., 2005), as 4-MU glucuronidation diverts UDP glucuronic acid from GAG biosynthetic pathways. This competition may be especially intense in tissues that have low levels of UDP glucose dehydrogenase, the enzyme that synthesizes UDP glucuronic acid from UDP glucose. In this situation, UDP glucose may be abundant but UDP glucuronic acid limiting. It is interesting to note that the main UGT3A2-expressing organs, thymus, testis and kidney, have levels of UDP glucose dehydrogenase that are significantly lower (about 5-fold) than that of the liver and gastrointestinal tract (Spicer et al., 1998). Hence, the use of UDP glucose, rather than UDP glucuronic acid, to inactivate and eliminate lipophilic chemicals in the thymus, testis and kidney, would help preserve GAG synthesis and alleviate any competition for the UDP glucuronic acid pool. Moreover, as the concentration of UDP glucose is usually greater than UDP glucuronic acid in those cells where it has been measured (Gainey and Phelps, 1972), it is likely that glucosidation may be less subject to fluctuating levels of UDP sugars than glucuronidation in
extrahepatic tissues. Indeed, evidence that the supply of UDP glucuronic acid is rate limiting for androgen glucuronidation in the prostate has been provided (Wei et al., 2009).

In contrast to most members of the UGT1 and UGT2 families, UGT3A2 mRNA is not found in two of the major organs of drug metabolism, the liver and gastrointestinal tract, but is found in the kidney, thymus and testis, as mentioned previously. Many members of the UGT1 and UGT2 families are expressed in the kidney, at much higher levels than UGT3A2. These include UGT1A6, UGT1A9 and UGT2B7, whose mRNA levels are about 20-, 150- and 120-fold greater than those of UGT3A2, respectively, based on data for these UGTs relative to levels of GAPDH (Ohno and Nakajin, 2009). Hence it is unlikely that UGT3A2 contributes significantly to glycosidation of lipophilic chemicals in this organ. However, UGT3A2 is expressed at higher amounts than other UGTs in thymus and testis. Only UGT1A5, UGT2B4 and UGT2B7 have been detected in thymus (Ohno and Nakajin, 2009), but these are at levels about 31-, 9- and 7-fold less than that of UGT3A2. Testis contains equivalent amounts of UGT3A2 and UGT2B15, but 18- and 35-fold less UGT2B4 and UGT2B17, respectively. The exact role of UGT3A2 in the thymus and testis is unknown, but is most likely protective in nature, although a specific role in modulating ligand concentrations in signaling pathways cannot be excluded.

Finally, the discovery that UGT3A1 and UGT3A2 have divergent UDP sugar preferences provides a unique opportunity to identify the amino acids involved in UDP sugar selection, via site directed mutagenesis and analyses of chimeras of these two closely related UGTs. This approach is currently being pursued in our laboratory.
In summary, we demonstrate that UGT3A2 is a novel UDP glycosyltransferase with a unique UDP sugar selectivity, in that it has the capacity to covalently attach glucose and xylose to many foreign chemicals and estrogen-like compounds. Its high expression in the thymus and testis and its poor expression in the liver and gastrointestinal tract suggest a unique role for this enzyme in drug metabolism. Further substrate characterization and a more detailed examination of the expression of UGT3A2 in cells within the thymus and testis may help clarify this role.
AUTHORSHIP CONTRIBUTIONS.

 Participated in research design: Mackenzie, Miners, Meech.

 Conducted experiments: Mackenzie, Rogers, Elliot, Chau, Hulin, Meech.

 Performed data analysis: Mackenzie, Rogers, Elliot, Chau, Hulin, Miners, Meech.

 Wrote or contributed to writing of the experiments: Mackenzie, Meech, Miners, Elliot.
REFERENCES

Kerdpin O, Mackenzie PI, Bowalgaha K, Finel M and Miners JO (2009) Influence of N-terminal domain histidine and proline residues on the substrate selectivities of human UDP-

FOOTNOTES

This work was supported by the National Health and Medical Research Council of Australia.

PIM is a NHMRC Senior Principal Research Fellow.

1Presented at the 10th International Workshop on Glucuronidation and the UDP glucuronosyltransferases, Hyogo, Japan. 2001.
FIGURE LEGENDS

Fig. 1. **Expression of UGT3A in HEK293T cells.** Lysates of HEK293 cells transfected with UGT3A1, UGT3A2 and UGT3A2del-exon2 cDNAs were examined by Western blotting with an antibody specific for UGT3A2. The presence of UGT3A2 and UGT3A2del-exon2 protein is denoted by arrows. The molecular weight markers are indicated on the left of the figure.

Fig. 2. **Comparison of UGT3A1 and UGT3A2 protein sequences.** UGT3A2 is aligned above UGT3A1 and identical residues are indicated by an asterisk. The signal peptide and putative transmembrane regions are highlighted in grey. The lysine residues of the C-terminal dilysine motif are in bold and underlined. The signature sequence, which defines the UGT superfamily, is highlighted in bold.

Fig. 3. **UDP-sugar selectivity of UGT3A2.** Various UDP sugars were used as co-substrates in the glycosidation of 4-MU by lysates of HEK293T cells transfected with UGT3A2 cDNA in the forward (+) and reverse (-) orientations. An autoradiograph of the TLC plate containing 4-MU conjugates and unreacted UDP sugar and/or its breakdown products from assays with 250 μM substrate and 0.5 mM [C-14]UDP sugars is shown. Equal amounts of radiolabeled UDP sugar (0.4 μCi/mMole) were used in each reaction.

Fig. 4. **Kinetic plots for 4-MU glycosidation by UGT3A2.** Rates of conjugate formation verses substrate concentration plots with UDP-glucose, UDP-xylose and UDP-galactose as co-
factor are shown. Points (mean of duplicate estimates) are experimentally derived values while curves are from model fitting.

Fig. 5 **Tissue distribution of UGT3A2.** Levels of UGT3A2 RNA in different tissues as represented by a human tissue RNA panel were quantified as in Experimental Procedures. The copies of UGT3A2 mRNA per copy of glyceraldehyde phosphate dehydrogenase (GAPDH) transcript in each tissue are shown.
Table 1. **Substrates of UGT3A2 expressed in HEK293T cells.** UGT3A2 activities were assayed as in Materials and Methods. Activities are given as pmol/min/mg lysate protein. +, low activity detected but not quantifiable by the TLC method; -, no activity; nd, not determined.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Activity with UDP glucose</th>
<th>Activity with UDP xylose</th>
<th>Activity with UDP glucose</th>
<th>Activity with UDP xylose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xenobiotic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycophenolic acid</td>
<td>453</td>
<td>607</td>
<td>4-Methylumbelliferone</td>
<td>959</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>-</td>
<td>nd</td>
<td>1-Hydroxyphenone</td>
<td>865</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>-</td>
<td>nd</td>
<td>7-Hydroxycoumarin</td>
<td>760</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>-</td>
<td>nd</td>
<td>8'-Hydroxyquinoline</td>
<td>594</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>-</td>
<td>nd</td>
<td>1-Naphthol</td>
<td>570</td>
</tr>
<tr>
<td>Ketoprofen</td>
<td>-</td>
<td>nd</td>
<td>4-Nitrophenol</td>
<td>225</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>-</td>
<td>nd</td>
<td>Phenolthalein</td>
<td>21</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>-</td>
<td>nd</td>
<td>(-)-Borneol</td>
<td>-</td>
</tr>
<tr>
<td>Bioflavones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naringenin</td>
<td>842</td>
<td>470</td>
<td>17α-Ethinylestradiol</td>
<td>104</td>
</tr>
<tr>
<td>Genistein</td>
<td>659</td>
<td>523</td>
<td>17β-Estradiol</td>
<td>86</td>
</tr>
<tr>
<td>Chrysir</td>
<td>403</td>
<td>352</td>
<td>Diethylstilbestrol</td>
<td>66</td>
</tr>
<tr>
<td>Isorhamnetin</td>
<td>358</td>
<td>nd</td>
<td>Estrone</td>
<td>44</td>
</tr>
<tr>
<td>Biochanin A</td>
<td>278</td>
<td>246</td>
<td>Estriol</td>
<td>39</td>
</tr>
<tr>
<td>Acacetin</td>
<td>257</td>
<td>nd</td>
<td>17α-Estradiol</td>
<td>32</td>
</tr>
<tr>
<td>Diadzein</td>
<td>235</td>
<td>nd</td>
<td>Androsterone</td>
<td>-</td>
</tr>
<tr>
<td>Formononetin</td>
<td>100</td>
<td>nd</td>
<td>Testosterone</td>
<td>-</td>
</tr>
<tr>
<td>4'-Hydroxyflavanone</td>
<td>39</td>
<td>nd</td>
<td>Dihydrotestosterone</td>
<td>-</td>
</tr>
<tr>
<td>2'-Hydroxyflavanone</td>
<td>33</td>
<td>nd</td>
<td>3'-Hydroxyflavanone</td>
<td>-</td>
</tr>
<tr>
<td>Primuletin</td>
<td>28</td>
<td>nd</td>
<td>Ursodeoxycholic acid</td>
<td>-</td>
</tr>
<tr>
<td>Baicalein</td>
<td>-</td>
<td>nd</td>
<td>Chenodeoxycholic acid</td>
<td>-</td>
</tr>
<tr>
<td>Epigallocatechin gallate</td>
<td>-</td>
<td>nd</td>
<td>Lithocholic acid</td>
<td>-</td>
</tr>
<tr>
<td>Morin</td>
<td>-</td>
<td>nd</td>
<td>Hyodeoxycholic acid</td>
<td>-</td>
</tr>
<tr>
<td>4'-Hydroxyflavone</td>
<td>+</td>
<td>nd</td>
<td>α-muricholic acid</td>
<td>-</td>
</tr>
<tr>
<td>2'-Hydroxyflavone</td>
<td>+</td>
<td>nd</td>
<td>3'-Hydroxyflavone</td>
<td>-</td>
</tr>
<tr>
<td>Kaempferol</td>
<td>+</td>
<td>nd</td>
<td>β-muricholic acid</td>
<td>-</td>
</tr>
<tr>
<td>Quercetin</td>
<td>-</td>
<td>nd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luteolin</td>
<td>+</td>
<td>nd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epichatechin</td>
<td>-</td>
<td>nd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This article has not been copyedited and formatted. The final version may differ from this version.
Table 2. Derived kinetic parameters for 4-MU-galactoside, 4-MU-glucoside and 4-MU-xyloside formation

<table>
<thead>
<tr>
<th>UDP-sugar</th>
<th>Product</th>
<th>K_m (µM)</th>
<th>V_{max} (pmol/min.mg)</th>
<th>CL_{int} (µl/min.mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP-galactose</td>
<td>4-MU-gal</td>
<td>348±21</td>
<td>208±5</td>
<td>0.6</td>
</tr>
<tr>
<td>UDP-glucose</td>
<td>4-MU-glu</td>
<td>82±1</td>
<td>3918±26</td>
<td>48</td>
</tr>
<tr>
<td>UDP-xylose</td>
<td>4-MU-xyl</td>
<td>116±5</td>
<td>2332±34</td>
<td>20</td>
</tr>
</tbody>
</table>

*a Data presented as parameter ± standard error of the parameter fit.
Figure 2

3A2 61 GFFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDDFLFEETLGGGRKGFENLNLNVLEYLALQ
3A1 61 KFLIDIKEEKSYQVTRIFSPEDHQKRIKIKHDYETETALDRKKESEALVKLMBIFGTQ

3A2 121 CSYLLSKRDMLSDLKNENFDMLVIEETFDCPLIAEKGLKFPVAILTISTSFGSLFEGLPIP
3A1 121 CSYLLSRKDMLSDLKNENYLDVFVEAFDFCSFLAEKLVKFPVAILLPTTFSGSLFEGLPS

3A2 181 LSYVFPVFSSLLTDHMDFWGRVKNFMLMFFSFCRRQQHMQSTFDNTIKEHEFTGESRPVLSHL
3A1 181 LSYVFVFPSLLTDHMDFWGRVKNFMLMFFSFSRSQWDMQSTFDNTIKEHEFPEGSRPVLSHL

3A2 241 LKLAEILWFINSDFAFDFARPLLNPNTVYVVGLMEKPIKPVPQDLLENFIAKPEDSGVVLVTLL
3A1 241 LKLAEILWFTNSDFAFDFARPLLNPNTVYVIGLMEMKPIKPVPQDLNFTIANFVGAEGFVLFVAF

3A2 301 GSMLNTGQSQEVLLKKGNAFAHLPGQVTKVCQGSHEKPKVDHLALANYVQIDWELPGSDLLAH
3A1 301 GSMLNHQSQEVLLKKGNAFAHLPGQVNTCQSSHHPRDVCHELATNVKIVDWWLPGSDLLAH

3A2 361 PSIRLFVTHGGQNSIMEAIQGHGVPVMGIFLFDQEPENMRVEAAKGGVTIQLLKLHAKTL
3A1 361 PSIRLFVTHGGQNSVMEATRHGVPVMGIPVNGDQHGMNVRVAKNYGVISILNQVTADTL

3A2 421 ALMKQIMEKDARYKSAAVAAASVLRSHPPLTHQGLWLQDRDHIVALHTGATHLKPYYFQQPW
3A1 421 TLMKQVIEKDARYKSAVAAASCVLHSEPLSAPQRLWIRDHILQTGATHLKPYYFQQPW

3A2 481 HEQYLLDVFVFLLGLTGLTGLWLCGKLRLGMAVWWLRGARKVYKET
3A1 481 HEQYLLDVFVFLLGLTGLTGLWLCGKLRLGVARLWLRGARKVYKET
Figure 3

4MU conjugates
Figure 4
Figure 5

[Bar chart showing gene expression levels for different tissues.]