Identification of a novel allosteric binding site in the CXCR2 chemokine receptor

Petra de Kruijf, Herman D. Lim, Luc Roumen, Véronique A. Renjaän, Jiuqiao Zhao, Maria L. Webb, Douglas S. Auld, Jac. C.H.M. Wijkmans, Guido J.R. Zaman, Martine J. Smit, Chris de Graaf and Rob Leurs

Running Title Page

Running title:

Binding pocket imidazolylpyrimidine compound at CXCR2

Corresponding author:

Rob Leurs, Leiden/Amsterdam Center of Drug Research, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, Telephone 0031205987579, Fax 0031205987610, R.Leurs@few.vu.nl

Number of:

Text pages: 39
Tables: 5
Figures: 8
References: 40
Words in abstract: 244
Words in introduction: 686
Words in discussion: 1451

Non-standard abbreviations:

Compound 1: (S)-2-(2-(1H-imidazol-1-yl)-6-(octylthio)pyrimidin-4-ylamino)-N-(3-ethoxypropyl)-4-methylpentanamide, **SB265610**: 1-(2-bromophenyl)-3-(4-cyano-1H-benzo[d][1,2,3]triazol-7-yl)urea, **SCH527123**: 2-hydroxy-N,N-dimethyl-3-([(R)-1-(5-methyl-furan-2-yl)-propyl]amino)-3,4-dioxo-cyclobut-1-enylamino)-benzamide, **reptaxin**: R(-)-2-(4-isobuthylphenyl) propionyl methanesulfonamide, **IT1t**: 1,3-Dicyclohexyl-2-(3-methyl-6,6-dimethyl-5,6-dihydrimidazo[1,2-b] thiazole)-2-thiopseudourea, **(R) ketoprofen**: (R)-2-(3-benzoarylphenyl)propanoic acid
Abstract

We have previously shown that different chemical classes of small molecule antagonists of the human chemokine CXCR2 receptor interact with distinct binding sites of the receptor (de Kruijf et al., 2009). While an intracellular binding site for diarylurea CXCR2 antagonists, like SB265610, and thiazolopyrimidine compounds was recently mapped by mutagenesis studies (Nicholls et al., 2008; Salchow et al., 2010), we now report on an imidazolylpyrimidine antagonist binding pocket in the transmembrane domain of CXCR2. Using different CXCR2 orthologs, chimeric proteins, site-directed mutagenesis and in silico modeling, we have elucidated the binding mode of this antagonist. Our in silico guided mutagenesis studies indicate that the ligand binding cavity for imidazolylpyrimidine compounds in CXCR2 is located between transmembrane (TM) helices 3 (F130^{3.36}), 5 (S217^{5.44}, F220^{5.47}), and 6 (N268^{6.52}, L271^{6.55}) and suggest that these antagonists enter CXCR2 via the TM5-TM6 interface. Interestingly, the same interface is postulated as the ligand entry channel in the opsin receptor (Park et al., 2008) and is occupied by lipid molecules in the recently solved crystal structure of the CXCR4 chemokine receptor (Wu et al., 2010), suggesting a general ligand entrance mechanism for nonpolar ligands to G protein-coupled receptors (GPCRs). The identification of a novel allosteric binding cavity in the TM domain of CXCR2, in addition to the previously identified intracellular binding site, shows the diversity in ligand recognition mechanisms by this receptor and offers new opportunities for the structure-based design of small allosteric modulators of CXCR2 in the future.
Introduction

The chemokine receptor CXCR2 belongs to the rhodopsin-like family of G-protein coupled receptors (GPCRs) (Murphy et al., 2000). It is expressed on endothelial cells and on different inflammatory cells such as eosinophils, natural killer cells, neutrophils, macrophages, mast cells and monocytes (Kraneveld et al., 2011; Murphy et al., 2000). CXCR2 interacts with the chemokines CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7 and CXCL8. Upon production of these chemokines, CXCR2 is responsible for the transmigration of inflammatory cells towards sites of inflammation. Several in vivo studies have shown an important role for CXCR2 in inflammatory diseases like atherosclerosis (Boisvert et al., 1998), chronic obstructive pulmonary disease (Chapman et al., 2007), rheumatoid arthritis (Podolin et al., 2002), inflammatory bowel disease (Ajuebor et al., 2004; Buanne et al., 2007) and multiple sclerosis (Liu et al., 2010). Furthermore, the expression of CXCR2 is increased in psoriatic epidermis (Kulke et al., 1998) and in bronchial biopsies of chronic obstructive pulmonary disease patients (Qiu et al., 2003). These studies indicate that CXCR2 is an interesting drug target. In view of this therapeutic potential, different CXCR2 antagonists are being developed (see e.g. (Baxter et al., 2006; Ho et al., 2006; Li et al., 2003; Widdowson et al., 2004)). Amongst them, SCH-527123 and repertaxin are currently in phase II clinical trial (ThomsonPharma database; http://partnering.thomson-pharma.com).

Previously, we investigated in detail the mechanism of action of CXCR2 antagonists that belong to the diarylurea, imidazolylpyrimidine and thiazolopyrimidine classes (de Kruijf et al., 2009). Using the tritium labeled diarylurea [3H]-SB265610, we discovered that small molecule CXCR2 antagonists of different classes bind to distinct binding sites. The imidazolylpyrimidine compounds (like compound 1, see Fig. 1) were not able to displace [3H]-SB265610, while the diarylurea (like SB255610, see Fig. 1) and thiazolopyrimidine compounds could compete for [3H]-SB265610 binding. Recently, two groups have provided evidence that compounds belonging to the diarylurea and thiazolopyrimidine class most likely bind intracellularly to CXCR2 (Nicholls et al., 2008; Salchow et al., 2010). The binding site of
imidazolylpyrimidine CXCR2 antagonists remained to be investigated. Recently, the first chemokine receptor crystal structures have been solved (Wu et al., 2010). These structures show overlapping but distinct binding pockets in the TM binding domain of CXCR4 for the small molecule antagonist IT1t and the cyclic peptide CVX15. Furthermore, site-directed mutagenesis studies with various chemokine receptors demonstrated that compounds can bind either in the minor subpocket (between transmembrane (TM) helices 1, 2, 3, and 7) or in the major subpocket (between TM3, 4, 5, 6, and 7) (Scholten et al., 2011). The primary aim of the current study was to probe the binding site of compound 1 in the TM binding domain.

Animal models are still crucial to investigate the therapeutic potential of compounds. Translating the results of animal studies to humans can however be hampered by differences between receptor orthologs. Species-related differences in the sequences of protein targets ('natural mutants') have previously been used to identify the molecular determinants of ligand binding to GPCRs (Lim et al., 2010; Milligan, 2011; Reinhart et al., 2004). Species differences have also been observed for CXCR2. While imidazolylpyrimidine compounds like compound 1 (Fig. 1) are potent antagonists of human CXCR2, these compounds have no affinity for rodent CXCR2 receptors (J.C.H.M.W., M.L.W., D.S.A., unpublished data). Human CXCR2 has a significantly higher homology to primate CXCR2 orthologs (89-100%) (Fig. 3A) than to rodent CXCR2 receptors (71−81%). Therefore, to investigate the possibilities to circumvent species difference problems in preclinical animal studies, CXCR2 orthologs of different primate species (rhesus, cynomolgus, vervet, baboon, chimpanzee, gorilla and orangutan) were cloned and pharmacologically characterized. Surprisingly, some of the primate orthologs also have a significantly lower affinity for compound 1, despite their high sequence homology to human CXCR2. To investigate the molecular determinants of the binding of imidazolylpyrimidine compound 1 in more detail, we used various chimeric constructs of the human and baboon CXCR2 and site-directed mutagenesis in combination with in silico modeling to propose the TM binding mode for the imidazolylpyrimide compound 1. The current study describes the elucidation of the binding mode of the imidazolylpyrimide
compound 1 at the human CXCR2 receptor by this systematic, in silico guided mutagenesis approach.
Materials and Methods

Materials

Dulbecco's modified Eagle's medium (DMEM), penicillin and streptomycin were obtained from PAA Laboratories (Pasching, Austria). Fetal bovine serum was purchased from Integro B.V. (Dieren, The Netherlands). Linear 25-kDa polyethylenimine (PEI) was obtained from Polysciences (Warrington, PA, USA) whereas branched 750-kDa PEI was purchased from Sigma (St. Louis, MO). Bovine Serum Albumin Fraction V (BSA) was obtained from Roche (Mannheim, Germany). Na125I and [35S]-GTP\textsubscript{γ}S were purchased from PerkinElmer Life Sciences (Boston, MA, USA) and CXCL8 was either obtained from PeproTech (Rock Hill, NJ, USA) or a kind gift from Dr. T. Sparer (University of Tennessee, Knoxville, USA). The CXCR2 antagonists 1-(2-bromophenyl)-3-(4-cyano-1\textsubscript{H}-benzo[\text{d}][1,2,3]triazol-7-yl)urea (SB265610, (Bizzarri et al., 2006)) and (S)-2-(2-(1\textsubscript{H}-imidazol-1-yl)-6-(octylthio)pyrimidin-4-ylamino)-N-(3-ethoxypropyl)-4-methylpentanamide (compound 1, (Erickson et al., 2004; Ho et al., 2006)) were synthesized at Merck Research Laboratories (MSD, Oss, The Netherlands). Oligonucleotide primers for PCR were synthesized by Biolegio (Nijmegen, The Netherlands). *Pfu* DNA polymerase, T\textsubscript{4} DNA ligase and endonuclease restriction enzymes were all from MBI Fermentas (St. Leon-Rot, Germany).

DNA Constructs and Site-Directed Mutagenesis

The wild-type human CXCR2 cloned in pcDNA3.1+ (Genbank ACC # P25025) was purchased from the Missouri S&T cDNA Resource Center (Rollo, MO). The CXCR2 receptors from baboon (Genbank ACC # Q8HZN3), chimpanzee (Genbank ACC # Q28807), gorilla (Genbank ACC # Q8HZN7), orangutan (Genbank ACC # Q8HZN6), rhesus (GenBank ACC# Q8HZN5) and vervet (Genbank ACC # Q8HZN4) were cloned and characterized as described by Horlick and co-workers (Horlick et al., 2006). Briefly, baboon, chimpanzee, gorilla and orangutan genomic DNA were isolated from lymphoblast cells, whereas vervet genomic DNA was isolated from a liver biopsy specimen obtained from Dr.
Frank Ervin (Caribbean Primates Ltd., Caribbean Primates Ltd., Madison). Next, polymerase chain reaction (PCR) was used to amplify the coding sequences of these orthologs. Rhesus genomic DNA was purchased from Clonetech (Palo Alto, Calif). The cDNA of cynomolgus CXCR2 (Hipkin et al., 2004) was made by PCR mutagenesis of rhesus CXCR2 residues, including E2Q/L9F/K11E/G12N in the N-terminus and L228F at the bottom of transmembrane V.

Chimeric receptor constructs were created by exchanging the domains between residue Lys1203.26 (EcoN1 restriction site in the cDNA) and residue Arg2125.39 (BamHI restriction site in the cDNA) of the human CXCR2 (see Figure 3B) with that of the baboon CXCR2 or vice versa, resulting in the chimeric receptors HHB (human-human-baboon), BBH (baboon-baboon-human), HBB (human-baboon-baboon), BHH (baboon-human-human), HBH (human-baboon-human) and BHB (baboon-human-baboon). Site-directed mutagenesis was performed by PCR with the use of DNA primers with single-, double- or triple-base mismatches, resulting in a codon change for the desired amino acid substitution. The correct sequence of all DNA constructs was confirmed by sequencing analysis (Macrogen, Amsterdam, The Netherlands).

Cell Culturing and Transfection

COS-7 cells were grown at 5% CO₂ and 37°C in Dulbecco’s modified Eagle’s medium supplemented with 5% (v/v) fetal bovine serum, 50 IU/ml penicillin and 50 μg/ml streptomycin. Cells were transiently transfected (per 10 cm dish) with 2.5 μg of cDNA encoding the receptor supplemented with 2.5 μg of pcDNA by using linear polyethyleneimine (PEI) with a molecular weight of 25 kDa. In brief, 5 μg of total DNA was diluted in 250 μl 150 mM NaCl. Next, 30 μg of PEI in 250 μl of 150 mM NaCl was added to the DNA solution. This mixture was incubated for 5 to 10 min at room temperature before it was added onto subconfluent COS-7 monolayer.
Membrane preparation

Two days after transfection, cells were detached from the plastic surface using ice-cold phosphate-buffered saline (PBS) and centrifuged at 1500g for 10 min at 4°C. Next, the pellet was resuspended in the ice-cold PBS and centrifuged again at 1500g for 10 min at 4°C. Later, cells were resuspended in ice-cold membrane buffer (15 mM Tris, 1 mM EGTA, 0.3 mM EDTA, and 2 mM MgCl2, pH 7.5), followed by homogenization by 10 strokes at 1100 to 1200 rpm using a Teflon-glass homogenizer and rotor. The membranes were subjected to two freeze-thaw cycles using liquid nitrogen, followed by centrifugation at 40,000g for 25 min at 4°C. The pellet was rinsed once with ice-cold Tris-sucrose buffer (20 mM Tris and 250 mM sucrose, pH 7.4) and subsequently resuspended in the same buffer and frozen at -80°C until use. Protein concentration was determined using a BCA-protein assay (Thermo Scientific, Rockford, USA).

Radioligand binding assays

Membranes were incubated in 96-well plates in binding buffer (50 mM Na2HPO4 and 50 mM KH2PO4, pH 7.4) supplemented with 0.5% BSA, approximately 100 pM [125I]-CXCL8 and indicated concentrations of CXCL8 or CXCR2 antagonist in a final volume of 100 μl. The reaction mixtures were incubated for 1 hour at room temperature, harvested with rapid filtration through Unifilter GF/C 96-well filterplates (PerkinElmer, USA) pretreated with 0.3% polyethylenimine and washed three times with ice-cold wash buffer (50 mM Na2HPO4 and 50 mM KH2PO4, pH 7.4). Bound radioactivity was determined using a MicroBeta (PerkinElmer, USA). Binding data were evaluated by a non-linear curve fitting procedure using GraphPad Prism 4.0 (GraphPad Software, inc., San Diego, CA). Ligand affinities (pKᵢ) from competition binding experiments were calculated from binding IC₅₀ using the Cheng-Prusoff equation (Cheng and Prusoff, 1973).
[35S]-GTP\textsubscript{\gamma}S binding assay

Membranes were incubated in 96-well plates in assay buffer (50 mM Hepes, 10 mM MgCl\textsubscript{2}, 100 mM NaCl, pH 7.2) supplemented with 5 µg saponin/well, 3 µM GDP and approximately 400 pM of [35S]-GTP\textsubscript{\gamma}S and indicated concentrations of CXCL8 in a final volume of 100 µl. When CXCR2 antagonists were applied to EC\textsubscript{80} concentration of CXCL8, membranes were pre-incubated for 30 min at room temperature. The reaction mixtures were incubated for 1 hour at room temperature, harvested with rapid filtration through Unifilter GF/B 96-well filterplates (PerkinElmer, USA) and washed three times with ice-cold wash buffer (50 mM Tris-HCl and 5 mM MgCl\textsubscript{2}, pH 7.4). [35S]-GTP\textsubscript{\gamma}S incorporation was determined using a Microbeta scintillation counter (Perkin Elmer, USA). Functional data were evaluated by a nonlinear curve fitting procedure using GraphPad Prism 4.0 (GraphPad Software Inc.).

Whole cell-based enzyme-linked immunosorbent assay (ELISA)

One day after transfection, cells were trypsinised and seeded in poly-l-lysine coated 48-well plates (50,000 cells/well). After 24 hours, cells were fixed with 4% formaldehyde in TBS (50 mM Tris, 150 mM NaCl, pH 7.5). Next, cells were washed with TBS and permeabilized with 0.5% Nonidet P40 (NP-40) in TBS for 30 min (or TBS was added when permeabilization was not required). After blocking of 4 hours with 1% skim milk in 0.1M NaHCO\textsubscript{3} (pH 8.6), cells were incubated overnight at 4°C with anti-hCXCR2 antibody (R&D systems, Minneapolis, MN, USA) in TBS containing 0.1% BSA. The next day, cells were washed three times with TBS and incubated with goat anti-mouse horseradish peroxidase secondary antibody (Bio-Rad Laboratories, Hercules, CA, USA) for 2 hours. Subsequently, cells were incubated with substrate buffer (2 mM o-phenylenediamine, 35 mM citric acid, 66 mM Na\textsubscript{2}HPO\textsubscript{4} and 0.015% H\textsubscript{2}O\textsubscript{2}, pH 5.6). The colouring reaction was stopped by adding 1M H\textsubscript{2}SO\textsubscript{4}. Finally the absorbance at 490 nM was determined using a Powerwave X340 absorbance plate reader (BioTek).
Residue numbering and Nomenclature

The Ballesteros-Weinstein residue number (Ballesteros and Weinstein, 1995) is given as superscript throughout the article for the enumeration of GPCR transmembrane helix residues in addition to the UniProt number (UniProt, 2011). The residues inside the extracellular loops are enumerated based on the Ballesteros and Weinstein numbering of the preceding transmembrane helix.

Construction CXCR2 in silico model

A three-dimensional model of the CXCR2 receptor was built with MOE version 2009.10 (Chemical Computing Group Inc, Montreal, Canada) based on the recently elucidated crystal structure of its family member, the chemokine receptor CXCR4 solved with a small molecule (pdb code: 3ODU, (Wu et al., 2010)). To this end, the primary sequence of CXCR2 (Genbank ACC # P25025) was aligned to that of the crystal structure of CXCR4, disregarding the fused T4 lysozyme (Suppl. Fig. 1). The N-terminal residues 1-37 were omitted from model construction due to a lack of crystal data. Furthermore, due to the disordered region in the CXCR4 structure, the C-terminal residues 315-330 corresponding to half of TM7 and intracellular helix 8 of CXCR2 were modeled based on the crystal structure of human adrenergic beta 2 (ADRB2, pdb code 2RH1, (Cherezov et al., 2007)).

Protein-ligand interactions

Compound 1 was docked into the CXCR2 model using the program GOLD v4 (Verdonk et al., 2003). The docking was specifically aimed at the pocket between TMs 3, 4, 5, 6 and 7, delineating the major pocket within the TM domain, since this region was identified to determine the binding of compound 1 to CXCR2 in the chimera study of this. Protein-ligand interactions were optimized in MOE by energy minimization during which the heavy atoms of the pocket residues were tethered with a 10.0 kcal/mol restraint and the remainder of the receptor was fixed in space. Compound 1 was docked and optimized in a similar manner for the binding pose on the outside of the transmembrane region.
Results

Cloning and pharmacological characterization of CXCR2 Orthologs

To elucidate the binding mode of compound 1 at human CXCR2, we started the study with different CXCR2 orthologs. The CXCR2 receptor cDNA’s of rhesus, vervet, baboon, chimpanzee, gorilla and orangutan were cloned and amplified by using polymerase chain reaction (PCR) (Horlick et al., 2006), while the cynomolgus ortholog was derived from rhesus CXCR2 by site-directed mutagenesis. Sequence analysis confirmed that the sequences indeed correspond to the CXCR2 ortholog sequences (Fig. 2). Comparison of the protein sequences of the seven CXCR2 orthologs and human CXCR2 revealed that all have a high homology with each other ranging from 89% to 100% (Fig. 3A). Due to the high homology of the CXCR2 orthologs, we have used them as ‘natural mutants’ to identify which amino acids are involved in the binding of compound 1. To determine the binding affinity of compound 1 to all CXCR2 orthologs, membranes of COS-7 cells transiently transfected with human CXCR2 or a CXCR2 ortholog were incubated with \([^{[125]}I]\)-CXCL8 and indicated concentrations of CXCL8, SB265610 or compound 1 (Fig. 4A, Table 1). Figure 4 clearly shows that the binding affinity of compound 1 is significantly abolished at baboon CXCR2 compared to human CXCR2, whereas the binding affinity for both CXCL8 and SB265610 are not different. Analysis of homologous displacement with CXCL8 to all CXCR2 orthologs revealed binding of \([^{[125]}I]\)-CXCL8, with a pK\(_d\) ranging from 9.1 to 9.6. SB256510 dose-dependently displaces \([^{[125]}I]\)-CXCL8 from all CXCR2 orthologs with pK\(_i\) values from 7.3 to 7.7, whereas compound 1 only displaces \([^{[125]}I]\)-CXCL8 from human, chimpanzee, gorilla and orangutan with pK\(_i\) values from 6.4 to 7.2 (Table 1). Differences of amino acids between the CXCR2 orthologs that cannot bind compound 1 (rhesus, cynomolgus, vervet and baboon) and the orthologs that bind compound 1 (human, chimpanzee, gorilla and orangutan) are indicated in Figure 2. Four residues are located within the TM domain (L92\(^{2.48}\), S107\(^{2.63}\), S217\(^{5.44}\) and N268\(^{6.52}\)), two intracellular (Y75\(^{1.59}\) and I331\(^{7.80}\)), five extracellular (V192\(^{4.73}\), N206\(^{5.32}\), L210\(^{5.36}\), V281\(^{6.65}\) and E287\(^{6.71}\)) and four in the N-terminus (S10, L34, A36 and E40) (Fig 2, 3B). In the remainder of
the study, we will denote the non-binders as class A orthologs and the binders as class B orthologs, respectively.

Chimeric Human-Baboon CXCR2 Approach

To investigate which part of the human CXCR2 receptor is involved in the binding of compound 1, we choose baboon CXCR2 as a representative of the class A orthologs. Next, using the restriction sites *Eco*NI and *Bam*HI (Fig. 3B) we created the chimeric constructs HHB (human-human-baboon), BBH (baboon-baboon-human), HBB (human-baboon-baboon), BHH (baboon-human-human), HBH (human-baboon-human) and BHB (baboon-human-baboon). The binding affinity of [125I]-CXCL8 is equal to human and baboon CXCR2 at the chimeras BBH, BHH, HBH and BHB, whereas the chimeras HHB and HBB are unable to bind the chemokine (Table 2). HHB and HBB are expressed on the cell surface as indicated by ELISA (see Suppl. Fig 2). SB265610 displaces [125I]-CXCL8 from the chimeras with almost equipotent affinity. Compared to the wild type baboon CXCR2 receptor, the chimera BBH gains affinity for compound 1, whereas compound 1 has no affinity for the chimera BHB. Other chimeric receptors show results in line with this observation. Thus, we hypothesized that the region from TM5 to the C-terminus is important for the binding of compound 1 to human CXCR2.

Site-Directed Mutagenesis of the CXCR2 Receptor to probe Baboon-Human Species Differences

Following the results of the chimeric approach, we decided to continue with a site-directed mutagenesis approach to further pinpoint the amino acids involved in the binding of compound 1 at the human CXCR2 receptor. The amino acids from the human and baboon CXCR2 receptor differ at 35 positions; 13 of them are located in the region from TM5 to the C-terminus (Fig. 2, 3B). Only the residues that differ between the class A and B orthologs were subsequently mutated from the human to the respective baboon counterparts. Thus, we generated the mutants S217H, N268H, V281L, and E287Q (Fig. 3B). To
extensively investigate differences between the human and baboon receptor in the extracellular loop 3, we also created the mutants Q2806.64R, Q2836.67N and R2947.33Q. Since the binding site for SB265610 was previously identified to be intracellularly (Nicholls et al., 2008; Salchow et al., 2010), and [3H]SB265610 was not displaced by compound 1 (de Kruijf et al., 2009), we suggested that the intracellular isoleucine 3317.80 is not involved in the binding of compound 1 and thus did not mutate this residue.

All human to baboon single point mutant cDNAs were transiently transfected in COS-7 cells. Competition binding analysis showed that all mutants were expressed and bind [125I]-CXCL8 with nanomolar affinity, i.e., comparable to wild-type human CXCR2 (Table 3). SB265610 displaces [125I]-CXCL8 from the mutants with almost equal binding affinity. Interestingly, compound 1 shows a significantly decreased affinity for the mutants S2175.44T and N2686.52H (Table 3, Fig. 5A-B) whereas the affinity for the other mutants is unaltered. The N2686.52H mutant causes a greater decrease in affinity for compound 1 than S2175.44T, indicating that asparagine 2686.52 has a more important role in the binding of compound 1 to human CXCR2 than serine 2175.44.

To confirm the important role of the serine and asparagine residues, we constructed the reciprocal baboon to human mutants T2125.44S and H2636.52N. As clearly shown in Figure 5A-B, mutation of the baboon residues into the human residues results in a gain of affinity of compound 1 (Table 3). In line with the results with the human to baboon mutant receptors, the baboon CXCR2 mutant H2636.52N causes a greater increase in binding affinity for compound 1 than T2125.44S. To investigate the role of these two residues in more detail, we created the double mutants S2175.44T/N2686.52H and T2125.44S/ H2636.52N. The human CXCR2 double mutant S2175.44T/N2686.52H showed, like the wild-type baboon receptor, no [125I]-CXCL8 displacement by compound 1, whereas the baboon CXCR2 double mutant T2125.44S/ H2636.52N showed equal affinity for compound 1 as the wild-type human receptor (Fig. 5C, Table 3). Taken together, compound 1 shows only a markedly decreased affinity at
the human CXCR2 mutants S217^{5.44}T, N268^{6.52}H and S217^{5.44}T/N268^{6.52}H. Given these results, we conclude that compound 1 binds to the trans-membrane (TM) regions, 5 and 6, of the CXCR2 receptor.

To investigate whether the (double mutant) receptors display the same properties in functional studies as observed in [^{125}I]-CXCL8 displacement assays, we performed [^{35}S]-GTPγS binding assays on membranes of COS7 cells transiently transfected with CXCR2. As shown in Figure 6A, CXCL8 shows a higher potency at baboon CXCR2 compared to human CXCR2 (Table 4). Mutations in either the human or baboon receptor do not alter the potency of CXCL8 compared to WT receptors. This is in agreement with the [^{125}I]-CXCL8 displacement studies. To test the dose-dependently antagonism of CXCL8-induced signal by compound 1 and SB265610, indicated concentrations of antagonists were used in combination with approximate EC_{80} concentration of CXCL8 (Figure 6B-C). SB255610 is able to inhibit the CXCL8 induced [^{35}S]-GTPγS binding dose-dependently at all receptors tested with pK_{b} values around 8.5 (Figure 6B, Table 4). At the highest tested concentrations, SB265610 displays inverse agonism at the baboon constructs. In agreement with our [^{125}I]-CXCL8 displacement studies, compound 1 inhibits the CXCL8-induced [^{35}S]-GTPγS binding at human WT and baboon double mutant T212^{5.44}S/H263^{6.52}N with pK_{b} values of 7.5 and 6.9, respectively. Furthermore, compound 1 hardly inhibits CXCL8 induced [^{35}S]-GTPγS binding at baboon WT and human double mutant S217^{5.44}T/N268^{6.52}H (Figure 6C, Table 4).

In Silico Based Site-Directed Mutagenesis of the CXCR2 Receptor.

Since the chimeric and site-directed mutagenesis data only provided a rough indication that compound 1 is a TM-binder, we characterized the binding mode of compound 1 in more detail by constructing additional mutations guided by *in silico* modeling. A CXCR2 model was constructed based on the recently resolved structure of the chemokine receptor CXCR4 (Wu et al., 2010). Wu *et al.* co-crystallized the CXCR4 receptor with the ligand IT1t in the minor
subpocket of the TM bundle encompassing TM1, TM2, TM3 and TM7, where it interacts with residues D972.63 and E2887.39 (Fig. 7A). Furthermore, the crystal structure shows two lipids in the major subpocket of the TM bundle encompassed by TM3, TM4, TM5, TM6 and TM7 (Fig. 7B). The same major subpocket is occupied by the peptide ligand CVX15 in another CXCR4 crystal structure (Wu et al., 2010).

Based on our chimera and point mutant data, we hypothesized its binding site to be part of the major subpocket (Fig. 7C-D). To confirm this, we created the mutants S1072.63A, E3007.39Q and E3007.39S as these residues interact with ligand IT1t in the CXCR4 structure in the minor subpocket between TM2, TM3, and TM7 (Fig. 7A, (Wu et al., 2010)). S1072.63 was mutated to an alanine residue present in baboon CXCR2 (S1072.63A). E3007.39 was mutated to a glutamine to prevent ionic interactions, and to a serine (E3007.39S) as the inverse S7.39E mutation in CXCR3 enables binding of CXCR4 antagonists (Rosenkilde et al., 2004). The affinity of compound 1 at the mutants S1072.63A, E3007.39Q and E3007.39S is unchanged compared to the human wild-type receptor. Also [125I]-CXCL8 and SB265610 bind with the same affinity as that of the wildtype (Fig. 7, Table 5). These results indicate that indeed compound 1 does not bind to the minor subpocket.

Subsequently, molecular docking results of compound 1 in the CXCR2 model suggested the residues F1303.36, Q2165.43, F2205.47, N2686.52 and L2716.55 to interact with compound 1 (Fig. 7C and Fig. 7D). Surprisingly, S2175.44 showed no direct interaction with compound 1. Due to the high conservation of the TM structure, none of the currently known crystal structures possess residue 5.44 pointing into the major pocket. As such, this is also true in our CXCR2 model. Therefore, we believe that our model is justified and we propose that the influence of this residue is of indirect nature. Our model suggests two binding modes representing different states along the same ligand binding pathway. In the binding mode presented in Figure 7C, the pyrimidine and imidazole moieties of compound 1 interact with F1303.36 and F2205.47 through \(\pi-\pi\) stacking, while the imidazole moiety forms a hydrogen bond with
N268\(^{6.52}\). In Figure 7D the imidazole moiety of compound 1 interacts with F130\(^{3.36}\) and F220\(^{5.47}\) through \(\pi\)-\(\pi\) interactions, the aminopyrimidine forms hydrogen bonds with N268\(^{6.52}\), and the ether moiety interacts with Q216\(^{5.43}\). In both binding modes, the octane moiety protrudes through TM5 and TM6 between residues Q216\(^{5.43}\) and L271\(^{6.55}\) similar to the CXCR4 lipids (Fig. 7B). The interactions of compound 1 in both models are in line with the structure-activity relationship investigation described by Ho et al. (Ho et al., 2006) which emphasizes the importance of the long hydrophobic octane moiety as well as the geometry and directionality of the imidazole acceptor group. To assess the involvement of these five residues, we constructed the mutants F130\(^{3.36}\)A, Q216\(^{5.43}\)E, F220\(^{5.47}\)A and L271\(^{6.55}\)A (N268\(^{6.52}\) has already been mutated, see above). However, since F220\(^{5.47}\)A did not bind \(^{125}\text{I}\)-CXCL8, we created the additional mutant F220\(^{5.47}\)L. Compared to wild type CXCR2 (pK\(_i\) = 7.2, Table 5) the affinity of compound 1 is slightly decreased at Q216\(^{5.43}\)E (pK\(_i\) = 6.5) and significantly decreased for F220\(^{5.47}\)L (pK\(_i\) = 6.1) and L271\(^{6.55}\)A (pK\(_i\) = 6.2). Figure 8 clearly shows that compound 1 binding is completely abolished in the mutant F130\(^{3.36}\)A (Table 5). None of the mutants affected the binding affinity of \(^{125}\text{I}\)-CXCL8. In line with the binding studies, compound 1 hardly inhibits the CXCL8 induced \(^{35}\text{S}\)-GTP\(\gamma\)S binding at F130\(^{3.36}\)A (pK\(_b\) is <4; see supplementary Figure 3).
Discussion

CXCR2 is a potential drug target because of its involvement in several inflammatory diseases like atherosclerosis, chronic obstructive pulmonary disease, psoriasis, rheumatoid arthritis, inflammatory bowel disease and multiple sclerosis (Ajuebor et al., 2004; Boisvert et al., 1998; Buanne et al., 2007; Chapman et al., 2007; Liu et al., 2010; Podolin et al., 2002). In view of its therapeutic potential, the search for CXCR2 antagonists have been extensively and has led to the identification of different classes of CXCR2 antagonist (Baxter et al., 2006; Ho et al., 2006; Li et al., 2003; Widdowson et al., 2004). In our previous publication (de Kruijf et al., 2009), we discovered that CXCR2 antagonists of the diarylurea (like SB265610, see Fig.1) and the thiazolopyrimidine class bind to a distinct site compared to compounds of the imidazolylpyrimidine class (like compound 1, see Fig. 1). Recent studies show that diarylurea and thiazolopyrimidine compounds most likely bind intracellularly to CXCR2 (Nicholls et al., 2008; Salchow et al., 2010). In this study we indentified a binding site for the imidazolylpyrimidine compound 1 within the trans-membrane (TM) region.

Identification of a novel allosteric binding site in CXCR2 by ‘natural mutants’

Different monkey CXCR2 orthologs (Fig. 2, 3) were used as ‘natural mutants’ to identify key residues involved in the binding of compound 1 to human CXCR2. In all experiments we defined the binding affinity of SB25610 as a control. As this compound showed to bind intracellularly (Salchow et al., 2010), we expected no significantly change in binding affinity at the different CXCR2 receptors. Our results show that the rhesus, cynomolgus, vervet and baboon orthologs are devoid of affinity for compound 1, whereas the human, chimpanzee, gorilla and orangutan orthologs bind this compound with high affinity (Fig. 4, Table 1). We have labeled these species as class A and B, respectively. Using human-baboon chimeric proteins and subsequently human to baboon reciprocal single point mutants, we identified S217\(^{5.44}\) and N268\(^{6.52}\) as key residues distinguishing class A and B orthologs. Imidazolylpyrimidine compounds have also no affinity for the mouse, rat and rabbit CXCR2 orthologs (J.C.H.M.W., M.L.W., D.S.A., unpublished data). Since the rodent orthologs all
possess N6.52, but do contain T5.44 instead of S5.44 (supplementary Fig 4.), we hypothesize that in these rodent receptors T5.44 and possibly other residues are responsible for the lack of affinity for compound 1.

Investigation of the CXCR2 minor subpocket

In the recently resolved crystal structure of the CXCR4 receptor, the small ligand IT1t interacts with the residues D972.63 and E2887.39 in the minor subpocket (Wu et al., 2010). Furthermore, studies with CXCR1, that has 77% sequence homology to CXCR2, revealed that both (R)ketoprofen and repertaxin interact also with residues located in the minor subpocket, like I431.36, Y461.39, K992.64, V1133.28 and E2917.39 (Allegretti et al., 2005; Bertini et al., 2004; Moriconi et al., 2007). Moreover, E7.39 plays a role in binding of antagonists at various other chemokine receptor as reviewed by Scholten and co-workers (Scholten et al., 2011). Since the binding affinity of compound 1 was not changed at the mutants S1072.63A, E3007.39S and E3007.39Q (Fig. 8, Table 5), we conclude that compound 1 does not bind to the minor subpocket at CXCR2. From the chimeric studies we already expected that S1072.63 was not a key residue in the binding of compound 1 to human CXCR2, because TM2 was not essential for the difference between the class A and class B orthologs.

In silico guided mutagenesis of the CXCR2 major subpocket to elucidate antagonist binding mode

A CXCR2 model was constructed based on the recently resolved CXCR4 crystal structure (Wu et al., 2010). Molecular docking results of compound 1 in this model suggested that the residues F1303.36, Q2165.43, F2205.47, N2686.52 and L2716.55 could interact with compound 1 (Fig. 7C and Fig. 7D). Although we showed that the S2175.44, like the N2686.52, was essential for compound 1 binding, it showed no direct interaction with compound 1 in our model. Threonine (class A orthologs) and serine (class B orthologs) residues in combination with proline residues are known to cause kinks in TM helixes (Deupi et al., 2010), as for example demonstrated by the T2.56XP2.58 induced kink in TM2 in chemokine receptors (Govaerts et al.,...
The presence of an extra proline residue at position 5.42 might even emphasize the induction of TM5 kinks. The involvement of serine 2175.44 in compound 1 binding might be explained by a different rotation state of the TM5 helix compared to a threonine, thereby affecting the binding of compound 1 by changing the shape of the ligand binding pocket and entrance channel between TM5 and TM6 (Fig. 7C-D). To investigate how compound 1 binds to the major subpocket, we constructed additional mutants based on in silico modeling.

Our binding studies with the mutants F1303.36A, Q2165.43E, F2205.47L and L2716.55A revealed that these residues, like N2686.52, interact with compound 1 (Fig. 8, Table 5). To the best of our knowledge, this is the first investigation in which the imidazolylpyrimidine CXCR2 antagonists have been characterized to bind inside the TM domain of the CXCR2 receptor (major pocket). As shown in Figure 7C, the proposed binding location is similar to the location of the fatty acids co-crystallized with the CXCR4 receptor (pdb code: 3ODU) pointing partially into the lipid bilayer. The binding mode is also in line with the structure-activity relationship investigation described by Ho et al. (Ho et al., 2006) which emphasizes the importance of the long hydrophobic octane moiety (which lies between TM5 and TM6) as well as the geometry and directionality of the imidazole acceptor group. The data from the F1303.36A and F2205.47L mutants can be explained by a loss of aromatic interactions with the pyrimidine and imidazole moieties, the N2686.52H mutant by the loss of a hydrogen bonding interaction with the imidazole moiety, and the L2716.55A mutant by a loss of hydrophobic matching with the octane moiety of compound 1. No direct indication for the small loss of activity by Q2165.43E mutation could be derived.

CXCR2 Ligand Entry Mechanism

We propose additionally a binding mode on the interface of the major pocket and the lipid bilayer (Fig. 7D) which is in line with the structure-activity data. This binding mode involves similar interactions for F1303.36, F2205.47 and N2686.52 as the binding mode in the major
pocket (Fig. 7C), but in which Q2165.43 forms a hydrogen bonding interaction with the ether group, and the L2716.55 shows no direct interaction. We postulate that compound 1 first binds to the interface coming from the lipid bilayer (Fig. 7D), followed by a rotation to get into the major pocket (Fig. 7C), in analogy with sn-2-arachidonoylglycerol (2-AG) in the cannabinoid 2 receptor (Hurst et al., 2010). During ligand entry, S2175.44 might play a crucial role by adapting the conformation of TM5 to open the entry channel for compound 1, whereby N2686.52 supports ligand entry to the major subpocket. An entry channel between these TMs has been earlier described for the opsin receptor (Park et al., 2008). In this receptor the residues I2055.40, F2085.43, F2736.56 and F2766.59 accommodate an entry channel for 11-cis-retinal between TM5 and TM6.

Although it may seem counter-intuitive that a ligand fits partially in the entrance channel of the TM domain, recent advances in CXCR2-ligand binding pocket elucidations have shown that also an intracellular binding site for CXCR2 antagonists exists (Nicholls et al., 2008; Salchow et al., 2010), a result only seen for two other GPCRs, the chemokine receptors CCR4 and CCR5 (Andrews et al., 2008). As such, this does not only imply that CXCR2 behaves different from other GPCRs, but it could also mean that we should be thinking out of the metaphoric box that is the TM domain.

Conclusions

Taken together, using different CXCR2 orthologs, chimeras, site-directed mutagenesis and in silico modeling, we have identified binding modes in the trans-membrane domain for the imidazolylpyrimidine compound 1 at the human CXCR2 receptor. Our in silico guided mutagenesis studies indicate a new ligand binding cavity in CXCR2 located between trans-membrane (TM) helices 3, 5, and 6 and suggest the imidazolylpyrimidine antagonist to enter CXCR2 via the TM5-TM6 interface. A ligand entry channel at the same interface was already described for the opsin receptor (Park et al., 2008). Furthermore, lipid molecules in the recently solved crystal structure of the CXCR4 receptor (Wu et al., 2010) are encompassed
by the same interface. This suggest a general ligand entrance mechanism for nonpolar ligands to G protein-coupled receptors (GPCRs). Our identification of a novel allosteric binding cavity in the TM domain of CXCR2, in addition to the previously identified intracellular binding site, shows the diversity in ligand recognition mechanisms by this receptor and offers new opportunities for the structure-based design of small allosteric modulators of CXCR2 in the future.
Acknowledgements

We acknowledge Annechien Hengeveld for constructing the chimeric proteins.
Authorship Contribution

Participated in research design:
Petra de Kruijf, Herman D. Lim, Luc Roumen, Maria Webb, Douglas Auld, Jac C.H.M. Wijkmans, Guido J.R. Zaman, Martine J. Smit, Chris de Graaf and Rob Leurs

Conducted experiments: Petra de Kruijf, Herman D. Lim, Luc Roumen, Véronique A. Renjaān, Jiuqiao Zhao and Chris de Graaf

Contributed new reagent or analytic tools:
Jac C.H.M. Wijkmans, Guido J.R. Zaman

Performed data analysis:
Petra de Kruijf, Herman D. Lim, Luc Roumen and Véronique A. Renjaān

Wrote or contributed to the writing of manuscript:
Petra de Kruijf, Herman D. Lim, Luc Roumen, Guido J.R. Zaman, Martine J. Smit, Chris de Graaf and Rob Leurs
References

Cheng Y and Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22(23):3099-3108.

Footnotes

P.d.K, H.D.L. and L.R. contributed equally to this work.

Present address Jiuqiao Zhao: Bristol-Myers Squibb Company, Wallingford, CT 06492, USA
Present address Maria L. Webb.: Venenum, Genesis Biotechnology Group, Trenton, NJ 08691, USA
Present address Douglas S. Auld: Novartis Institutes for BioMedical Research Center for Proteomic Chemistry, Cambridge, MA 02139, USA

This study was performed within the framework of the Dutch Top Institute Pharma [projects T101-3, D1-105].

Reprint requests: Rob Leurs, Leiden/Amsterdam Center of Drug Research, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, Telephone 0031205987579, Fax 0031205987610, R.Leurs@few.vu.nl.
Legends for figures

Figure 1: The structures of non-peptidergic CXCR2 antagonists compound 1 ((S)-2-(2-(1H-imidazol-1-yl)-6-(octylthio)pyrimidin-4-ylamino)-N-(3-ethoxypropyl)-4-methylpentanamide and SB265610 (1-(2-bromophenyl)-3-(4-cyano-1H-benzo[d][1,2,3]triazol-7-yl)urea) are shown.

Figure 2: Alignment of the sequences of various CXCR2 orthologs. The boxed residues differ all between the orthologs that are not able to bind compound 1 (rhesus, cynomolgus, vervet and baboon; ‘class A’) and the orthologs that are able to bind compound 1 (human, chimpanzee, gorilla and orangutan; ‘class B’). Residues indicated in bold differ between the human and baboon CXCR2.

Figure 3: Homology (%) of protein sequences of the CXCR2 receptor of human (Hm), baboon (Bb), chimpanzee (Ch), cynomolgus (Cy), gorilla (Gr), orangutan (Ou), rhesus (Rh) and vervet (Vv) calculated by ClusterW. *: Chimpanzee CXCR2 lacks first five amino acids of human CXCR2 receptor. Besides that, all amino acid residues are identical (A). Snake plot of the human CXCR2 receptor. The residues indicated in bold and with a bigger font differ between human and baboon receptor. Residues indicated in a thick circle have been mutated whereas residues indicated in grey are the conserved residues for the Ballesteros-Weinstein numbering scheme (B).

Figure 4: Displacement of [125I]-CXCL8 binding to COS-7 cell membranes expressing human CXCR2 (A) or baboon CXCR2 (B). Membranes were incubated with indicated concentrations of CXCL8 (●), SB265610 (○) or compound 1 (■) and approximately 100 pM [125I]-CXCL8 for 1 hour at room temperature. The error bars indicate the S.E.M. of results of at least three independent experiments.
Figure 5: Displacement of $[^{125}\text{I}]-\text{CXCL8}$ binding to COS-7 cell membranes expressing human CXCR2 (\bullet), baboon CXCR2 (\square) or indicated mutants by compound 1 (A-C) or SB265610 (D-F). Membranes were incubated with indicated concentrations of compound 1 or SB265610 and approximately 100 pM $[^{125}\text{I}]-\text{CXCL8}$ for 1 hour at room temperature. The error bars indicate the S.E.M. of results of at least three independent experiments.

Figure 6: Stimulation of $[^{35}\text{S}]-\text{GTP}\gamma\text{S}$ by CXCL8 from COS7 membranes expressing indicated receptors. Membranes were incubated with 3 µM GDP and approximately 400 pM $[^{35}\text{S}]-\text{GTP}\gamma\text{S}$ for 1 hour at room temperature (A). Inhibition of the CXCL8-induced $[^{35}\text{S}]-\text{GTP}\gamma\text{S}$ binding by SB265610 (B) or compound 1 (C). Membranes were pre-incubated with indicated concentrations of CXCR2 antagonists for 30 min at room temperature, followed by stimulation of approximately EC$_{80}$ concentration of CXCL8 for 1 hour at room temperature. Data are expressed in percentage in which 0% represents basal signal and 100% CXCL8 signal without presence of antagonist (B-C). The error bars indicate the S.E.M of results of at least three independent experiments.

Figure 7: Positioning of the small ligand IT1t (magenta) in the minor subpocket of the CXCR4 receptor (pdb code 3ODU) (A), and the lipids (orange) in the major subpocket of the CXCR4 receptor (pdb code 3ODU) (B). Suggested binding modes of compound 1 (green) in the major subpocket of the human CXCR2 receptor with the octane moiety pointing into the lipid membrane between TM5 and TM6 (C), and in the lipid membrane before entering the trans-membrane major subpocket (D). The interactions between compound 1 and F3.36, Q5.43, F5.47, N6.52 and L6.55 are in line with experimental data; they are annotated with dotted lines.

Figure 8: Displacement of $[^{125}\text{I}]-\text{CXCL8}$ binding to COS-7 cell membranes expressing indicated human CXCR2 mutants by compound 1 (A) or SB265610 (B). Membranes were
incubated with indicated concentrations of SB265610 or compound 1 and approximately 100 pM 125I-CXCL8 for 1 hour at room temperature. The error bars indicate the S.E.M. of results of at least three independent experiments.
Table 1: Affinity (pK$_d$ or pK$_i$) of CXCR2 ligands at various CXCR2 orthologs

Displacement of [125I]-CXCL8 binding to COS-7 cell membranes expressing indicated CXCR2 orthologs. The data are presented as mean ± S.E.M. of at least three independent experiments.

<table>
<thead>
<tr>
<th>CXCR2</th>
<th>pK$_d$</th>
<th>pK$_i$</th>
<th>pK$_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CXCL8</td>
<td>SB265610</td>
<td>compound 1</td>
</tr>
<tr>
<td>Rhesus</td>
<td>9.55 ± 0.19</td>
<td>7.71 ± 0.16</td>
<td><4</td>
</tr>
<tr>
<td>Cynomolgus</td>
<td>9.21 ± 0.05</td>
<td>7.44 ± 0.05</td>
<td><4</td>
</tr>
<tr>
<td>Vervet</td>
<td>9.31 ± 0.18</td>
<td>7.71 ± 0.11</td>
<td><4</td>
</tr>
<tr>
<td>Baboon</td>
<td>9.33 ± 0.08</td>
<td>7.28 ± 0.10</td>
<td><4</td>
</tr>
<tr>
<td>Human</td>
<td>9.40 ± 0.14</td>
<td>7.68 ± 0.11</td>
<td>7.18 ± 0.13</td>
</tr>
<tr>
<td>Chimpanzee</td>
<td>9.29 ± 0.18</td>
<td>7.72 ± 0.17</td>
<td>6.81 ± 0.18</td>
</tr>
<tr>
<td>Gorilla</td>
<td>9.33 ± 0.03</td>
<td>7.70 ± 0.12</td>
<td>6.90 ± 0.10</td>
</tr>
<tr>
<td>Orangutan</td>
<td>9.12 ± 0.15</td>
<td>7.42 ± 0.07</td>
<td>6.38 ± 0.16</td>
</tr>
</tbody>
</table>
Table 2: Affinity (pK\textsubscript{d} or pK\textsubscript{i}) of CXCR2 ligands at human-baboon chimeras

Displacement of [125I]-CXCL8 binding to COS-7 cell membranes expressing indicated chimeric receptors HHB (human-human-baboon), BBH (baboon-baboon-human), HBB (human-baboon-baboon), BHH (baboon-human-human), HBH (human-baboon-human) and BHB (baboon-human-baboon). The data are presented as mean ± S.E.M. of at least three independent experiments.

<table>
<thead>
<tr>
<th>CXCR2</th>
<th>pK_d</th>
<th>pK_i</th>
<th>pK_i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CXCL8</td>
<td>SB265610</td>
<td>compound 1</td>
</tr>
<tr>
<td>human</td>
<td>9.40 ± 0.14</td>
<td>7.68 ± 0.11</td>
<td>7.18 ± 0.13</td>
</tr>
<tr>
<td>baboon</td>
<td>9.33 ± 0.08</td>
<td>7.28 ± 0.10</td>
<td><4</td>
</tr>
<tr>
<td>HHB chimera</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BBH chimera</td>
<td>9.41 ± 0.21</td>
<td>7.17 ± 0.19</td>
<td>6.70 ± 0.10</td>
</tr>
<tr>
<td>HBB chimera</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BHH chimera</td>
<td>9.52 ± 0.09</td>
<td>6.93 ± 0.20</td>
<td>6.66 ± 0.11</td>
</tr>
<tr>
<td>HBH chimera</td>
<td>9.49 ± 0.11</td>
<td>7.33 ± 0.16</td>
<td>6.90 ± 0.10</td>
</tr>
<tr>
<td>BHB chimera</td>
<td>9.43 ± 0.07</td>
<td>7.20 ± 0.04</td>
<td><4</td>
</tr>
</tbody>
</table>

- [125I]-CXCL8 does not bind to this construct.
Table 3: Affinity (pK_d or pK_i) of CXCR2 ligands at site-directed mutagenesis CXCR2 human or baboon mutants to probe human-baboon species differences

Displacement of $[^{125}]$-CXCL8 binding to COS-7 cell membranes expressing indicated human to baboon or baboon to human CXCR2 mutants. The data are presented as mean ± S.E.M. of at least three independent experiments.

<table>
<thead>
<tr>
<th>CXCR2</th>
<th>pK_d</th>
<th>pK_i</th>
<th>pK_i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CXCL8</td>
<td>SB265610</td>
<td>compound 1</td>
</tr>
<tr>
<td>human WT</td>
<td>9.40 ± 0.14</td>
<td>7.68 ± 0.11</td>
<td>7.18 ± 0.13</td>
</tr>
<tr>
<td>human S2175.44T</td>
<td>9.20 ± 0.11</td>
<td>7.92 ± 0.06</td>
<td>5.77 ± 0.12</td>
</tr>
<tr>
<td>human N2686.52H</td>
<td>9.18 ± 0.11</td>
<td>7.14 ± 0.08</td>
<td><5</td>
</tr>
<tr>
<td>human S2175.44T/ N2686.52H</td>
<td>9.43 ± 0.20</td>
<td>7.27 ± 0.16</td>
<td><4</td>
</tr>
<tr>
<td>human Q2806.64R</td>
<td>9.13 ± 0.04</td>
<td>7.29 ± 0.14</td>
<td>7.10 ± 0.11</td>
</tr>
<tr>
<td>human V2816.65L</td>
<td>9.17 ± 0.16</td>
<td>7.33 ± 0.14</td>
<td>7.22 ± 0.09</td>
</tr>
<tr>
<td>human Q2836.67N</td>
<td>9.41 ± 0.09</td>
<td>7.24 ± 0.16</td>
<td>7.07 ± 0.17</td>
</tr>
<tr>
<td>human E2876.71Q</td>
<td>9.11 ± 0.11</td>
<td>7.39 ± 0.25</td>
<td>6.99 ± 0.12</td>
</tr>
<tr>
<td>human R2947.33Q</td>
<td>9.15 ± 0.12</td>
<td>7.24 ± 0.16</td>
<td>7.04 ± 0.12</td>
</tr>
<tr>
<td>baboon</td>
<td>9.33 ± 0.08</td>
<td>7.28 ± 0.10</td>
<td><4</td>
</tr>
<tr>
<td>baboon T2125.44S</td>
<td>9.89 ± 0.29</td>
<td>7.10 ± 0.13</td>
<td><5</td>
</tr>
<tr>
<td>baboon H2636.52N</td>
<td>9.69 ± 0.19</td>
<td>6.85 ± 0.21</td>
<td>5.72 ± 0.13</td>
</tr>
<tr>
<td>baboon T2125.44S/ H2636.52N</td>
<td>9.61 ± 0.08</td>
<td>7.13 ± 0.17</td>
<td>7.40 ± 0.14</td>
</tr>
</tbody>
</table>
Table 4: Affinity (pKₐ or pKᵢ) and inhibition of CXCL8-induced [³⁵S]-GTPγS binding (pKₑ) of CXCR2 ligands at key constructs.

Displacement of [¹²⁵I]-CXCL8 binding to COS-7 cell membranes expressing indicated key receptors. The data are presented as mean ± S.E.M. of at least three independent experiments. CXCL8 stimulated [³⁵S]-GTPγS binding to COS-7 membranes expressing indicated receptors and inhibition of CXCL8-induced [³⁵S]-GTPγS after 30 min pre-incubation with SB265610 and compound 1. The data are presented as mean ± S.E.M. of at least three independent experiments.

<table>
<thead>
<tr>
<th>CXCR2</th>
<th>pKₐ</th>
<th>pKᵢ</th>
<th>pKᵢ</th>
<th>pEC₅₀</th>
<th>pKₑ</th>
<th>pKₑ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CXCL8</td>
<td>SB265610</td>
<td>compound 1</td>
<td>CXCL8</td>
<td>SB265610</td>
<td>compound 1</td>
</tr>
<tr>
<td>Human WT</td>
<td>9.40 ± 0.14</td>
<td>7.68 ± 0.11</td>
<td>7.18 ± 0.13</td>
<td>7.06 ± 0.07</td>
<td>8.71 ± 0.06</td>
<td>7.48 ± 0.13</td>
</tr>
<tr>
<td>Baboon WT</td>
<td>9.33 ± 0.08</td>
<td>7.28 ± 0.10</td>
<td><4</td>
<td>7.86 ± 0.06</td>
<td>8.51 ± 0.13</td>
<td><4</td>
</tr>
<tr>
<td>Human S217⁴⁹T/N268⁹⁹H</td>
<td>9.43 ± 0.20</td>
<td>7.27 ± 0.16</td>
<td><4</td>
<td>7.03 ± 0.07</td>
<td>8.73 ± 0.07</td>
<td><4</td>
</tr>
<tr>
<td>Baboon T212⁴⁹S/H263⁹⁹N</td>
<td>9.61 ± 0.08</td>
<td>7.13 ± 0.17</td>
<td>7.40 ± 0.14</td>
<td>7.68 ± 0.06</td>
<td>8.11 ± 0.23</td>
<td>6.86 ± 0.20</td>
</tr>
</tbody>
</table>
Table 5: Affinity (pK\(_d\) or pK\(_i\)) of CXCR2 ligands at in silico based site-directed mutagenesis human CXCR2 mutants

Displacement of [\(^{125}\)I]-CXCL8 binding to COS-7 cell membranes expressing indicated human single point mutants. The data are presented as mean ± S.E.M. of at least three independent experiments.

<table>
<thead>
<tr>
<th>CXCR2</th>
<th>pK(_d) (CXCL8)</th>
<th>pK(_i) (SB265610)</th>
<th>pK(_i) (compound 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>9.40 ± 0.14</td>
<td>7.68 ± 0.11</td>
<td>7.18 ± 0.13</td>
</tr>
<tr>
<td>S107(_{2.6.4})A</td>
<td>9.09 ± 0.07</td>
<td>7.10 ± 0.13</td>
<td>6.73 ± 0.09</td>
</tr>
<tr>
<td>F130(_{3.36})A</td>
<td>9.65 ± 0.29</td>
<td>7.55 ± 0.17</td>
<td><4</td>
</tr>
<tr>
<td>Q216(_{5.42})E</td>
<td>9.01 ± 0.12</td>
<td>7.56 ± 0.09</td>
<td>6.47 ± 0.11</td>
</tr>
<tr>
<td>F220(_{5.47})L</td>
<td>9.06 ± 0.05</td>
<td>7.34 ± 0.12</td>
<td>6.07 ± 0.08</td>
</tr>
<tr>
<td>L271(_{b.35})A</td>
<td>9.18 ± 0.12</td>
<td>6.76 ± 0.31</td>
<td>6.22 ± 0.04</td>
</tr>
<tr>
<td>E300(_{7.40})S</td>
<td>9.04 ±0.13</td>
<td>7.21 ± 0.12</td>
<td>6.79 ± 0.05</td>
</tr>
<tr>
<td>E300(_{7.40})Q</td>
<td>9.00 ±0.14</td>
<td>7.26 ± 0.09</td>
<td>6.69 ± 0.09</td>
</tr>
</tbody>
</table>
Figure 3

A

<table>
<thead>
<tr>
<th></th>
<th>Rh</th>
<th>Cy</th>
<th>Vv</th>
<th>Bb</th>
<th>Hm</th>
<th>Ch</th>
<th>Gr</th>
<th>Ou</th>
<th>Rh</th>
<th>Cy</th>
<th>Vv</th>
<th>Bb</th>
<th>Hm</th>
<th>Ch</th>
<th>Gr</th>
<th>Ou</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>97</td>
<td>97</td>
<td>95</td>
<td>95</td>
<td>91</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>95</td>
<td>94</td>
<td>94</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>95</td>
<td>94</td>
<td>94</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>89</td>
</tr>
</tbody>
</table>

B

The figure illustrates a molecular structure with annotations for different domains and cut sites. The extracellular and intracellular regions are indicated. The amino acid sequence is also shown with possible enzymatic cut sites marked. The sequence includes an amine terminus (NH₂) and a carboxylic acid terminus (HOOC-).