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Abstract 

Receptors and channels that underlie nociceptive signaling constitute potential sites of 

intervention for treatment of chronic pain states. The kainate receptor family of 

glutamate-gated ion channels represents one such candidate set of molecules. They have 

a prominent role in modulation of excitatory signaling between sensory and spinal cord 

neurons. Kainate receptors are also expressed throughout central pain neuraxis, where 

their functional contributions to neural integration are less clearly defined. 

Pharmacological inhibition or genetic ablation of kainate receptor activity reduces pain 

behaviors in a number of animal models of chronic pain, and small clinical trials have 

been conducted using several orthosteric antagonists.  This review will cover kainate 

receptor function and participation in pain signaling, as well as the pharmacological 

studies supporting further consideration as potential targets for therapeutic development.   
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Introduction 

Chronic pain is a widespread clinical problem that degrades quality of life and imposes 

significant financial burdens due to long-term treatment. The pathophysiological 

mechanisms that give rise to chronic pain are diverse and in many cases poorly 

understood. Available treatment strategies have limitations that include relatively weak 

efficacy (non-steroidal anti-inflammatory drugs), low bioavailability (ziconitide) or high 

risk of dependency and side effects (opiates); these drugs meet patients’ needs to varying 

degrees. Potential novel therapeutic targets include receptors and channels underlying the 

aberrant excitation of nociceptive neuronal pathways implicated in neuropathic and other 

chronic pain states.  

 

Glutamate is the primary excitatory neurotransmitter throughout the peripheral and 

central nervous systems, and receptors mediating its actions represent candidate targets 

that have been explored to varying degrees in preclinical and clinical studies.  Glutamate 

acts on both G-protein coupled metabotropic receptors (mGluRs) as well as three families 

of ligand-gated ionotropic receptors (iGluRs), the N-methyl-D-aspartate (NMDA), α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors 

(KARs) (Traynelis et al., 2010). Both mGluRs and iGluRs have been explored as 

potential therapeutic targets for pain. NMDA receptor antagonists, in particular, have 

been tested for efficacy in chronic pain models, but their utility has been restricted due to 

the number of dose-limiting side effects on memory and motor function (Parsons et al., 

1998; Chizh et al., 2001; Childers and Baudy, 2007).   
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KARs could represent more amenable targets given that they play diverse, predominantly 

modulatory roles in the central and peripheral nervous systems, including in regions 

critical to transmission and integration of nociceptive input.  Pharmacological antagonists 

selective for a specific KAR subunit have consistently proven to be analgesic for a 

variety of pain modalities in preclinical models and clinical trials. We will review here 

the current understanding of how KARs participate in the pathophysiology of pain and 

evidence that they represent promising therapeutic target for further drug development. 
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Kainate Receptor Signaling 

Kainate receptors are a family glutamate-gated ion channels composed of varying 

combination of five different subunits: GluK1 (GluR5), GluK2 (GluR6), GluK3 (GluR7), 

GluK4 (KA1) and GluK5 (KA2).  They were originally defined pharmacologically as an 

excitatory conductance most sensitive to activation by the seaweed excitotoxin kainic 

acid (Lodge, 2009), which distinguished them from other iGluRs, the AMPA and NMDA 

receptors. Like all iGluRs, KARs operate as tetrameric cation channels, with molecular 

and functional diversity generated by distinct pharmacological and biophysical properties 

of the component subunits as well as RNA editing and alternative splicing of subunit 

transcripts (Perrais et al., 2010; Traynelis et al., 2010; Contractor et al., 2011). Functional 

diversity is further expanded by the association of KARs with auxiliary subunits, such as 

the neuropilin- and tolloid-like (Neto) proteins (Copits and Swanson, 2012; Tomita and 

Castillo, 2012). 

 

KARs depolarize neuronal membranes upon activation by glutamate or other agonists, as 

is typical for iGluRs, but also are unusual in that they prominent display a second mode 

of signaling mediated by non-ionotropic, G protein-coupled activation of protein kinases.  

How the receptors couple to these metabotropic pathways remains poorly understood.  In 

the CNS, KARs use these dual modes of signaling, ionotropic and metabotropic, to 

modulate neural circuits via diverse mechanisms that include postsynaptic depolarization 

at a subset of synapses, presynaptic modulation of both glutamate and GABA release, 

and direct alteration of neuronal excitability through actions on voltage-gated ion 

channels that regulate action potential firing (Contractor et al., 2011). Several recent 
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reviews discuss molecular and biophysical aspects of KAR function in detail (Paternain 

et al., 1995; Traynelis et al., 2010; Contractor et al., 2011); here we focus primarily on 

their association with nociceptive signaling and on KAR-based pharmacological 

intervention for alleviation of pain. 

 

Peripheral and central pain pathways 

In order to discuss of the role of KARs in pain, it will be of use to briefly describe the 

relevant signaling pathways and some underlying mechanisms as they are currently 

understood.  Pain is a complex perceptual phenomenon that culminates from a series of 

signaling events that occur at multiple levels of the peripheral and central nervous 

systems (Carrasquillo and Gereau, 2008; Basbaum et al., 2009).  Acute pain signals are 

initiated by the peripheral stimulation of the nerve endings of high threshold Aδ and C-

fiber nociceptors (often as a result of injury), propagated as action potentials through the 

cell soma residing in the dorsal root ganglia (DRG) to the dorsal horn of the spinal cord, 

and then sent through second order neurons in the thalamus to the cortex for higher-order 

processing.  Descending control of nociceptive signaling originates in the somatosensory 

cortex and travels through the midbrain to the spinal cord.  Amongst other important 

functions, this pathway serves to produce an analgesic effect through both stimulation of 

endogenous opioid receptors and modulation of inhibitory GABAergic tone on 

nociceptive dorsal horn neurons. This sensory transduction pathway, under normal 

conditions, allows nociceptors to respond to noxious stimuli, which are then perceived as 

a painful threat (Carrasquillo and Gereau, 2008; Basbaum et al., 2009).  Perception of 

stimuli as painful serves the purpose of preventing us from further injuring ourselves and 
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protection of the injured tissue to facilitate the healing process.  Modulation of signal 

transduction in peripheral and central nociceptive pathways will therefore alter perception 

of pain. 

 

Persistent or recurrent pain is associated with a variety of disorders that can have 

divergent pathophysiological bases and is a preeminent unmet health issue in modern 

society.  The underlying pathological manifestation of chronic pain can be the result of 

injury (e.g. pain from back injury), damage to the nervous system (neuropathic pain) or 

dysfunction of the pain transduction pathway despite the lack of a peripheral stimulus 

(e.g. fibromyalgia).  Regardless of the cause, chronic pain can be manifested 

spontaneously (without external stimuli) and result hyperalgesia and allodynia after an 

injury has healed and therefore serves no useful purpose to an organism.  Persistent pain 

arises from pathological increases in excitability, or sensitization, of one or more 

peripheral or central components of pain transduction pathways (Carrasquillo and 

Gereau, 2008; Costigan et al., 2009; Woolf, 2011). Peripheral sensitization results from a 

reduction in firing threshold and an increase in responsiveness of the peripheral 

nociceptors, which can result initially from local exposure to neurogenic inflammatory 

factors such as calcitonin gene related peptide (CGRP), substance P, ATP and serotonin 

and later a welter of noxious chemicals known as an “inflammatory soup” (Basbaum et 

al., 2009).  Central sensitization occurs as nociceptive neurons of the dorsal horn of the 

spinal cord become persistently hyperexcitable, which can manifest in several forms as 

wind-up of dorsal horn neurons, long-term potentiation of excitatory synaptic strength, or 

conditioning-driven sensitization (Seal et al., 2009; Pfau et al., 2011; Woolf, 2011).  
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Mechanistically, central sensitization can be driven by pre- and postsynaptic changes as 

well as increases in post synaptic membrane excitability (Latremoliere and Woolf, 2009).  

Long-term alterations in neuronal excitability is not limited to the spinal cord, and indeed 

a major component of persistent pain is now thought to arise from adaptive changes in 

structure and function of a number of central brain regions both directly and secondarily 

implicated in higher processing of pain-related sensory information (Woolf, 2011). 

 

Kainate receptors in pain-associated pathways 

KARS in dorsal root ganglia sensory neurons 

KARs are expressed throughout the peripheral and central nervous system, including in 

those pathways comprising the pain neuraxis. These receptors were first implicated in 

pain-related physiological pathways well before the cloning of cDNA encoding the first 

subunit, GluK1, in 1990 (Bettler et al., 1990).  Dorsal roots from sensory neurons were 

found to depolarize in response to relatively low concentrations of kainic acid (Davies et 

al., 1979; Agrawal and Evans, 1986), and, in subsequent voltage clamp recordings, iGluR 

currents detectable in a subpopulation of dorsal root ganglion (DRG) neurons were 

clearly attributable to KARs (Huettner, 1990).  Indeed, neonatal DRG neurons comprise 

the only neuronal cell type in the central and peripheral nervous systems in which 

glutamate-evoked iGluR currents arise completely (or nearly so) from KARs (Huettner, 

1990; Sommer et al., 1992; Wong and Mayer, 1993; Mulle et al., 2000; Lee et al., 2001), 

and in that respect these neurons were particularly useful in the characterization of the 

receptor currents before pharmacological isolation was made possible with the 

development of selective AMPA receptor antagonists (Paternain et al., 1995). KAR-
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mediated depolarizations were found in dorsal roots classified as C-fibers, which together 

with the observation that KAR currents arose from DRG neurons with soma of small to 

medium diameter (Agrawal and Evans, 1986; Huettner, 1990), suggested that these 

receptors were positioned to impact nociceptive signaling.  

 

Further delineation of the subpopulation of DRG neurons expressing functional KARs 

strengthened the association with nociceptive signaling.  DRGs contain a highly 

heterogeneous population of neurons, which have been categorized based on criteria that 

include expression of immunohistochemical markers and sensitivity to activation by 

specific types of stimuli (Dodd and Jessell, 1986; Carr and Nagy, 1993; Julius and 

Basbaum, 2001; Hjerling-Leffler et al., 2007; Teichert et al., 2012).  Agonist application 

elicited KAR currents from 50-65% of small to medium diameter (<30 μm) acutely 

isolated neonatal rat DRG neurons (Huettner, 1990; Lee et al., 2001). KAR-containing 

neurons also overlapped nearly completely with neurons expressing the glycoconjugate 

recognized by monoclonal antibody LA4 (Lee et al., 2001), which co-labels isolectin B4 

positive C-fiber nociceptors that project predominantly to the inner layer of lamina II in 

the spinal cord (Nagy and Hunt, 1982; Stucky and Lewin, 1999; Gerke and Plenderleith, 

2001; Fang et al., 2006). KAR subunit immunoreactivity is found in this afferent 

termination zone (Petralia et al., 1994; Hwang et al., 2001).  Very little co-expression of 

KARs with substance P was observed, whereas the majority (62%) of neurons with KAR 

currents also expressed the heat-sensing channel TRPVI (Lee et al., 2001). These data 

support the interpretation that KARs detectable in isolated DRG neurons are expressed 
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predominantly by C-fiber, somatostatin-positive nociceptors (Dodd and Jessell, 1985), 

some of which act as thermal sensors. 

 

The physiological characteristics and pharmacological profile of DRG KAR currents 

appear remarkably similar to those gated by recombinant homomeric GluK1 receptors 

reconstituted in heterologous expression systems (Huettner, 1990; Herb et al., 1992; 

Sommer et al., 1992; Swanson and Heinemann, 1998). Consistent with this interpretation, 

GluK1 mRNA is most prominently expressed by DRG and trigeminal neurons, although 

GluK5 mRNA can also be detected at modest levels (Partin et al., 1993; Sato et al., 1993; 

Sahara et al., 1997). Isolated DRG neurons derived from mice with a targeted deletion of 

the GluK1 subunit lack KAR-mediated currents in large part (Mulle et al., 2000; 

Kerchner et al., 2002) (Figure 1A).  Curiously, deletion of the GluK2 subunit altered 

current kinetics but not density in isolated DRG neurons (Kerchner et al., 2002), which 

was unexpected given the relative paucity of mRNA for this subunit in the ganglia (Partin 

et al., 1993).   

 

GluK1 was also established as the key subunit comprising DRG KARs in 

pharmacological studies with relatively selective agonists and antagonists. In general, 

development of discriminatory pharmacological tools has been problematic in the KAR 

field, but the GluK1 subunit represents a notable exception (Jane et al., 2009).  Selective 

agonists such as ATPA and 5-iodowillardiine activate GluK1-containing and DRG 

neuronal KARs with similar potencies and gating properties (Wong et al., 1994; Clarke et 

al., 1997; Swanson et al., 1998; Kerchner et al., 2001b; Wilding and Huettner, 2001). As 
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well, competitive antagonists that inhibited DRG KAR responses all exhibited varying 

degrees of GluK1 selectivity (e.g., the decahydroisoquinolines LY293558, LY382884 

and LY466165 and the UBP series of willardiine derivatives) (Bleakman et al., 1996; 

O'Neill et al., 1998; Dolman et al., 2005; Weiss et al., 2006; Dargan et al., 2009), as did a 

very weak partial agonist, MSVIII-19, utilized as a functional antagonist (Qiu et al., 

2011).  A strong consensus therefore exists as to the critical molecular components and 

pharmacological selectivity of the KARs expressed by nociceptive neurons in the DRG. 

 

Kainate receptors expressed by DRG neurons serve at least two functions: peripheral 

chemosensing and presynaptic modulation of glutamate release from afferent terminals in 

the dorsal horn of the spinal cord.  Like other iGluRs, KARs can be found in sensory 

nerve endings, where they presumably sample the extracellular environment and respond 

to physiological or pathological stimuli to initiate action potential firing (Carlton et al., 

1995; Coggeshall and Carlton, 1998; Du et al., 2006; Miller et al., 2011). Accordingly, 

peripheral application of KAR agonists elicits nociceptive signaling by sensory neurons 

and consequent pain behaviors (Ault and Hildebrand, 1993; Du et al., 2006).   

Experimentally induced inflammation in the rodent paw enhanced KAR subunit 

immunoreactivity and agonist-induced responses to thermal and mechanical stimulation 

(Carlton and Coggeshall, 1999; Du et al., 2006), which was proposed to occur as a result 

of upregulation of receptor numbers in the KAR-expressing subpopulation of sensory 

neurons (Du et al., 2006).   
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KARs localized to the presynaptic sensory neuron terminal in the dorsal horn regulate 

release of vesicular glutamate (Kerchner et al., 2001b), as do both AMPA and NMDA 

receptors (Liu et al., 1994; Lee et al., 2002). Excitatory postsynaptic currents (EPSCs) 

recorded from dorsal horn neurons that were evoked by stimulation of DRG neurons in 

either co-cultures or intact slice preparations were strongly reduced by activation of 

KARs with either kainic acid or the GluK1-selective agonist ATPA (Kerchner et al., 

2001b; Kerchner et al., 2002; Lee et al., 2002). This presynaptic negative feedback 

modulation has been proposed to occur either via stimulation of primary afferent 

depolarization (Lee et al., 2002) or alternatively through a G protein-mediated 

metabotropic signaling pathway that diminishes calcium channel activity (Rozas et al., 

2003).  Whether suppression of excitatory afferent transmission accurately reflects the 

physiological action of KARs when synaptically released glutamate constitutes the 

stimulus is less clear, and indeed modulation of synaptic strength was observed to be 

biphasic and facilitatory upon application of a very low concentration of kainic acid 

(Youn and Randic, 2004). A biphasic effect on EPSC amplitudes also occurs upon 

activation of presynaptic hippocampal mossy fiber KARs with exogenous agonist 

(Contractor et al., 2000; Kamiya and Ozawa, 2000; Schmitz et al., 2000). Physiological 

activation of that particular population of hippocampal presynaptic KARs clearly 

enhances synaptic strength (Contractor et al., 2001). It remains unknown how 

synaptically released glutamate alters the modulatory function of DRG KARs. 

Presynaptic suppression of EPSC amplitudes by kainic acid was absent when DRG 

neurons from GluK1-/- mice were co-cultured with wildtype dorsal horn neurons 

(Kerchner et al., 2002), supporting the interpretation that the GluK1 subunit is a key 
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constituent of the presynaptic KAR complement.  Knockout studies also have implicated 

GluK2-containing receptors in presynaptic modulation, but these conclusions have been 

difficult to explore further given the absence of GluK2-selective agonists.  In sum, a 

variety of approaches clearly implicate KARs in regulation of primary afferent 

transmission from nociceptive neurons to dorsal neurons in the superficial spinal cord, 

the initial site of synaptic integration in nociceptive signaling pathways. 

 

KARs in the spinal cord 

KARs are located at pre- and postsynaptic sites in the dorsal horn of the spinal cord, in 

both projection pathways as well as local microcircuits, where they recapitulate many of 

the physiological roles initially described in hippocampal circuits (Contractor et al., 

2011).  How these diverse activities participate in spinal neural integration is less well 

understood, however.  Spinal neurons express KAR mRNAs across many laminae (Tolle 

et al., 1993; Dai et al., 2002), with GluK5 mRNA particularly dense and GluK4 quite 

sparse (also see Allen Brain Atlas, http://mousespinal.brain-map.org). Pharmacologically 

isolated KAR-mediated EPSCs (EPSCKA) were detected in voltage-clamped lamina II 

neurons upon stimulation of primary sensory afferents (Li et al., 1999) (Figure 1B) but 

appear to be absence from C-fiber postsynaptic sites in lamina I (Dahlhaus et al., 2005). 

Like EPSCKA found at hippocampal mossy fiber – CA3 and a number of other synapses 

(Castillo et al., 1997; Vignes and Collingridge, 1997), lamina II spinal EPSCKA exhibited 

slow gating kinetics and small amplitudes relative to EPSCAMPA at the same synapses (Li 

et al., 1999).  The extended time course of decay of postsynaptic KAR depolarizations is 

thought to prolong the temporal window for synaptic integration and enhance neuronal 
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excitability during higher-frequency bursts of stimuli (Frerking and Ohliger-Frerking, 

2002; Sachidhanandam et al., 2009), although there is no direct evidence yet that they 

serve this function in superficial spinal neurons. High stimulation intensities were 

required to elicit EPSCKA from superficial spinal neurons, whereas lower intensities of 

stimulation exclusively evoked EPSCAMPA. These results suggested that AMPA and 

kainate receptors were unequally segregated at synapses with low- and high-threshold 

afferents, and that postsynaptic KARs were therefore preferentially distributed to 

synapses contacting Aδ/C-fiber (high-threshold) nociceptive inputs (Li et al., 1999). 

Moreover, retrograde labeling of spinal ascending processes from the thalamus confirmed 

the presence of EPSCKA in principle output neurons in layer II of the dorsal horn.  Both 

GluK1 and GluK2 subunit-containing KARs contribute to whole-cell KAR currents in 

cultured dorsal horn neurons, based on studies from knockout animals (Kerchner et al., 

2002), but it remains unclear whether these represent overlapping or separate populations 

of receptors.  

 

KARs expressed by spinal interneurons regulate local inhibitory tone.  Inhibitory and 

excitatory contacts are in close proximity on dendrites of dorsal horn neurons, and cross-

talk between the neurotransmitter systems occurs in part via spillover of glutamate and 

heterosynaptic activation of KARs located on interneuron terminals (Kerchner et al., 

2001a).   Presynaptic KARs act as biphasic feedback pathway for GABA and glycine 

release through a two-step process: (i) glutamate binding to KARs depolarizes 

presynaptic terminals, triggering calcium entry and enhanced release of inhibitory 

transmitters, which in turn then (ii) bind to G protein-coupled GABAB autoreceptors that 
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reduce GABA and glycine vesicle release probability. The latter negative feedback is 

likely to occur preferentially following a strong burst of afferent excitatory input 

(Kerchner et al., 2001a).  Both GluK1- and GluK2-containing KARs appear to contribute 

to heterosynaptic regulation of inhibitory transmission in the dorsal horn (Kerchner et al., 

2002). 

 

Glutamatergic signaling is a central component of sensitization that occurs at the level of 

the spinal cord in chronic pain states (Szekely et al., 2002). AMPA, NMDA, and mGluRs 

have been known to be key signal transducers in the sensitization process, whereas KARs 

have been implicated in one form of sensitization, wind-up following inflammation 

(Stanfa and Dickenson, 1999), but have not been explored in other mechanisms of central 

sensitization that occur at the level of the dorsal horn.  As modulators of both excitatory 

and inhibitory synaptic tone, they are well-positioned to shape sensitization. Inhibition of 

GABA and glycine receptors in the spinal cord increases A-fiber-mediated excitatory 

transmission in the superficial dorsal horn (Baba, et al. 2003) and produces tactile 

allodynia (Sivilotti and Woolf 1994). A loss of inhibitory tone in the dorsal horn can play 

an important role in chronic pain conditions (von Hehn, et al. 2012). For example, partial 

peripheral nerve injury results in a reduction of GABA-induced IPSCs in the dorsal horn 

(Janssen, et al. 2011; Moore, et al. 2002) which appears to be due to an excitotoxic loss 

of GABAergic interneurons (Scholz, et al. 2005). Given that KARs are engaged as 

heterosynaptic modulators of inhibitory tone, it is reasonable to postulate that their 

function might be altered in pathological states of hyperexcitability, particularly given 

that KAR antagonists are effective analgesics (see below). 
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KARs in supraspinal pain pathways 

Nociceptive dorsal horn neurons project via the spinothalamic tract (STT) to the ventral 

posterolateral (VPL) nuclei in the thalamus. Inhibition of GluK1-containing KARs is 

known to attenuate enhanced signaling in the STT following peripheral neuropathy in 

primates (Palecek et al., 2004).  The thalamus as a whole also exhibits a diverse nuclei-

specific expression of KARs mRNAs (Wisden and Seeburg, 1993; Bahn et al., 1994; 

Ibrahim et al., 2000). Thalamic relay neurons receive inhibitory input from reticular 

neurons, which contain presynaptic GluK1-containing KARs positioned on the inhibitory 

terminals that reduce GABA release in electrophysiological recordings from the rat 

ventrobasal thalamus; the receptors therefore were proposed to function as a mechanism 

for disinhibition of relay neurons (Salt, 2002; Binns et al., 2003) (Figure 1C). Inhibition 

of thalamic KARs with a GluK1-selective antagonist degraded excitatory responses in 

response to sensory input (whisker stimulation) (Binns et al., 2003), which, if analogous 

mechanisms occur in nociceptive pathways, could be of benefit in cases of 

spinalothalamic hyperexcitability underlying aberrant pain states. Presynaptic KARs also 

modulate release of glutamate from cortical inputs to thalamic neurons in an intriguing 

bidirectional  manner: presynaptic GluK1-containing KARs at cortical terminals on relay 

neurons depress glutamate release; conversely, non-GluK1 receptors facilitate release on 

terminals contacting reticular neurons (Miyata and Imoto, 2009).  Because relay neurons 

are inhibited by reticular neurons, the two distinct populations of corticothalamic KARs 
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are poised to reduce excitability of relay neurons through combined monosynaptic and 

disynaptic control of glutamate release. Postsynaptic KARs in ventrobasal thalamic 

neurons also contribute to temporal integration at excitatory connections with 

corticothalamic but not lemniscal inputs (Binns et al., 2003; Miyata and Imoto, 2006); 

analogous studies have not been carried for spinothalamic inputs to VPL relay neurons.  

 

Thalamocortical projections associated with nociceptive signaling target a number of 

cortical structures that include the somatosensory, insular and anterior cingulate (ACC) 

cortices, where KARs play diverse pre- and postsynaptic functions (Huettner, 2003; 

Lerma, 2006; Contractor et al., 2011; Koga et al., 2012).  In the somatosensory cortex, 

presynaptic KARs regulate glutamate release at thalamocortical synapses in young rats 

(Kidd et al., 2002; Jouhanneau et al., 2011), which also transiently expressed a 

postsynaptic KAR that undergoes activity-dependent down-regulation early in 

development (Kidd and Isaac, 1999). Layer V neurons, on the other hand, express KARs 

at predominantly extrasynaptic sites and exhibit a very small EPSCKA that nonetheless is 

maintained past early developmental stages (Eder et al., 2003).  The ACC, which is 

associated with the perception of stimuli as painful and the affording of emotional 

significance, particularly in chronic pain states (Vogt and Sikes, 2000; Apkarian et al., 

2005; Basbaum et al., 2009), also contains both pre- and postsynaptic KARs.  Activation 

of presynaptic GluK1-containing KARs facilitates GABA release from interneuron 

synapses on layer II/III pyramidal neurons in the ACC and potentially modifies tonic 

inhibitory currents that impact neuronal excitability (Wu et al., 2007b), similar to what 

had been described previously in the CA1 region of the hippocampus (Cossart et al., 
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1998). On the postsynaptic side of the synapses, characteristically slow EPSCKA evoked 

in layer II/III pyramidal neurons in both the ACC and the insular cortex were dependent 

upon the presence of both GluK1 and GluK2 subunits (Wu et al., 2005; Koga et al., 

2012).  How these diverse functions of KARs are altered as a consequence of the 

structural and circuit adaptations that occur in cortical regions in neuropathic or other 

chronic pain states (Costigan et al., 2009; Metz et al., 2009; Li et al., 2010) has not been 

examined but could be relevant to understanding the mechanistic basis for the analgesic 

effect of KAR antagonists. 

 

KAR actions in descending pain pathways have not been characterized to a great extent 

with the exception of the midbrain periaqueductal gray (PAG), a brainstem nucleus in a 

variety of physiological activities, including descending pain modulation.  Tonic 

inhibition regulates output of PAG neurons, and presynaptic GluK1-containing KARs 

modulate the release of GABA in cultures of dissociated PAG neurons (Nakamura et al., 

2010). 

 

This brief review of KAR actions in pain-related pathways underscore three important 

points: (i) these receptors are expressed at all levels of the pain neuraxis examined to 

date, (ii) their functional activities are consistent with roles in modulation of circuit 

excitability, and (iii) little is known regarding how KAR function is altered in chronic 

pain states. 

 

KARs as targets in animal models of pain and clinical studies 
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The initial characterization of KARs in peripheral nociceptive pathways stimulated 

interest in exploring how signaling by these receptors might contribute to acute or 

chronic pain-related behaviors and therefore represent potential targets for therapeutic 

treatment.  Constraints exist on how effectively KARs can be selectively targeted with 

antagonists, however, and in large part only receptors containing the GluK1 subunit can 

be inhibited while avoiding antagonism of other types of KARs (or AMPA receptors in 

many cases) (Jane et al., 2009). As well, all compounds tested to date act at the 

orthosteric glutamate binding site on KARs as competitive antagonists or strongly 

desensitizing partial agonists, which tend to be polar molecules with low bioavailability 

and therefore poor drug candidates.  Allosteric modulators like those isolated for AMPA, 

NMDA and mGluRs, which could be viable alternatives that achieve both better 

selectivity and desirable chemical characteristics, comprise a pharmacological domain 

largely unexplored for KARs; to date very few negative allosteric modulators have been 

reported and those have been only partially characterized at the mechanistic level 

(Valgeirsson et al., 2003; Christensen et al., 2004; Valgeirsson et al., 2004). Application 

of recent high-throughput screening approaches to discovery of allosteric modulators of 

NMDA and mGluRs (e.g., Ogden and Traynelis, 2011; Sheffler et al., 2011; Hansen et 

al., 2012) suggest there are grounds for optimism that similar efforts could produce novel 

pharmacology for KARs. 

 

Preclinical models of pain 

KAR antagonists have been tested in a variety of animal models of acute pain as well as 

persistent pain arising from inflammatory and neuropathic insults, and a limited number 
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of studies in gene-targeted mice have supplemented those pharmacological approaches. 

Early studies noted that non-selective antagonism of both AMPA and kainate receptors 

ameliorated inflammatory signaling and pain in rats (e.g., Hunter and Singh, 1994; 

Jackson et al., 1995; Simmons et al., 1998; Stanfa and Dickenson, 1999). Subsequent use 

of more selective compounds have generally led to conclusions that inhibition (or genetic 

ablation) of GluK1-containing receptors produces analgesic effects following induction 

of either inflammatory or neuropathic persistent pain (Wu et al., 2007a and summarized 

below) (see chemical structures in Figure 2). These observations are consistent with the 

predominance of GluK1 receptors in nociceptive DRG neurons and the established role 

of this subunit in presynaptic receptors that regulate inhibitory transmission. On the other 

hand, the participation of KARs predominantly composed of the other principle subunits, 

GluK2 and GluK3, cannot be excluded yet because there simply are not adequately 

selective pharmacological tools to test their potential roles in nociception. 

 

Competitive antagonists with selectivity for GluK1 receptors were amongst the first 

KAR-targeting compounds to demonstrate analgesic efficacy.  A series of molecules 

designed on a decahydroisoquinoline scaffold exhibited varying degrees of specificity for 

receptors containing this subunit (Jane et al., 2009); the most selective, LY382884, 

attenuated pain-associated behaviors following formalin injection into the paw of rats 

without ataxic effects that accompany coincident inhibition of AMPA receptors 

(Simmons et al., 1998) (Figure 3A). Esterified prodrugs of LY382884 and a less selective 

decahydroisoquinoline, LY293558, were analgesic when delivered orally in the formalin 

model as well as inflammatory thermal and mechanical hyperalgesia models of pain 
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(Dominguez et al., 2005; Jones et al., 2006). LY293558 also reduced mechanical 

hyperalgesia in a rat model of postoperative pain (paw incision) when administered 

intrathecally (Lee et al., 2006). Interestingly, the antinociceptive efficacy of the 

decahydroisoquinolines correlated well with their activity on GluK1-containing receptors 

specifically when introduced centrally into the cisterna magna (Jones et al., 2006), 

suggesting that supraspinal KARs comprised an important site of action of the 

antagonists.  

 

Partial agonists that effectively desensitize GluK1 receptors also exhibit antinociceptive 

activity.  The high-affinity agonist (2S,4R)-4-methylglutamate (SYM2081) potently 

activates and desensitizes both GluK1- and GluK2-containing KARs and has been used 

extensively as a functional antagonist because receptors remain in a non-conducting state 

in the presence of the compound.  SYM2081 has been tested in a number of pain models, 

including chronic constriction injury, capsaicin and carrageenan injections, in which it 

provides analgesic effect on both mechanical and thermal hyperalgesia when given both 

intrathecally and intraperitoneally (Sutton et al., 1999; Ta et al., 2000; Turner et al., 

2003).  Similarly, MSVIII-19, a synthetic derivative of a tetrahydrofuropyran toxin 

isolated from a marine sponge (Sanders et al., 2005), also acts as a high-affinity inhibitor 

of GluK1-containing receptors and was analgesic for thermal and mechanical 

hyperalgesia in inflammatory and chronic constriction models, but not in acute or visceral 

pain models (Qiu et al., 2011).   
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The pharmacological evidence for participation of GluK1-containing receptors in 

nociceptive signaling was supported by the observation that gene-targeted mice lacking 

this subunit exhibited attenuated pain behaviors.  Paw licking caused by either capsaicin 

or formalin injection was greatly reduced to vehicle control levels in GluK1 but not 

GluK2 knockout mice (Ko et al., 2005) (Figure 3B). Mechanical allodynia induced by 

Complete Freund’s Adjuvant (CFA) was normal in the knockout mice, however, as was 

acute thermal and mechanical sensitivity.  In summary, studies with a variety of 

pharmacological agents and gene-targeted mice support the hypothesis that GluK1-

containing receptors play a key role in enhanced pain sensitivity for several sensory 

modalities following experimentally induced inflammation or neuropathy. 

 

GluK1-containing receptors are expressed by trigeminal neurons (Sahara et al., 1997), 

leading to interest in the role of these KARs in migraine. Animal models of migraine 

utilize surrogate biochemical measures, such as protein extravasation and c-fos activation 

in the nucleus caudalis, rather than pain behaviors, in order to assess efficacy of 

compounds.  Both GluK1-selective decahydroisoquinoline compounds prodrugs as well 

as the highly selective fluorinated antagonist LY466195 effectively reduced both these 

measures following stimulation of the trigeminal nerve (Filla et al., 2002; Weiss et al., 

2006).  Conversely, selective activation of GluK1 receptors with a willardiine analog 

attenuated CGRP-induced vasodilation caused by dural stimulation, an experimental 

paradigm that mimics some of the neurogenic processes thought to occur during migraine 

(Andreou et al., 2009).  The efficacy of topiramate, an anticonvulsant, in prevention of 

migraines also was recently proposed to arise from antagonistic actions on KAR-driven 
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signaling in the trigeminovascular pathways (Andreou and Goadsby, 2011).   Amongst 

other pharmacological activities, topiramate appears to selectively reduce signaling 

through GluK1-containing KARs through mechanisms that are not well understood 

(Gryder and Rogawski, 2003; Braga et al., 2009). 

 

KARs as therapeutic targets 

The success of KAR antagonists in a variety of animal models of persistent pain and 

migraine led to several small clinical trials with the aim of validating these receptors as 

therapeutic targets.  The decahydroisoquinoline LY293558 was efficacious in alleviation 

of inflammatory pain caused by capsaicin injection (Sang et al., 1998), post-operative 

pain (Gilron et al., 2000), and migraine pain and associated conditions (Sang et al., 2004), 

with minimal side effects and acceptable tolerance.  Beneficial effects were observed 

with LY293558 (also known as tezampanel or NGX424) in a phase II clinical trial 

focused on alleviation of migraine pain (Murphy et al., 2008).  Further studies on 

LY293558 (also known as tezampanel or NGX424), or its oral prodrug form (NGX426), 

for treatment of migraine appear to have been suspended in 2009, although positive 

results from a large phase I trial with NGX426 were reported by the most recent licensee 

of the molecule, Raptor Pharmaceutical Co (press release, 11/23/2009).   

 

Conclusions 

KARs play integral signaling roles at multiple levels of the pain neuraxis, and abundant 

preclinical and clinical evidence suggests that pharmacological targeting of GluK1-

containing receptors, in particular, ameliorates hyperalgesia and allodynia in a number of 
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persistent pain states.  A number of important and challenging questions remain 

unresolved, however. For example, the efficacy of KAR antagonists in reducing 

inflammatory or neuropathic pain, but the absence of effect (in most studies) in acute 

pain, suggests that KAR function is altered following central sensitization in a way that is 

poorly understood currently.  How KARs impact signaling in descending pathways also 

is unclear. Finally , we do not know if KAR antagonists have their analgesic effects 

through inhibition of a particular population of receptors – peripheral, spinal or 

supraspinal – although the latter is most consistent with work from the Lilly group on 

decahydroisoquinolines.  The premature end to clinical studies with LY293558 is 

unfortunate, given the apparent efficacy of the drug in both migraine and a variety of pain 

states in patients; in effect this therapeutic approach remains one with a great degree of 

promise in an area of substantial unmet clinical needs in the human population. 
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Figure Legends 

 

Figure 1. KARs in the pain neuraxis.  A. Dorsal root ganglia neurons express KARs that 

contain GluK1 as a critical component subunit. Whole cell voltage clamp recordings 

were made from acutely isolated dorsal root ganglia neurons from wildtype and GluK1-/- 

(GluR5) knockout mice.  Domoate application to small- to medium-diameter neurons 

elicited a KAR current in ~60% of wildtype neurons while neurons from knockout 

animals were devoid of detectable responses.  Adapted from Mulle et al. (2000). B. 

Superficial dorsal horn neurons contain postsynaptic KARs at high-threshold inputs.  

Voltage clamp recordings were made from spinal neurons in slice preparations during 

stimulation of the dorsal entry zone.  KAR synaptic currents were only observed when 

the stimulation strength was high. Adapted from Li et al. (1999). C. Presynaptic KARs 

regulate inhibitory transmission between thalamic reticular and relay neurons. ATPA, a 

selective GluK1 agonist, reduced IPSP amplitudes reversibly in intracellular recordings 

from thalamic relay neurons in slice preparations.  Adapted from Binns et al. (2003). 

 

Figure 2. Structures of several KAR competitive antagonists and weak partial agonists 

that attenuated pain behaviors in inflammatory, neuropathic, or other models. For details 

see text and references therein. 

 

Figure 3. KARs contribute to formalin-induced pain behaviors. A. Intrathecal injection 

of the GluK1 weak partial agonist (effectively a functional antagonist) reduced pain 

behaviors following formalin injection into mice in a dose-dependent manner. This figure 
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has been reproduced with permission of the International Association for the Study of 

Pain® (IASP). The figure may not be reproduced for any other purpose without 

permission. B. Formalin injection into mouse paw did not elicit pain behavior in the 

GluK1-/- mouse, whereas GluK2-/- responded to the same degree as wildtype animals. 

Adapted from Ko et al. (2005). 
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