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Abstract: 

The concepts of functional selectivity and ligand bias are becoming increasingly appreciated in modern drug 

discovery programs, necessitating more informed approaches to compound classification and, ultimately, therapeutic 

candidate selection. Using the β2AR as a model, we present a proof of concept study that assessed the bias of 19 β-

adrenergic ligands, including many clinically used compounds, across four pathways (cAMP production, ERK1/2 

activation, calcium mobilization and receptor endocytosis) in the same cell background (HEK293S cells). Efficacy-

based clustering placed the ligands into five distinct groups with respect to signaling signatures. In some cases, 

apparent functional selectivity originated from off-target effects on other endogenously expressed adrenergic 

receptors, highlighting the importance of thoroughly assessing selectivity of the responses before concluding 

receptor-specific ligand-biased signaling. Eliminating the non-selective compounds did not change the clustering of 

the 10 remaining compounds. Some ligands exhibited large differences in potency for the different pathways, 

suggesting that the nature of the receptor-effector complexes influences the relative affinity of the compounds for 

specific receptor conformations. Calculation of relative effectiveness (within pathway) and bias factors (between 

pathways) for each of the compounds, using an operational model of agonism, revealed a global signaling signature 

for all of the compounds, relative to isoproterenol. Most compounds were biased toward ERK1/2 activation over the 

other pathways, consistent with the notion that many proximal effectors converge on this pathway. Overall, we 

demonstrate a higher level of ligand texture than previously anticipated, opening perspectives for the establishment 

of pluridimensional correlations between signaling profiles, drug classification, therapeutic efficacy and safety. 
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Introduction: 

The taxonomy of therapeutic agents has a tremendous impact on preclinical approaches towards discovery and 

optimization of drug candidates, and on decisions made by clinicians when selecting such agents. Traditionally, 

most drugs targeting G protein-coupled receptors (GPCRs) have been phenotypically classified as full or partial 

agonists, (neutral) antagonists or inverse agonists according to their activity at a single canonical signaling pathway. 

For instance, in the case of the β2-adrenergic receptor (β2AR), the many available positive and inverse agonists, as 

well as neutral antagonists, are generally classified on the basis of their efficacy toward cAMP signaling. However, 

it is well known that the β2AR is pleotropically coupled to many pathways (Evans et al., 2010). Indeed, this is a 

common observation for most GPCRs and there are increasing instances of ligand behavior changing with the 

pathway under investigation. For example, some compounds, which are classified as β2AR neutral antagonists or 

inverse agonists based on their efficacy toward cAMP, act as agonists toward the ERK1/2 pathway (Azzi et al., 

2003; Galandrin and Bouvier, 2006; Shenoy et al., 2006).  

 

The ability of ligands to differentially influence receptor behavior in a pathway-dependent manner has been termed 

“functional selectivity” or “signaling bias” (Kenakin and Christopoulos, 2013) and can generally be attributed to 

three sources (Kenakin and Christopoulos, 2013): 1. “system bias”, the relative coupling efficiency of a pathway to 

the receptor; 2. “observation bias”, the experimental conditions unique to the assay used to measure activity; 3. 

“agonist or ligand bias”, the ability of a ligand to engender a unique subset of receptor conformations that promotes 

signaling through distinct pathways to the exclusion of others. It is only the latter form of bias that is associated with 

the structure of the ligand and receptor and thus reflects a molecular property that can be exploited therapeutically. 

The phenomenon of ligand bias means that the current taxonomy for β-adrenergic receptor ligands, and probably 

most GPCR ligands, is likely incorrect, because the classification of any particular ligand can change depending on 

the pathway under investigation.  

 

Given the increasing discovery of biased ligands in GPCR drug discovery, it is important to develop approaches that 

can easily quantify the phenomenon in a manner that is experimentally feasible but statistically robust such that it 

can objectively inform structure-activity studies and compound classification. Significant analytical advances have 

recently been described that extend the classic operational model of agonism (Black and Leff, 1983) to quantify 
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ligand bias (Ehlert, 2008; Evans et al., 2011; Figueroa et al., 2009; Kenakin et al., 2012; Kenakin and Christopoulos, 

2013; Rajagopal et al., 2011). An important outcome of such analyses is the potential to yield "fingerprints" of 

compound profiles in a manner that can enrich standard structure-activity and structure-function studies. Ultimately, 

such detailed fingerprints may be implemented into drug discovery workflows and eventually result in entirely 

different drug taxonomies that can allow physicians to make better choices in their treatment regime, with fewer 

adverse effects in the future. 

 

Since the β2AR is a GPCR with a rich pharmacology and substantial clinical data, it is an ideal candidate for a proof 

of concept study aimed at developing a chemical biology framework, based on ligand bias determinations, for 

clustering compounds in a manner that may predict in vivo efficacy. As such, we investigated 19 clinically relevant 

compounds that are used for treating diseases such as asthma, chronic obstructive pulmonary disease, cardiovascular 

disease, migraine and glaucoma, and determined their signaling efficacy toward four functional outcomes, namely, 

the cAMP, ERK1/2 and calcium signaling pathways, as well as β2AR endocytosis. Importantly, both formal clinical 

studies and anecdotal observations suggest that some of these compounds may be more efficacious and/or safer than 

others for certain clinical indications, despite having the same relative efficacy toward the cAMP pathway (Eichhorn 

and Young, 2001; Cruickshank, 1993; Javed and Deedwania, 2009; Ram, 2010; Castle et al., 1993). Although these 

differences may be attributed to other properties of the drugs (poly-pharmacology, pharmacokinetics, etc.) it is 

possible that functional selectivity toward different signaling pathways may contribute to their different therapeutic 

profiles. In depth characterization of the four chosen signaling profiles led to the identification of five sub-groups of 

ligand with distinct signaling signatures. This represents a first step for establishing more informative links between 

the in vitro cell-based data, whole animal studies and clinical data that may lead to the design of next generation β-

adrenergic ligands displaying greater selectivity and reduced side effects profiles. 
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Materials and Methods: 

Adrenergic ligands:  (-)-isoproterenol hydrochloride (ISO), (-)-norepinephrine (NE), (-)-epinephrine (EPI), 

salmeterol xinafoate (SALM), labetalol hydrochloride (LAB), alprenolol hydrochloride (ALP), pindolol (PIN), 

carvedilol (CARV), bisoprolol hemifumarate (BIS), (±)-metoprolol (+)-tartrate salt (MET), timolol maleate salt 

(TIM), betaxolol hydrochloride (BET), nadolol (NAD), S(-)-atenolol (ATEN), nebivolol hydrochloride (NEB), DL-

propranolol hydrochloride (PRO), and CGP-20712A were purchased from Sigma Aldrich (St Louis, MO). ICI 

118,551 hydrochloride (ICI), salbutamol hemisulfate (SALB) and xamoterol hemifumarate (XAM) were from 

Tocris bioscience (Ellisville, MO). Bucindolol (BUC) was a gift from Dr. Michael Bristow (University of Colorado 

Health Sciences Center, Denver, CO). 

 

Biosensor constructs:  GFP10-mutEPAC1(δDEP; T781A; F782A)-venus (henceforth referred to as EPAC biosensor) 

was cloned between the NheI and EcoRI sites of pcDNA3.1/zeo(+). The EPAC biosensor consists of an amino-

terminal-Green Fluorescent Protein10 (GFP10) joined by a 5 amino acid residue (GSAGT) linker to a mutated 

EPAC1(δDEP; T781A; F782A) biosensor (Ponsioen et al., 2004) and a carboxy-terminal-venus fluorescent protein 

(venus) joined by a 5 amino acid residue linker (KLPAT). This biosensor contains 2 mutations (T781A; F782A), 

rendering the biosensor inactive with respect to its GEF activity toward Rap1, but maintaining its activation by 

cAMP (Ponsioen et al., 2004). Deletion of the DEP domain creates a cytosolic EPAC-biosensor, that binds cAMP 

with micromolar affinity (binding Kd = 14 ± 2μM; Ponsioen et al., 2004). mCherry-obelin was cloned between the 

NheI and XbaI sites of pcDNA3.1/zeo(+). The obelin biosensor consists of an amino-terminal mCherry joined by 5 

amino acid residue linker (GSAGT) to the obelin calcium-activated photoprotein (Illarionov et al., 2000). The obelin 

biosensor is a bioluminescent photoprotein derived from Obelia longissima that tightly binds the chromophore 

(coelenterazine) with oxygen to form a stable complex, which is activated upon binding 3 calcium ions (linear range 

of sensitivity: 100nM-100μM; Illarionov et al., 2000). 

 

Cell culture and transfections. HEK293S cells stably expressing human β2AR (Galandrin and Bouvier, 2006) (HEK-

HA-β2AR) were confirmed to express 3.17 ± 0.32 pmol/mg protein β2AR (whole cell binding with [3H]-

CGP12177A). Cells expressing high levels of human β2AR were selected for this study to enhance the signals 
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observed for weak partial agonists and inverse agonists. Cells were transiently co-transfected with EPAC biosensor 

(1500ng/1×106 cells) and mCherry-Obelin (1500ng/1×106 cells) using linear polyethylenimine (1mg/ml) 

(Polysciences, Warrington, PA) diluted in NaCl (150mM, pH 7.0) (PEI:DNA ratio 3:1) as described (Reed et al., 

2006). Cells were used 48h post-transfection for EPAC and obelin measurements. 

 

Phospho-ERK1/2 measurements:  Intracellular phospho-ERK1/2 was measured using the Surefire pERK kit (Perkin 

Elmer, Waltham, MA) using a modified protocol. HEK-HA-β2AR were plated into 96 well plates (50,000 cells/well) 

and grown for 32h. Cells were serum starved (DMEM; 0.5% FBS) for 18h prior to ligand stimulation. Increasing 

concentration of compounds, diluted in DMEM, were added at 37°C for the indicated times to generate full 

concentration-response curves. Kinetic assays were initially performed using a maximal concentration of ligands, to 

determine the optimal stimulation time for measuring concentration-response curves (2 or 4 min). Plates were placed 

on ice, medium aspirated and lysis buffer (proprietary mix included in the kit, 10μl/well) was added. Plates were 

frozen at -20°C for 18h to ensure complete cell lysis. Lysates were thawed, and a sample from each well (4μl) was 

transferred to a white 384 well ProxiPlate (Perkin Elmer). Activation buffer (1μl/well), reaction buffer (4μl/well) 

and AlphaScreen Protein A IgG beads (1:120 dilution) (Perkin Elmer) were mixed, then added to the lysates 

(5μl/well), in the dark. The lysates were incubated at 25°C for 18h, then the plates were read using the Fusion-αFP 

with excitation at 680nm (α-laser) and emission at 520-620nm. 

 

EPAC biosensor measurements:  HEK-HA-β2AR were co-transfected with the EPAC and mCherry-obelin 

biosensors (as described above) then replated into 96 well white CulturePlates (Perkin Elmer) (50,000 cells/well). 

Cells were serum starved (DMEM, 0.5% FBS) for 18h prior to stimulation. Wells were washed 1x PBS, 1x 

stimulation buffer (HBSS: 137mM NaCl, 5.4mM KCl, 0.25mM Na2HPO4, 0.44 mM KH2PO4, 1.8mM CaCl2, 

0.8mM MgSO4, 4.2mM NaHCO3, 0.2% (w/v) D-glucose, pH 7.4). Under basal conditions, the GFP10 and venus 

fluorescent proteins (FPs) are within close proximity, such that upon excitation of the GFP10 with a laser at 400nm, 

fluorescence resonance energy transfer (FRET) occurs between GFP10 and venus. The light emitted from both FPs is 

measured using emission filters set at 510nm (GFP10) and 533nm (venus) and FRET ratio (venus emission over 

GFP10 emission) determined. Upon activation of the EPAC biosensor, a conformational change within the biosensor 

causes GFP10 and venus to move away from each other, decreasing the FRET between these proteins. Thus, 
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increases in intracellular cAMP levels are observed as a decrease in the FRET ratio, whereas decreases in the 

intracellular cAMP levels results in an increase in the FRET ratio. Increasing concentrations of compounds, diluted 

in HBSS, were added to the wells at 37°C for the indicated times to generate full concentration-response curves. 

Kinetic assays were initially performed using a maximal concentration of ligands, to determine the optimal 

stimulation time for measuring concentration response curves (30 min) at 37°C. 

 

Obelin biosensor measurements:  HEK-HA-β2AR co-transfected with the EPAC biosensor and mCherry-obelin 

were replated, starved and washed as described for the EPAC measurements above. Cells were pre-incubated with 

the obelin substrate, coelenterazine cp, (1μM; 25°C) for 2h in the dark. Under basal conditions, a low level of 

calcium-independent luminescence is observed (Illarionov et al., 2000). Upon calcium binding, the photoprotein 

oxidizes coelenterazine cp, converting it to coelenteramide, releasing carbon dioxide and light in the blue range 

(465-495nm) (Illarionov et al., 2000). Therefore, with an increase in intracellular calcium levels, an increase in 

luminescence is observed. Compounds, diluted in stimulation buffer were injected into the wells, and luminescence 

measured using the SpectraMax L (Molecular Devices, Sunnyvale, CA). Full kinetics were determined for each 

concentration of ligand (60 sec), and concentration-response curves were determined from the peak calcium 

responses. 

 

Receptor endocytosis ELISA:  HEK-HA-β2AR (50,000 cells/well) were plated into white CulturePlates (Perkin 

Elmer) and grown for 32h, then serum starved (DMEM, 0.5% FBS) for 18h prior to endocytosis assay. Wells were 

washed 1x PBS, 1x stimulation buffer (HBSS: 137mM NaCl, 5.4mM KCl, 0.25mM Na2HPO4, 0.44 mM KH2PO4, 

1.8mM CaCl2, 0.8mM MgSO4, 4.2mM NaHCO3, 0.2% (w/v) D-glucose, 0.5% (w/v) bovine serum albumin, pH 7.4) 

(SB). Increasing concentration of compounds, diluted in HBSS, were added at 37°C for the indicated times to 

generate full concentration-response curves. Kinetic assays were initially performed using a maximal concentration 

of ligands, to determine the optimal stimulation time for measuring concentration-response curves (30 min). Plates 

were placed on ice, stimulation buffer aspirated and cells fixed with paraformaldehyde (3% w/v) for 10 min at 23°C. 

Cells were washed (3x 10 min, SB) before the addition of anti-HA-HRP (3F10; 1:3000) (Roche, IN, USA) (18h, 

4°C). Following, cells were washed (3x 10 min, SB), Vybrant dye (Invitrogen, 1:2000) was added (30 min, 25°C) 

and cells were washed again (3x 10 min, SB). Vybrant fluorescence was measured with excitation at 480nm and 
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emission at 538nm auto cutoff 530nm using the FlexStationII (Molecular Devices), to control for the number of 

cells/well. Western lightning-plus ECL (Perkin Elmer) was added to the wells (50μl/well) and incubated for 1 min in 

the dark, then chemiluminescence was measured for 1 sec/well in the SpectraMaxL (Molecular Devices) 

 

Preparation of ligands:  All ligands were prepared from powder immediately prior to each experiment, in vehicle 

and used immediately. All compounds were diluted from stock solutions (10mM) into stimulation buffer (HBSS 

(cAMP, calcium and ELISA assays) or DMEM (ERK1/2 assays).  Since ISO is susceptible to oxidation, ascorbate is 

often used to prevent oxidation. However, we elected not to systematically use ascorbate in our experiments.  

because we found that low concentrations of ascorbate (34nM) directly activate ERK1/2 signaling in HEK-HA-

β2AR cells in a rapid and transient manner (Supplemental Figure 1). This would have a significant impact on the 

quantification of signaling biases of the adrenergic ligands at the β2AR. To confirm that the oxidation of ISO in the 

experiments had no significant effect on the cAMP assay (the assay with the longest duration; 30 min), the kinetics 

and concentration-response curves to ISO were compared in stimulation buffer with or without ascorbate (0.1mM) 

(Supplemental Figure 2).  Since no significant effect was observed on the ISO-stimulated cAMP responses with or 

without ascorbate, we concluded that there would be no impact on the bias calculations if ascorbate was excluded 

from the stimulation buffer.  

 

Data Analysis:  For each assay, data were normalized as percentage of the maximal isoproterenol-stimulated 

response. All values are expressed as mean ± standard error of the mean of n experiments. The operational model 

(Black and Leff, 1983) was used to determine the transduction ratios (τ/KA) of the agonists using equation 5, 

derived from the standard form of the operational model by equations 1: 

� � ����� �
����������	�
���

	�
����
�����
�

    EQN 1 

Where the ‘Basal’ parameter was added for fitting non-zero basal responses. Dividing through by KA yields the τ/KA 

ratio by equation 2: 
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� � ����� � ����������	 �
��
����	 �

��
�����	�������
�     EQN 2 

The τ/KA was redefined as the single fitted parameter, R such that: 

� � ����� � ���������������������	�������
�     EQN 3 

The equation was then simplified by dividing above and below by Rn[A]n by: 

� � ����� � ����������
���������	
����� �

�     EQN 4 

For curve-fitting purposes, the parameters, KA and R were re-cast as logarithms (i.e., 10LogKA,10LogR), yielding the 

final equation used for direct curve-fitting: 

� � ����� � ����������
���� ���


������	
�

�������� �

�    EQN 5 

where E is the effect of the ligand, [A] is the concentration of agonist, Em is the maximal possible response of the 

system, Basal is the basal level of response in the absence of agonist, LogKA denotes the logarithm of the functional 

equilibrium dissociation constant of the agonist, n is the slope of the transducer function that links occupancy to 

response, and LogR is the logarithm of the “transduction coefficient” (or “transduction ratio”), τ/KA, where τ is an 

index of the coupling efficiency (or efficacy) of the agonist. For more details, see Evans et al. (2011), Kenakin et al., 

(2012) and Kenakin and Christopoulos (2013). For the analysis, all families of agonist curves at each pathway were 

globally fitted to the model with the parameters, Basal, Em and n shared between all agonists. For full agonists, the 

LogKA was constrained to a value of zero1, whereas for partial agonists this was directly estimated by the curve 

fitting procedure. The LogR (i.e., log(τ/KA)) parameter was estimated as a unique measure of activity for each 

agonist. 

 

The relationship between the Black-Leff model and the parameters that describe the standard empirical logistic 

equation (i.e., EC50 and Emax) has been described previously (Black et al., 1985; Kenakin et al., 2012).  In brief,  
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��	��
 � ��������
/���     EQN 6 

and 

���� � ��������       EQN 7 

All data were analyzed using the non-linear curve fitting equations in Graphpad Prism (v6.0) to estimate the pEC50 

values of the curves for the different pathways. Ligand bias was quantified by analyzing the concentration-response 

curves using the operational model of agonism, as described previously (Evans et al., 2010; Kenakin et al., 2012) 

according to equation 5 (see appendix 1 for GraphPad Prism equations and fitting parameters). 

 

The assessment of true ligand bias requires the elimination of the influence of system and observation bias to the 

observed functional selectivity (Kenakin and Christopoulos, 2013). This is achieved by comparing ligand activity at 

a given signaling pathway to that of a reference compound. In our study, ISO was selected as the reference 

compound because it did not activate any of the four pathways through other adrenergic receptors, and had similar 

potencies toward all four signaling pathways. Thus, to determine the relative effectiveness of the compounds to 

activate the different signaling pathways, the difference between the log(τ/KA) values was calculated using equation 

8: 

∆�� � ���� � �� � ��������� � �� � �����!"    EQN 8 

The compounds’ effectiveness toward each pathway, relative to ISO, were calculated as the inverse logarithm of the 

Δlog(τ/KA) using equation 9: 

�������� ������������� � 10∆�$%	 �
��
    EQN 9 

Ligand bias was calculated using equations 10 and 11, as the difference between the Δlog(τ/KA) values derived from 

equation 8: 

∆∆�� � ���� �  ∆�� � ������:'� � ∆�� � ������:'�   EQN 10 

���� ������ �  10∆∆�$%	 �
��
    EQN 11 

where L1 is ligand 1, P1 is pathway 1 and P2 is pathway 2. 
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The standard error of the mean was calculated for the transduction ratios log(τ/KA) using equation 12 

��� � (√*     EQN 12 

where σ is the standard deviation and n is the number of experiments. To avoid propagation of the error through the 

multiple subtraction steps, the estimated standard errors for each ligand and each pathway were calculated using 

equations 13 and 14. 

��+∆�$%	 �
��
, � � �����!� �  �����!�    EQN 13 

��+∆∆�$%	 �
��
, � "#��+∆�$%	 �

��
,��:'�
$� � #��+∆�$%	 �

��
,��:'�
$�

  EQN 14 

where L1 is ligand 1, L2 is ligand 2, P1 is pathway 1 and P2 is pathway 2. A detailed set of instructions on how to 

calculate biases with examples taken from this study are included as appendix 1.  

 

Statistical analysis was performed using a two-way unpaired student’s t-test on the ΔLog(τ/KA) ratios to make 

pairwise comparisons between two pathways activated by a given ligand, where p<0.05 was considered to be 

statistically significant.  
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Results: 

Different potency and efficacy profiles were observed for adrenergic ligands toward 4 distinct signaling outputs: 

Initially, 17 β-adrenergic ligands currently used in various clinical indications (Javed and Deedwania, 2009; Ram, 

2010; Cruickshank, 1993; Eichhorn and Young, 2001; Castle et al., 1993) and 2 endogenous ligands were selected to 

assess their functional selectivity towards 4 signaling pathways: cAMP production, calcium mobilization, ERK1/2 

activation and receptor endocytosis (Tables 1 and 2). For reference purposes, the compounds, structures, binding 

affinities (from published radio-ligand binding studies), relative efficacies (previously reported for cAMP 

production), receptor subtype selectivity profile and clinical uses are provided for each compound (Table 1). The 

first step to quantify the ligand biases at the β2AR was to carefully select the test ligands and determine full 

concentration-response curves for the different pathways for all ligands. Second, signaling efficacy was analyzed 

using the operational model curve fitting parameters and finally ligand biases were calculated (see Methods and 

Appendix 1). The maximal response (Emax) and the potency (pEC50) for each compound demonstrate that each has a 

unique signaling signature (Table 2). 

 

Some adrenergic ligands activate signaling pathways through multiple adrenoceptor subtypes: 

Several compounds included in this study were reported to act at other adrenergic receptor subtypes (Table 1). To 

eliminate possible confounding effects resulting from activation of other endogenously expressed adrenergic 

receptors, a single concentration of each agonist (pEC50-pEC80 toward a particular signaling output) was tested in 

cells pre-treated (60 min) with adrenergic antagonists at concentrations that fully occupy the targeted receptors with 

marginal occupancy (less than 11% of β2AR occupancy for all ligands) of the other receptor subtypes (β1AR: CGP-

20712A (100nM, 11% occupancy at β2AR), β2AR: ICI 118,551 (100nM, 100% occupancy at β2AR), α1AR: 

prazosin (10nM, >0.01% occupancy at β2AR), α2AR: rauwolscine (100nM, 0.2% occupancy at β2AR)) (Figure 1). 

These compounds were selected for their lack of intrinsic efficacies on the pathways tested except for ICI 118,551, 

which was an inverse agonist towards cAMP (Supplemental Figure 3 and Table 2).  
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The responses for seven of the compounds (EPI, NE, ALP, PRO, ATEN, TIM, BET) were partially inhibited by a 

non-β2AR antagonist, suggesting that some of their activity originates from binding to a different adrenergic 

receptor subtype (Figure 1). While activation of the cAMP, calcium and endocytotic pathways by the agonist 

compounds were all β2AR specific, (defined by sensitivity to antagonism by ICI 118,151 but not CGP-20712A, 

prazosin, or rauwolscine), the ERK1/2 activation promoted by some of the compounds (EPI, NE, ALP and PRO) 

involved the α2AR (NE and EPI), α1AR (PRO) or both (ALP). To determine whether the endogenously expressed 

α1AR and α2AR could activate ERK1/2 signaling in the HEK-HA-β2AR cells, the effects of the α1AR agonist, 

phenylephrine (PE) and the α2AR agonist, UK14304 (brimonidine) were tested (Supplemental Figure 4). ERK1/2 

was activated by PE and UK14304 in the HEK-HA-β2AR cells, demonstrating that the endogenously expressed 

α1AR and α2AR were coupled to ERK1/2 signaling and could contribute to the overall ERK1/2 responses observed 

in the HEK-HA-β2AR cells. Although activation of multiple receptors contributes to the signaling textures of these 

ligands, the contribution of additional receptors to the response profile greatly complicates the interpretation of 

potential ligand-biased signaling through the β2AR (system bias). These ligands were excluded from further 

experiments and analysis in order to eliminate the “system bias” from the calculations of the true “ligand bias” at the 

β2AR. Several compounds (ATEN, TIM, NEB and MET) yielded weak (low efficacy or potency) inhibition of 

cAMP production, resulting in variability of the signal that made it difficult to clearly establish whether the 

responses were β2AR-specific. These inverse agonists, as well as BET (antagonized by prazosin), were also 

excluded from further analysis (Figure 1). Taken together, these data emphasize the importance of assessing the 

pharmacological target-based selectivity of the response studied before concluding that the different response 

profiles result from ligand biased signaling through a common receptor. 

 

To further assess the β2AR-selectivity of the remaining compounds, the ability of the β2AR selective ligand ICI 

118,551 to inhibit the concentration-dependent responses evoked by ISO, SALB, SALM, LAB, BUC, PIN, XAM, 

CARV, BIS and NAD was tested. As shown in Figure 2, pre-treatment with 10nM or 1μM ICI 118,551 right-shifted 

the cAMP concentration response curves to ISO, SALB, SALM, LAB, BUC and PIN in a manner characteristic of 

classical competitive antagonism. Similarly, the ERK1/2 responses promoted by ISO, SALB, SALM, LAB, BUC, 

PIN, XAM and CARV (Figure 3), the calcium mobilization induced by ISO, SALB and SALM (Figure 4) and the 
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endocytosis stimulated by ISO and SALB (Figure 5) were also antagonized by ICI 118,551. However, in some 

cases, the inhibition appeared non-competitive most likely due to the fact that ICI 118,551 did not fully dissociate 

from the receptor within the time frame of the functional assay (1-2 min). In any case, the ability of ICI 118,551 to 

right shift the concentration-response curves confirmed that these responses were mediated by the β2AR. Similarly, 

the fact that no further inhibition of the cAMP production could be promoted by BIS and NAD following the pre-

treatment with ICI 118,551 confirmed that these inverse agonist activities were β2AR specific and that ICI 118,551 

is an inverse agonist at the β2AR for the cAMP response (Figure 6). 

 

Based on their efficacy profiles (Table 2), the 10 compounds with β2AR-selective responses fall into 5 different 

clusters: 1. agonists for 4 pathways (ISO and SALB); 2. agonists for 3 pathways (SALM); 3. agonists for 2 pathways 

(LAB, BUC and PIN); 4. agonists for 1 pathway (XAM and CARV); 5. inverse agonists on 1 pathway (BIS and 

NAD). Each of these clusters is described in more detail below.  

 

Multifarious ligands activating four pathways (cAMP, ERK1/2, calcium and receptor endocytosis): 

Although four compounds activated all four pathways, β2AR-selectivity was only observed for two compounds, 

ISO and SALB (Figure 7A-B). To compare the relative efficacies of the compounds, ISO was used as the reference 

compound and all data were expressed as a percentage of the maximal stimulation promoted by ISO. Considering 

the potencies toward the different pathways, ISO showed no significant selectivity, with similar pEC50 values for the 

4 signaling modalities (Table 2; Figure 7A). In contrast, SALB had different potencies toward the different 

pathways; the rank order of potency being ERK>cAMP>calcium>endocytosis with a spread of more than 4 

logarithmic units difference between the most and least responsive signaling modalities (Table 2 and Figure 7B). 

The maximum agonist effects of SALB toward cAMP production and ERK1/2 activation were similar to ISO.  

However, SALB behaved as a partial agonist toward both calcium mobilization and endocytosis, resulting in 50% 

and 45% of the maximal ISO responses for these two pathways, respectively. These data demonstrate that SALB is a 

functionally selective ligand and also suggest that the 4 pathways downstream of the β2AR are, at least in part, 

independent from each other. 
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A ligand deficient in β2AR endocytosis: 

SALM was the only compound that activated cAMP, ERK1/2 and calcium without promoting β2AR endocytosis 

(Table 2 and Figure 7C). For the 3 other pathways, the order of potency for SALM was the same as that observed 

for SALB (ERK>cAMP>calcium). SALM was a full agonist toward ERK1/2 and cAMP but a partial agonist toward 

calcium (34% of the maximal isoproterenol-stimulated response), similar to what was observed for SALB.  

 

Ligands that activated two pathways (cAMP and ERK1/2): 

LAB, BUC and PIN all activated cAMP production and ERK1/2 but not calcium mobilization or β2AR endocytosis 

(Table 2; Figure 7D-F). LAB was significantly more potent toward the ERK1/2 than the cAMP pathway, with 

differences of 2 logarithmic units between the two pathways. LAB was a full agonist for the ERK1/2 pathway 

(107% of the ISO-stimulated response), but was a partial agonist for cAMP production (52% of the ISO-stimulated 

response) (Table 2; Figure 7D). In contrast to LAB, PIN and BUC had similar potencies toward the two pathways. 

PIN was a partial agonist toward the cAMP and ERK1/2 pathways (18% and 62% of the ISO-stimulated response, 

respectively) whereas BUC was a partial agonist toward cAMP but a full agonist toward ERK1/2 (62% and 107% of 

the ISO-stimulated response, respectively) (Table 2; Figure 7E-F). In addition, BUC and PIN promoted bell-shaped 

ERK1/2 responses, indicating that at higher concentrations they inhibit this pathway, thus further distinguishing 

them from the other ligands. 

 

Agonists or inverse agonists that activated (ERK1/2) or inhibited (cAMP) only one pathway: 

XAM and CARV were neutral ligands toward all pathways, except for selectively activating ERK1/2 through the 

β2AR, indicating a very high level of functional selectivity (Figure 7G-H). XAM activated the ERK1/2 pathway to a 

similar extent as ISO (103% of the ISO-stimulated response) whereas CARV acted as a partial agonist (85% of the 

ISO-stimulated response). CARV promoted a biphasic activation profile similar to those observed for BUC and PIN, 

in contrast to XAM that activated ERK1/2 in a monophasic manner. The activation of the ERK1/2 signaling 

pathway, in the absence of any of the other signaling modalities, suggests that β2AR-promoted ERK1/2 activation 

was independent from cAMP production, calcium mobilization or receptor endocytosis. In contrast to the lack of 

significant CARV-stimulated endocytosis that we observed (6.7±12.0%), CARV was previously shown to induce a 

small yet statistically significant β2AR internalization (5.5±1.7%) in HEK293 cells (Wisler et al., 2007). Yet, as in 
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the present study, the CARV-induced endocytosis was found to be marginal when compared to the ISO-stimulated 

internalization (38.7±3.5% in Wisler et. al., 2007 and 53.6±2.7% in our study). Thus the difference between the two 

studies is quantitative and not qualitative and probably due to a different sensitivity of the assays used to measured 

endocytosis. 

 

Although six compounds were inverse agonists for the cAMP pathway, only two compounds (BIS and NAD) were 

selectively acting at the β2AR (Figure 1). When compared to the maximal stimulatory activity of ISO, NAD and 

BIS promoted inhibitory responses of -34% and -13%, respectively (Figure 7I-J).  

 

Quantification of ligand bias: 

As shown in table 2, the potencies and efficacies toward the different pathways varied significantly among the 

compounds, suggesting the occurrence of biased signaling. In order to quantify this bias, we applied the operational 

model to derive transduction ratios (τ/KA) as a distillation of the effect of the compounds on receptor conformations 

underlying the different signaling modalities. The transduction ratios and resulting bias factors are shown in tables 3 

and 4. Since ISO displayed similar potencies and hence, similar (τ/KA) ratios between pathways, this was utilized as 

the reference agonist against which all within-pathway comparisons to the other agonists were made (Δlog(τ/KA)). 

The responses to ISO for all four pathways yielded similar potencies, revealing ISO as functionally distinct from the 

other test compounds. Since the potencies for ISO towards all pathways were similar, the variable potencies 

observed for the other ligands could not be attributed to differences in the level of amplification between the 

signaling pathways nor the assay sensitivity. These features of ISO made it an ideal candidate for a reference 

compound at the β2AR, and a better choice than EPI, the endogenous ligand for the β2AR, since EPI activated 

ERK1/2 via endogenously expressed αARs in addition to the overexpressed β2ARs (Figure 1). As previously 

highlighted (Kenakin and Christopoulos, 2013), ligand bias is a relative term; without comparison to a reference 

agonist to cancel out the influence of system and observation biases, true ligand bias cannot be determined. 

Subsequently, between-pathway comparisons were made for a given ligand in the form of the final bias factor 

(ΔΔlog(τ/KA)). Since ISO oxidizes, it was important to verify that any signaling bias calculated in reference to this 

compound did not result from a change in the actual concentration during the course of the experiment. For this 

purpose, time- and dose-dependent ISO-promoted cAMP production was monitored by the EPAC biosensor in the 
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presence and absence ascorbate. As shown in Supplemental Figure 2, the addition of ascorbate did not significantly 

affect either the kinetics or the dose response curves obtained. Since cAMP was the assay involving the longest time 

of incubation, the oxidation of isoproterenol did not influence the ligand biases calculated in the present study. This 

suggests that in the time frame of the experiments (30 min) and at the temperature used (37°C), only marginal 

oxidation occurs.  

 

Comparison of the bias factors for each ligand between the different pathways revealed that, relative to ISO, many 

ligands were biased for the ERK1/2 pathway over the cAMP pathway, the cAMP pathway over calcium 

mobilization, whereas there was no bias for calcium over β2AR endocytosis (Figure 8 and Table 4). Together, this 

suggests that there was a rank order of pathway bias for all of the compounds tested at the β2AR 

(ERK>cAMP>calcium=endocytosis). LAB was the compound with the strongest bias toward the ERK1/2 over 

cAMP, activating ERK1/2 signaling 1108-fold better than cAMP signaling. SALB and SALM for their part were 

62- and 19-fold better at activating ERK1/2 than cAMP, respectively (Table 4). The biases of SALB and SALM 

toward cAMP over calcium were 3- and 17-fold, respectively, whereas they were 183- and 316-fold for ERK over 

calcium (Table 4). SALB was 4-fold better at activating cAMP over endocytosis and 223-fold better at activating 

ERK1/2 than endocytosis. PIN and BUC that could activate only cAMP and ERK1/2 signaling were not 

significantly biased for either of the two pathways (Table 4). Bias factors were not calculated for all pathways for all 

ligands since the absence of stimulation of a pathway prevents the calculation of a τ/KA ratio. However, when a 

pathway was not activated by a ligand, it may be indicative that the bias was even greater than the largest bias that 

could be calculated between the two pathways considered. For example, CARV and XAM, which could activate 

ERK1/2 but not cAMP, calcium or receptor endocytosis (Table 2, Figure 3), may be activating ERK1/2 at least 

1108-fold better than cAMP, 316-fold better than calcium and 223-fold better than endocytosis. Alternatively, if the 

lack of effect is solely due to weak coupling efficiency, then any underlying bias may not be as extreme.  

 

Because the system used to test the bias would be predicted to influence the biases observed toward different 

pathways, as a result of the different relative concentration of the signaling partners and their responsiveness, we 

tested the cAMP and ERK1/2 responses in a different system for three compounds that showed a strong bias toward 

ERK1/2 vs. cAMP in the HEK-HA-β2AR cells. For this purpose we used the parental HEK293S cells that express a 
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very low level of β2AR. As can be seen in Supplemental Figure 5 and Supplemental Table 1, LAB could not evoke 

any detectable cAMP or ERK1/2 response in cells expressing such a low level of receptor. Both SALM and SALB 

did stimulate the two pathways, however, in contrast to what was observed in the over-expressing HEK-HA-β2AR, 

SALB was not biased toward either the ERK1/2 or cAMP pathways, whereas SALM was slightly biased toward 

ERK with an ERK-cAMP bias factor of 1.74 (Supplemental Tables 2 and 3). These results dramatically demonstrate 

the importance of the system in the observed bias.  
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Discussion: 

Functional selectivity is likely to be a widespread phenomenon underlying drug action at GPCRs. At the molecular 

level, this reflects ligand bias (‘biased agonism’), the ability of different ligands to stabilize distinct conformational 

ensembles of receptor-transducer pairs at the expense of others, the consequence being signal pathway-selectivity. 

Although relative bias is clearly a property of a given ligand-receptor couple it is also influenced by the system in 

which it is measured. To exploit ligand bias in a manner that can assist structure-activity studies or compound 

classification/selection strategies, it is necessary to utilize methods that remove observational biases on functional 

selectivity, as well as ensuring that the cell-based behavior truly reflects on-target, rather than off-target effects. Our 

study highlights both of these phenomena as well as the influence of the system on the observed biases.  

 

The systematic analysis outlined in this study, using nineteen β-adrenergic ligands and four distinct pathways 

(cAMP, ERK1/2 calcium and receptor endocytosis), revealed that despite overexpression of the target β2AR, many 

ligands have detectable efficacy towards other endogenously expressed adrenoceptors in HEK293S cells. Due to the 

confounding effects that the stimulation of more than one receptor subtype has on the signaling outcomes, biases 

cannot be determined for such ligands. Yet, this is useful information as these off-target effects may contribute to 

either the therapeutic efficacy or undesirable effects of drugs. 

 

For ligands acting selectively through the β2AR, the operational model revealed a rank order of pathway bias 

(ERK>cAMP>Ca=endocytosis) for three of the agonists tested (SALB, SALM, LAB,) relative to ISO. Compounds 

with neutral or inverse efficacies cannot be included in the formal bias analysis yet they are clearly favoring 

different receptor conformations than the agonists. The different signaling profiles, based on the ability of the 

compounds to activate specific pathways, clustered into five groups, potentially representing the propensity of each 

of these ligand groups to stabilize different receptor-effector complexes. Given that some compounds evoked 

biphasic concentration-response curves, one could also include this as a criteria to cluster the ligands into seven 

groups rather than five, to account for the unusual behavior of these ligands. Collectively, this study presents a 

framework for the quantitative evaluation of GPCR ligand bias in a manner that can facilitate more informed 

compound classification and, if implemented as a routine approach in drug discovery workflows, preclinical drug 

candidate selection.  
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One striking observation was that all compounds, except for BUC and PIN, were significantly biased for ERK1/2 

signaling over the other pathways relative to ISO. In addition, when a single pathway was activated by a ligand (e.g. 

CARV and XAM), it was always ERK1/2. The mechanism underlying such prevalence of the ERK1/2 pathway is 

unknown but could be explained by the fact that many effectors (Gαs, Gαi, β-arrestin) couple the β2AR to the 

ERK1/2 pathway (Azzi et al., 2003; Daaka et al., 1997; Keiper et al., 2004). Consistent with this notion, several of 

the compounds (BUC, PIN and CARV) activated ERK1/2 in a biphasic manner, a phenomenon that can result from 

ligand-promoted activation of several concurrent signaling pathways (Rovati and Nicosia, 1994; Dittman et al., 

1994). Of note, many ligands that activated ERK1/2 did so in the absence of any detectable endocytosis. Given the 

proposed role of β-arrestin (Azzi et al., 2003; Shenoy et al., 2006) and β-arrestin-mediated endocytosis (Daaka et al., 

1998) in the ISO-stimulated ERK1/2 activity, it will be of interest to determine the signaling pathways underlying 

the activation by ligands that do not promote endocytosis.   

 

For all compounds tested, calcium was a less preferred pathway being either weakly or not stimulated, even for 

compounds that maximally stimulated ERK1/2 or cAMP, indicating that this pathway is at least in part independent 

from the cAMP and ERK responses. The exact mechanism responsible for the calcium mobilization in the HEK-

HA-β2AR cells used in the present study is unknown, but could occur via a Gs-cAMP-EPAC-Rap2B-PLCε-

dependent pathway, as in HEK293 cells (Schmidt et al., 2001), a Gs-cAMP-PKA-dependent pathway, as in 

cardiomyocytes or rat hippocampal neurons (Zhang et al., 2001; Tzingounis et al., 2010) or via Gi, as in 

cardiomyocytes (Zhang et al., 2001).  Alternatively, it could be due to a crosstalk between the Gs-coupled β2AR and 

Gq-promoted IP3 productions as in mouse airway smooth muscle cells overexpressing the β2AR (McGraw et al., 

2003). Determining which pathway is responsible for the calcium responses observed in the present study as well as 

the molecular basis for the bias observed opens interesting new avenues.  

 

The importance of the system used to assess ligand biases was clearly illustrated by the difference in the bias values 

obtained in two cell lines expressing different β2AR levels.  Consistent with the notion that the effectiveness toward 

a given pathway is defined by the ligand’s affinity (KA) and the stimulus-effect (E/S) relationship (Black and Leff, 

1983) for this pathway, our data show different transduction ratios (Log(τ/KA)) for the two cell systems; the ERK1/2 
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pathway being more affected than cAMP. These changes were not equivalent for all ligands, consistent with the 

notion of bias. The specific mechanisms responsible for these system-dependent differences are not known but could 

be linked to the relative expression levels of the receptor vs. effectors, the constitutive activity or the desensitization 

state of the different components involved.  

 

The prevailing hypothesis to explain functional selectivity proposes that different ligands promote or stabilize 

different receptor conformation(s) with preferential affinities for subsets of effectors. Recent structural studies on the 

β2AR confirmed that different compounds stabilized distinct receptor conformations (Rasmussen et al., 2007; 

Wacker et al., 2010), consistent with this notion. However, the recent findings that the effectors contributed to the 

conformational changes undergone by a receptor and that these conformational changes were translated into altered 

affinities for the ligands (Rasmussen et al., 2011) suggest that assembly of receptor-effector complexes before ligand 

binding could contribute to functional selectivity. This hypothesis is supported by our study, where the distributions 

of potencies of a given compound for activation of distinct signaling pathways were observed to be as vast as four 

orders of magnitude (e.g. SALB potency for ERK1/2 vs. endocytosis).  

 

The influence that effector can have on receptor conformation and hence ligand affinity is taken into account by the 

approach used in the present study where the τ/KA ratios used to assess biases are derived directly from the 

concentration-response curves that take into account differences in ligand affinities for the different agonist-

receptor-effector complexes (Kenakin et al., 2012). This is different from other approaches using affinity (pKd) 

values derived from competition binding experiments against a single radioligand to calculate τ values. Indeed, such 

approaches assume that the affinity of the ligand for the receptor-effector complex is the same in the activation of all 

signaling pathways. Given that different affinity values can be obtained for a given compound when determined in 

competition against different radioligands (e.g. ISO pKd obtained when using different radioligands: [125I]-pindolol 

= 7.54 (Del Carmine et al., 2002); [3H]-CGP12177A = 6.64 (Baker, 2010); [3H]-epinephrine = 8.68 (U’Prichard et 

al., 1978)), the affinity of compounds toward a particular agonist-receptor-effector complex using a single binding 

affinity value may introduce a probe-dependency into the calculation of signaling bias. Using this approach SALM 

was biased for β-arrestin recruitment over cAMP signaling (Rajagopal et al., 2011), which is surprising given that 

SALM did not promote β2AR endocytosis measured by cell-surface ELISA (Table 2; Drake et al., 2008) or confocal 
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microscopy (Moore et al., 2007). This apparent paradox could result from the method used to calculate biases as 

suggested above. Alternatively, it could be explained if SALM stabilizes a β2AR-β-arrestin complex unable to 

endocytose. Consistent with this possibility, differences in biased agonism for β-arrestin recruitment vs. β-arrestin 

rearrangements were recently reported (Zimmerman et al., 2012). The differences could also be explained by the use 

of a chimeric β2AR-vasopressin 2 receptor in the Rajagopal (2011) study for the β-arrestin recruitment assays. 

 

Calculating bias factors for ligands and signaling pathways adds a new level of texture in examining drug responses. 

Examples of compounds with differences in their therapeutic activity, possibly resulting from functional selectivity, 

are starting to emerge (Violin et al., 2013). The present study has broadened the notion of ligand bias and expanded 

the information available regarding the efficacy of β-adrenergic ligands at the β2AR. In addition it provided a 

framework to systematically compare a large number of ligands for diverse signaling pathways. Further studies will 

be needed to establish the links between the signaling signatures, the therapeutic efficacy, the safety profiles and the 

chemical structures of the compounds in specific signaling clusters in physiologically relevant cell lines and whole 

animal models. This is still a significant challenge especially when considering the importance of the system used 

(e.g.: cell types, receptor and effector expression levels, etc…) to determine the signaling biases.  However, 

applying a systematic approach such as the one describe herein across different systems should allow the 

classification of compounds into functionally distinct clusters that should facilitate the design of drugs with 

increased therapeutic efficacy and reduced side effect profiles.  
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d) 1Due to model parameter redundancy, it is usually not possible to estimate separate τ or KA values for 

full agonists from direct fitting of the operational model to a full agonist concentration-response curve 

unless additional experimental manipulations are performed to provide information about other model 

parameters (e.g., receptor alkylation studies to reduce system maximum responsiveness and thus allow 

estimation of Em), or parameter values are constrained to prior known values.  However, the τ/KA ratio, 

as a single fitted parameter (‘R’ in the formulation used herein), can still be estimated from full agonist 
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operational model terms, the EC50 = KA/((2+ τ n)1/n-1) (Black et al., 1985).  For high efficacy agonists 
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operational model equation to an arbitrarily low “dummy” value, such as zero, ensures convergence of 

full agonist data to the correct τ/KA ratio (i.e., LogR parameter). 
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Figure Legends: 

 

Figure 1 – Selective adrenoceptor antagonists differentially block the EC50-80 of clinically relevant ligands 

toward the four signaling outcomes.  Cells were pre-treated (1h, 37°C) with selective adrenoceptor antagonists, 

CGP-20712A (β1AR; 100nM), ICI 118,551 (β2AR; 100nM), prazosin (α1AR; 10nM) or rauwolscine (α2AR; 

100nM) then treated with ISO (100nM cAMP; 10nM ERK1/2, 1µM calcium, 10µM endocytosis), EPI (3µM cAMP; 

10µM ERK1/2, 10µM calcium; 10µM endocytosis), NE (3µM cAMP; 3µM ERK1/2; 10µM calcium, 10µM 

endocytosis), SALB (1nM cAMP; 0.1nM ERK1/2, 10µM calcium, 10µM endocytosis), SALM (100nM cAMP; 

3nM ERK1/2; 10µM calcium), LAB (3nM cAMP; 1nM ERK1/2), ALP (1nM cAMP; 3nM ERK1/2), BUC (30nM 

cAMP; 10nM ERK1/2), PIN (10µM cAMP; 10nM ERK1/2), XAM (1µM ERK1/2), CARV (30nM ERK1/2), PRO 

(100nM ERK1/2), NEB (1µM cAMP), ATEN (10µM cAMP), TIM (1µM cAMP), BET (10µM cAMP), MET 

(10µM cAMP), BIS (10µM cAMP), NAD (10µM cAMP) (37°C). Responses were measured toward cAMP (30 

min), ERK1/2 (2-4 min), calcium (0-60 sec) and receptor endocytosis (30 min) following stimulation with test 

compounds. Data are the mean ± standard error of the mean of 4-6 independent experiments with repeats in 

duplicate.  The data were analyzed by one way ANOVA with a Dunnett post hoc test (comparing to the effect of the 

compound alone), where a is p<0.05 for cAMP, b is p<0.05 for ERK1/2, c is p<0.05 for calcium and d is p<0.05 for 

receptor endocytosis. 

 

Figure 2 – Increasing concentrations of the β2AR-selective antagonist, ICI 118,551, shifts the agonist-

stimulated concentration-response curves of cAMP.  Pre-treating cells with ICI 118,551 (10nM or 1μM; 60 min) 

right-shifted the concentration-response curves of the β2AR-selective ligands ISO (A), SALB (B), SALM (C), LAB 

(D), BUC (E), PIN (F) in a classically competitive manner. Data are the mean ± SEM of 5 independent experiments 

performed in triplicate. 

 

Figure 3 – Increasing concentrations of the β2AR-selective antagonist, ICI 118,551, shifts the agonist-

stimulated concentration-response curves of ERK1/2.  Pre-treating cells with ICI 118,551 (10nM or 1μM; 60 

min) right-shifted the concentration-response curves of the β2AR-selective ligands ISO (A), SALB (B), SALM (C), 
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LAB (D), BUC (E), PIN (F), XAM (G), CARV (H). Data are the mean ± standard error of the mean of 5 

independent experiments performed in triplicate. 

 

Figure 4 – Increasing concentrations of the β2AR-selective antagonist, ICI 118,551, shifts the agonist-

stimulated concentration-response curves of calcium.  Pre-treating cells with ICI 118,551 (10nM or 1μM; 60 

min) right-shifted the concentration-response curves of the β2AR-selective ligands ISO (A), SALB (B) and SALM 

(C). Data are the mean ± standard error of the mean of 3 independent experiments with repeats in triplicate. 

 

Figure 5 – Increasing concentrations of the β2AR-selective antagonist, ICI 118,551, shifts the agonist-

stimulated concentration-response curves for receptor endocytosis.  Pre-treating cells with ICI 118,551 (10nM 

or 1μM; 60 min) right-shifted the concentration-response curves of the β2AR-selective ligands ISO (A) and SALB 

(B). Data are the mean ± standard error of the mean of 3 independent experiments with repeats in triplicate. 

 

Figure 6 – Increasing concentrations of the β2AR-selective antagonist, ICI 118,551, did not shift the inverse 

agonist-stimulated concentration-response curves of cAMP.  Pre-treating cells with ICI 118,551 (10nM or 1μM; 

60 min) did not shift the concentration-response curves for NAD (A) or BET (B), which were identified as inverse 

agonists toward cAMP, due to the inverse agonist activity of ICI 118,551 that itself decreased the cAMP levels 

following pre-treatment of the cells (60 min). Data are the mean ± standard error of the mean of 4-6 independent 

experiments performed in triplicate. 

 

Figure 7 – The profiles of the adrenergic ligands fall into 5 distinct clusters based on their efficacy and 

potency toward the 4 different signaling pathways. Cells were stimulated with increasing concentrations of ISO 

(A), SALB (B), SALM (C), LAB (D), BUC (E), PIN (F), XAM (G), CARV(H), BIS (I) and NAD (J). Responses to 

the different signaling pathways were measured: cAMP using EPAC biosensor (37°C; 30 min), ERK1/2 with the 

Surefire pERK1/2 kit (37°C; 2 or 4 min), calcium with the obelin biosensor (25°C, 0-60 sec) and receptor 

internalization by cell surface ELISA (37°C, 30 min). Data are the mean ± standard error of the mean of 3-6 

independent experiments with repeats in triplicate. 
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Figure 8 – Adrenergic ligands are predominantly biased toward ERK1/2 signaling. Bias factors were calculated 

from the agonist concentration-response curves (shown in figure 7) using the operational model (see Appendix 1). 

The ΔΔLog(τ/KA) value is indicated on top of the bars. Log(bias factor) of the ligands demonstrate that SALB 

(purple bars), SALM (red bars) and LAB (light blue bars) were strongly biased toward the ERK1/2 pathway over all 

other pathways. BUC (yellow bar) and PIN (orange bar) were not biased toward either the ERK1/2 or cAMP 

signaling. There was no bias observed between the calcium and endocytosis for SALB. Data are the mean of 3-6 

independent experiments with repeats in duplicate or triplicate. 
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Table 1 – Clinically relevant compounds selected for the study.  The 19 adrenergic compounds initially selected for this study are listed in alphabetical order. Their binding affinities (pKD) toward the β2AR were determined using [125I]-

cyanopindolol, [125I]-pindolol or [3H]-CGP-12177A in cell lines overexpressing the β2AR or in tissues endogenously expressing the β2AR.  The potencies (pEC50) of these compounds toward cAMP signaling, is also shown.  The compound 

structures, their selectivity for the different adrenergic receptor subtypes and their clinical uses are also indicated. 

Compound pKD (range) pEC50 (range) Compound Structure Classification Clinical uses 

Alprenolol 8.92-9.111, 5, 7 ↑ 9.0814 

↓ 8.1718 

 

Non-selective βAR antagonist Hypertension, angina, arrhythmia. 

S(-)-Atenolol 5.08 - 5.991, 5 ↓ 5.62-6.6314, 15 

 

Selective β1AR antagonist Hypertension, chronic stable angina, ischemic heart disease (IHD), post-myocardial infaction9, 10, 12 

Betaxolol 7.381 NT 

 

Selective β1AR antagonist Hypertension, Glaucoma9, 10, 12 

Bisoprolol 5.94 - 6.701, 5, 7 ↓ 6.51-6.7014, 15 

 

Selective β1AR antagonist Hypertension, angina, IHD, heart failure9, 12 

Bucindolol 8.926, 8 ↑ 9.408 

 > 5.0015
 

 

Non-selective βAR antagonist Heart failure21 

Carvedilol 9.02 – 9.401, 5, 6 ↑ 9.1014 

>5.0015 
 

α1AR and βAR antagonist Hypertension, IHD, heart failure, post-MI9, 10, 12 

(-)-Epinephrine 5.99- 6.544, 5, 7, 8 ↑ 7.74 – 8.228, 13,17 

 

Non-selective endogenous αAR 

and βAR agonist 

Allergic reactions, asthma, cardiac failure, hemorrhage, shock11, hypotension24 

(-)-Isoproterenol 6.34 – 7.544, 5, 7, 8 ↑ 7.60 – 9.258, 13, 15, 16, 18 

 

Non-selective βAR agonist Allergic reaction, bronchodilation and heart stimulant. 

Labetalol 7,71 - 8.031, 2, 7 ↑ 8.08 – 8.1714, 15 

↓ 7.2118  

α1AR and βAR antagonist Hypertension, hypertensive emergencies9, 10, 12 

(±)-Metoprolol 5.52 - 6.891, 5 ↓ 6.53 – 7.2214, 15 

 

Selective β1AR antagonist Angina, hypertension, heart failure, post-MI, IHD, migraine9, 12 

Nadolol 8.601 ↓ 20
 

 

Non-selective βAR antagonist Hypertension, IHD, arrhythmias, migraine, thyrotoxicosis, angina9, 12 

Nebivolol 7.31 - 7.922, 8 NR8 – ↓ 7.0521 
 

Selective β1AR antagonist, also Hypertension, heart failure10, 12 
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activates nitric oxide pathway. 

(-)-Norepinephrine 4.19 – 5.414, 5, 7, 8 ↑5.61 – 7.468, 13, 17 

 

Non-selective endogenous αAR 

and βAR agonist 

Severe hypotension24 

Pindolol 8.32 – 9.322, 5, 7, 8 ↑ 8.96±0.0614 

↓ 7.44±0.0818 

 

Non-selective βAR antagonist Hypertension9 

(±)-Propranolol 9.08 – 9.371, 5, 6, 7 ↓ 8.10 – 9.1714, 15 

 

Non-cardioselective βAR 

antagonist 

Hypertension, angina, atrial arrhythmia, portal hypertension, anxiety, tremor, thyrotoxicosis, migrane9, 12 

Salbutamol 5.66 – 6.421, 5, 7, 8 ↑ 7.10 – 7.728, 13 

 

Selective β2AR agonist Asthma, chronic obstructive pulmonary disease19 

Salmeterol 7.61 – 9.261, 5, 8 ↑ 8.74 – 9.898, 13 

 

Selective β2AR agonist Asthma, chronic obstructive pulmonary disease, allergy19 

Timolol 9.681 ↓ 8.00 – 8.8914, 18 

 

Non-selective βAR antagonist. Hypertension, glaucoma, IHD, migraine, post-MI9, 12 

Xamoterol 5.55 - 6.071, 3, 7 ↑7 

 

Selective β1AR partial agonist Myocardial ischemia, mild-moderate heart failure23. 

References: 1(Baker et al., 2005); 2(Pauwels et al., 1988); 3(Isogaya et al., 1999); 4(Frielle et al., 1988); 5(Hoffman et al., 2004); 6(Ponicke et al., 2002); 7(Del Carmine et al, 2002); 8(Baker, 2010); 9(Helfand et al., 2007); 10(Ram, 2010); 11(McLean-

Tooke, 2003) 12(Baker et al., 2011); 13(Elster et al., 2007); 14(Baker et al., 2003); 15(Galandrin and Bouvier, 2006); 19(Violin et al., 2008); 17(Liapakis et al., 2004); 18(Chidiac et al., 1994); 19(Castle et al., 1993); 20(Peng et al., 2011); 21(Pauwels et 

al., 1991); 22(Smart et al., 2011); 23(Cruickshank, 1993); 24(Ferguson-Myrthil, 2012) 
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Table 2 – Potencies, relative efficacies (Emax) and kinetics of activation of cAMP, ERK1/2, calcium signaling pathways and receptor endocytosis by 

adrenergic ligands.  HEK-HA-β2AR cells were stimulated with different concentrations of clinically relevant adrenergic ligands and responses were measured 

for 4 distinct signaling pathways (cAMP, 30min; ERK1/2, 2 or 4 min; calcium 0-60 sec and endocytosis 30 min). The negative pEC50 values reported for some 

ligands mean that the curve was biphasic, and these are the pEC50 values for the part of the curve following the Emax. Data are the mean ± standard error of the 

mean of 4-6 independent experiments with repeats in duplicate.  

 

Ligand 

cAMP pERK1/2 Ca2+ Endocytosis 

pEC50 Emax 

(%ISO) 

t½ (min) pEC50 Emax 

(%ISO) 

Peak 

(min) 

pEC50 Emax 

(%ISO) 

Peak 

(sec) 

pEC50 Emax 

(%ISO) 

t½ (min) 

ISO* 8.23±0.15 100 2.54±0.18 7.95±0.13 100 4 7.47±0.21 100 18.0±1.08 7.88±0.26 100 7.64±0.04 

EPI 7.78±0.23 74.04±6.19 1.64±0.05 6.79±0.19 157.7±14.13 2 6.82±0.08 112.0±4.10 17.4±0.87 7.26±0.16 115.5±6.24 12.26±0.02 

NE 7.08±0.25 88.32±8.53 1.74±0.16 6.48±0.12 154.6±9.26 2 6.21±0.24 58.01±9.43 21.7±1.32 5.64±0.30 90.00±12.5 12.40±0.04 

SALB* 9.08±0.31 111.3±10.5 2.29±0.12 10.81±0.28 87.16±5.89 2 7.72±0.28 50.93±4.50 19.8±0.46 5.93±0.31 44.94±6.86 5.62±0.34 

SALM* 8.63±0.20 105.5±6.11 1.94±0.14 10.14±0.23 74.39±5.28 2 5.80±0.39 34.45±6.10 30.9±2.86 >4.00 NR NR 

LAB* 7.82±0.23 51.84±3.73 2.61±0.38 10.28±0.28 111.9±7.52 4 >4.00 NR NR >4.00 NR NR 

BUC* 8.64±0.38 62.07±7.48 2.45±0.16 8.51±0.41 

-4.86±0.26 

107.2±22.1 2 >4.00 NR NR >4.00 NR NR 

ALP 9.81±0.39 35.76±3.70 2.64±0.61 9.54±0.28 

-6.63±0.34 

102.3±5.71 4 >4.00 NR NR >4.00 NR NR 

PIN* 9.50±0.49 18.43±2.51 0.96±0.14 8.90±0.48 

-5.76±0.34 

81.55±19.86 4 >4.00 NR NR >4.00 NR NR 

XAM* >4.00 NR NR 6.58±0.22 102.7±8.63 4 >4.00 NR NR >4.00 NR NR 
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PRO >4.00 NR NR 7.87±0.13 

-5.79±0.44 

77.28±7.18 4 >4.00 NR NR >4.00 NR NR 

CARV* >4.00 NR NR 7.98±0.12 

-5.68±0.35 

88.55±12.47 4 >4.00 NR NR >4.00 NR NR 

ICI 7.95±0.45 -35.46±5.39 14.15±0.13 >4.00 NR NR >4.00 NR NR >4.00 NR NR 

BIS 6.96±0.77 -18.25±5.04 6.50±1.01 >4.00 NR NR >4.00 NR NR >4.00 NR NR 

BET* 6.75±0.42 -39.80±10.8 5.42±2.69 >4.00 NR NR >4.00 NR NR >4.00 NR NR 

MET 6.87±0.55 -39.00±9.46 6.68±2.46 >4.00 NR NR >4.00 NR NR >4.00 NR NR 

NEB 7.46±0.57 -13.79±4.04 17.48±3.94 >4.00 NR NR >4.00 NR NR >4.00 NR NR 

NAD* 8.24±0.37 -34.07±7.80 3.48±1.57 >4.00 NR NR >4.00 NR NR >4.00 NR NR 

ATEN 5.44±0.44 -49.38±10.9 7.77±1.99 >4.00 NR NR >4.00 NR NR >4.00 NR NR 

TIM 8.81±0.40 -44.45±5.28 4.47±0.11 >4.00 NR NR >4.00 NR NR >4.00 NR NR 

* indicates the compounds that were selectively signaling via the β2AR. 
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Table 3 – Transduction ratios (log(τ/KA)) of adrenergic agonists at the β2AR.  HEK-HA-β2AR cells were stimulated with different concentrations of β2AR-

selective ligands and responses were measured for 4 distinct signaling pathways.  Data were analyzed by non-linear regression using the Operational Model 

equation (see appendix 1) in Graphpad Prism v6 to determine the LogR values (equivalent to log(τ/KA) ratios). Δlog(τ/KA) ratios were calculated from the 

log(τ/KA) ratios considering ISO as the reference ligand using equation 8.  The relative effectiveness (RE) of the ligands toward each pathway, relative to ISO, 

was determined by equation 9.  The standard error was estimated using equation 13.  Data are the mean ± standard error of the mean of 3-6 independent 

experiments with repeats in duplicate. Data were analyzed in a pairwise manner using a two-tailed unpaired student’s t-test (on the Δlog(τ/KA) ratios) to 

determine the significance of the relative effectiveness. 

 

Ligand 

cAMP ERK1/2 Ca2+ Endocytosis 

Log(τ/KA) ΔLog(τ/KA) RE Log(τ/KA) ΔLog(τ/KA) RE Log(τ/KA) ΔLog(τ/KA) RE Log(τ/KA) ΔLog(τ/KA) RE 

ISO 7.65±0.15 0.00±0.22 1.00 7.37±0.19 0.00±0.27 1.00 7.00±0.27 0.00±0.39 1.00 7.24±0.16 0.00±0.23 1.00 

SALB 8.77±0.31 1.13±0.35 13.40* 10.29±0.34 2.92±0.39 829.91* 7.66±0.36 0.66±0.46 4.54 7.81±0.28 0.57±0.32 3.73 

SALM 8.74±0.17 1.09±0.23 12.29* 9.74±0.29 2.37±0.35 233.98* 6.87±0.26 -0.13±0.38 0.74 ND ND ND 

LAB 8.24±0.29 0.59±0.33 3.89 11.01±0.03 3.63±0.20 4307.91* ND ND ND ND ND ND 

PIN 8.50±0.82 0.85±0.84 7.08 7.41±0.03 0.04±0.20 1.09 ND ND ND ND ND ND 

BUC 8.11±0.07 0.46±0.17 2.87* 7.35±0.10 -0.02±0.22 0.96 ND ND ND ND ND ND 

XAM ND ND ND 8.39±0.48 1.02±0.52 10.47 ND ND ND ND ND ND 

CARV ND ND ND 6.05±0.08 -1.32 ±0.21 0.05* ND ND ND ND ND ND 

Where ND means not determined. * p<0.05

T
his article has not been copyedited and form

atted. T
he final version m

ay differ from
 this version.

M
olecular Pharm

acology Fast Forw
ard. Published on D

ecem
ber 23, 2013 as D

O
I: 10.1124/m

ol.113.088880
 at ASPET Journals on April 9, 2024 molpharm.aspetjournals.org Downloaded from 

http://molpharm.aspetjournals.org/


MOL #88880 

42 

Table 4 – ΔΔlog(τ/KA) ratios and bias factors for adrenergic agonists at the β2AR.  HEK-HA-β2AR cells were stimulated with different concentrations of 

clinically relevant β2AR-selective ligands and responses were measured for 4 distinct signaling pathways. ΔΔlog(τ/KA) ratios were calculated from the 

Δlog(τ/KA) ratios (Table 3) using equation 10. The ligand bias factors (BF), relative to ISO, were determined using equation 11. The standard error was 

estimated using equation 14. Data are the mean ± standard error of 3-6 independent experiments with repeats in duplicate. Data were analyzed in a pairwise 

manner using a two-tailed unpaired student’s t-test (on the Δlog(τ/KA) ratios) to determine the significance of the ligand biases. 

 ERK1/2-cAMP ERK1/2-Ca2+ cAMP-Ca2+ Ca2+-Endocytosis cAMP-Endocytosis ERK1/2-Endocytosis 

Ligand ΔΔLog(τ/KA) BF ΔΔLog(τ/KA) BF ΔΔLog(τ/KA) BF ΔΔLog(τ/KA) BF ΔΔLog(τ/KA) BF ΔΔLog(τ/KA) BF 

ISO 0.00±0.34 1.00 0.00±0.48 1.00 0.00±0.44 1.00 0.00±0.45 1.00 0.00±0.32 1.00 0.00±0.35 1.00 

SALB 1.79±0.52 61.92* 2.26±0.60 182.89* 0.47±0.57 2.95 0.09±0.56 1.22 0.56±0.48 3.60 2.35±0.50 222.73* 

SALM 1.28±0.42 19.03* 2.50±0.51 315.56* 1.22±0.44 16.58* ND ND ND ND ND ND 

LAB 3.04±0.0.38 1108.07* ND ND ND ND ND ND ND ND ND ND 

BUC -0.48±0.0.27 0.33 ND ND ND ND ND ND ND ND ND ND 

PIN -0.81±0.86 0.15 ND ND ND ND ND ND ND ND ND ND 

Where ND means not determined due to lack of a concentration-response curve at the concentrations of the ligand tested. *p<0.05 
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