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A; MRTF-B – Myocardin-related transcription factor-B; NFkB - Nuclear factor kappa-light-chain-
enhancer of activated B cells; PAR1 – Protease activated receptor 1; PI3K – Phosphoinositide 3 
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PIP3 - Phosphatidylinositol (3,4,5)-trisphosphate; PKD – Protein kinase D; PLC– 
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ROCK – Rho kinase; RunX2 - Runt-related transcription factor 2; S1P – Sphingosine-1-
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TEAD/ TEF – Transcriptional enhancer factor; TXA2 – Thromboxane A2; VEGFR2 – Vascular 
endothelial growth factor receptor 2; Wnt – Wnt proto-oncogene; YAP – Yes associated protein
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ABSTRACT 

The low molecular weight G-protein RhoA serves as a node for transducing signals 

through G-protein coupled receptors (GPCRs). Activation of RhoA occurs through 

coupling of G-proteins, most prominently G12/13, to Rho guanine nucleotide exchange 

factors. The GPCR ligands that are most efficacious for RhoA activation include 

thrombin, lysophosphatidic acid (LPA), sphingosine-1-phosphate (S1P) and 

thromboxane A2 (TXA2).  These ligands also stimulate proliferation, differentiation and 

inflammation in a variety of cell and tissues types.  Most of these pleiotropic effects of 

GPCRs and RhoA can be dissociated from the cytoskeletal changes classically 

associated with RhoA signaling. Instead, the molecular events underlying these 

responses are the activation of transcription factors, transcriptional co-activators and 

downstream gene programs. This review describes the pathways leading from GPCRs 

and RhoA to the regulation of activator protein-1 (AP-1), nuclear factor kappa-light-

chain-enhancer of activated B cells (NFkB), myocardin-related transcription factor-A 

(MRTF-A) and Yes associated protein (YAP). We also focus on the importance of two 

prominent downstream transcriptional gene targets, the inflammatory mediator 

cyclooxygenase-2 (COX-2) and the matricellular protein cysteine-rich angiogenic 

inducer 61 (CCN-1/Cyr61). Finally we describe the importance of GPCR induced 

activation of these pathways in the pathophysiology of cancer, fibrosis, and 

cardiovascular disease.    
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INTRODUCTION 
 
RhoA is a member of the Ras family of low molecular weight GTPases. It is activated 

through exchange of GDP for GTP catalyzed by specific guanine nucleotide exchange 

factors (GEFs). RhoA activation was initially shown to occur in response to serum 

stimulation (Ridley and Hall, 1992). It was subsequently established that ligands for G-

protein coupled receptors can also activate RhoA. Amongst the earliest studies were 

those demonstrating RhoA activation in neutrophils in response to the chemoattractant 

fMet-Leu-Phe (fMLP) (Huang et al., 2001). Further progress in this area was enabled by 

development of an assay to measure active (GTP-ligand) RhoA, taking advantage of its 

specific binding to the Rho binding domain (RBD) of one of its target proteins, rhotekin 

(Ren et al., 1999). Thrombin, thromboxane A2, lysophosphatidic acid (LPA) and 

sphingosine-1-phosphate (S1P) are GPCR ligands that have been well established as 

efficacious activators of RhoA (Djellas et al., 1999; Ishii et al., 2001; Moers et al., 2003; 

Nobes et al., 1995; Post et al., 1996; Siehler et al., 2001; Walsh et al., 2008a; Zhao et 

al., 2014). 

A seminal discovery regarding the mechanism by which GPCR signaling activates 

RhoA was published from the Sternweis lab in 1998 (Hart et al., 1998). These 

investigators demonstrated that the alpha subunit of G13, a member of the G12/13 family 

of G-proteins, was able to bind to and activate the p115RhoGEF, a guanine nucleotide 

exchange factor for RhoA. Additional work expanded the concept to demonstrate that 

other RhoGEFs were also regulated by G12/13 and, accordingly, GPCRs that coupled 

efficiently to  G12/13 proteins were those that activated RhoA (Tanabe et al., 2004). It is 

now known that the alpha subunit of Gq can also bind to and activate some RhoGEFs, 
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resulting in RhoA activation (Chikumi et al., 2002; Shankaranarayanan et al., 2010; 

Vaque et al., 2013) in addition to its better known and more dedicated effect on 

phospholipase C beta (PLCβ). 

Much of the early work on GPCRs and RhoA signaling focused on how activation of 

RhoA regulated cell shape, migration, and contraction (Hall, 1998; Kaibuchi et al., 

1999). Many of the cytoskeletal effects of RhoA signaling are mediated through Rho 

kinase (ROCK) which binds RhoA and catalyzes phosphorylation of its substrates 

including mDia1 (diaphanous-related formin 1) (Narumiya et al., 2009; Thumkeo et al., 

2013). Amongst the best studied and physiologically important contractile targets of 

RhoA and ROCK is the myosin binding subunit of a phosphatase which regulates 

myosin light chain phosphorylation and thereby alters calcium sensitivity and 

contractility of smooth muscle (Kitazawa et al., 1991). 

Treatment of fibroblasts with serum or LPA not only affects cell morphology but also   

induces cell proliferation and gene expression. The effects of RhoA on gene expression 

were established in early papers examining increases in the immediate early gene, c-

Fos, through serum response factor (SRF) (Hill et al., 1995; Wang et al., 1998). RhoA 

mediated c-Fos gene expression was determined not to be regulated through the 

previously described transcriptional coactivator, ternary complex factor (TCF) (Hill et al., 

1995). The transcriptional co-activator downstream of RhoA was identified as a member 

of the myocardin family of proteins, myocardin related transcription factor A (MRTF-A) 

(Cen et al., 2003; Miralles et al., 2003). MRTF-A and MRTF-B regulate genes involved 

in vascular smooth muscle differentiation (Wang et al., 2003) and this gene program 

can be stimulated through S1P and RhoA activation (Lockman et al., 2004). 
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Mechanisms of RhoA mediated MRTF-A activation will be detailed in the review that 

follows. 

GPCR ligands that signal through G12/13 and RhoA are efficacious mitogens, mimicking 

the effects of receptor tyrosine kinases such as EGF and those of serum (of which LPA 

and S1P are major components). One potential mechanism for the growth promoting 

effects of GPCRs is cross talk with or transactivation of EGF or other growth factor 

receptors. This type of mechanism has been convincingly demonstrated for LPA, ET-1, 

and thrombin (Arora et al., 2008; Daub et al., 1996). Independent of cross talk, however, 

we have demonstrated that thrombin stimulates the proliferation of human glioblastoma 

cells through activation of G12/13, RhoA, and subsequent regulation  of the transcription 

factor, activating protein-1 (AP-1) and its target genes  (Aragay et al., 1995; Majumdar 

et al., 1998; Post et al., 1996; Trejo et al., 1992; Walsh et al., 2008a). Our work and 

other studies examining regulation of AP-1 through RhoA are discussed in this review.    

The Rozengurt group first established that cyclooxygenase-2 (COX-2) is regulated by 

GPCR stimulation with gastrin-inducing peptide and linked this to RhoA signaling and 

activation of the transcription factor NFkB (Slice et al., 1999). The mechanism by which 

RhoA regulates NFkB was shown to involve signaling through protein kinase D (PKD). 

Studies exploring the molecular mechanisms by which RhoA signaling engages the 

NFkB pathway are detailed in this review and underscore the role for GPCR and RhoA 

mediated gene expression in inflammation.  

The most recent addition to the GPCR and RhoA mediated transcriptional network is 

Yes associated protein (YAP). YAP is a transcriptional co-activator that has been 
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implicated in regulation of cell size, proliferation and stem cell biology (Mo et al., 2014). 

Studies showing that LPA, S1P, thrombin, and carbachol activate YAP through RhoA 

have exciting implications regarding the role of GPCRs in cell fate determination as well 

as in cancer cell proliferation. 

GPCR and RHOA SIGNALING TO AP-1 

AP-1 activation  

A seminal early discovery in recognition that hormones working outside the cell could 

regulate gene expression came from studies of genes induced in response to phorbol 

esters and serum. These genes were determined to contain a short response element 

in their 5’ promoter that bound a transcription factor called AP-1 (Angel et al., 1987). 

This led to the important concept that signal transduction pathways involving second 

messengers and protein kinases have profound effects on gene expression. AP-1 is a 

transcription factor composed of hetero or homodimers of various members of the Fos 

and Jun family (Angel et al., 1987; Lee et al., 1987). Addition of serum or other growth 

promoting stimuli to HeLa cells results in induction of Jun and Fos family members, their 

dimerization to form AP-1, and AP-1 dependent gene transcription. Subsequent studies 

demonstrated that mitogen activated kinases (MAP kinases) could phosphorylate and 

regulate these transcription factors (e.g. that Jun kinase (JNK)  phosphorylated c-Jun 

and enhanced its transcriptional activity) (Karin, 1995). c-Fos and c-Jun are required for 

cell cycle progression as well as for  transformation by a variety of oncogenes (Pandey 

and Wang, 1995; Wisdom et al., 1999), implicating AP-1 and its regulators in growth 

control.  
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Studies carried out in our laboratory in 1992 were among the first to demonstrate that 

AP-1 was controlled by GPCR agonists. In particular we found that thrombin, which 

activates PAR1 in human 1321N1 glioblastoma cells, is an efficacious inducer of c-Jun 

and AP-1 mediated gene expression (Trejo et al., 1992). We observed approximately 7-

fold increases in AP-1 regulated luciferase gene expression in cells treated with 

thrombin. Notably, activation of the muscarinic receptor (mAChR) by carbachol did not 

elicit AP-1 mediated gene expression, which  required prolonged (4-12hr), rather than 

transient increases in c-Jun mRNA, JunB protein expression, and AP-1 DNA binding 

(Trejo et al., 1992). In subsequent studies we demonstrated that the mitogenic response 

of 1321N1 cells to thrombin was mediated through activation of G12/13, RhoA, and the 

AP-1 mediated target gene CCN1 (Aragay et al., 1995; Majumdar et al., 1998; Post et 

al., 1996; Walsh et al., 2008a). In contrast, activation of the endogenous 1321N1 cell 

mAChRs which couple to Gq and PLCβ (Evans et al., 1985; Masters et al., 1984)  did 

not activate RhoA, significantly increase c-Jun, induce CCN1 expression, or efficiently 

stimulate cell proliferation (Post et al., 1996; Trejo et al., 1992; Walsh et al., 2008a). 

While RhoA activation through Gq signaling is not as ubiquitous or dedicated a response 

as activation of RhoA through G12/13,  Gq  can couple to specific RhoGEFs and RhoA in 

some cancer cells or when overexpressed. Early work from the Gutkind laboratory using 

NIH3T3 cells overexpressing high levels of M1 muscarinic receptors (now known to 

couple to Gq) demonstrated the basic principle that GPCR signaling can induce cell 

proliferation (Gutkind et al., 1991). Further studies revealed that JNK was activated 

through mAChR stimulation as was the AP-1 reporter gene and that AP-1 activation 

occurred through MEF2 (Collins et al., 1996; Coso et al., 1995; Coso et al., 1997). 
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Gutkind’s group subsequently established a mechanism by which RhoA regulates c-Jun 

expression and AP-1 induction (Marinissen et al., 2004). The pathway examined in cells 

stimulated with LPA involved activation of JNK and phosphorylation of c-Jun and ATF2 

resulting in increases in c-Jun expression.  

CCN1 as an AP-1 target 

We subsequently carried out microarray analysis to uncover genes that were selectively 

regulated in response to AP-1 activation and could contribute to the mitogenic effects of 

thrombin. We looked for genes that were induced by thrombin but not carbachol and 

found, at the top of the list, a gene called Cyr61 (Walsh et al., 2008a). This protein, now 

called CCN1, is the founding member of the CCN gene family. CCN1 is highly and 

rapidly induced in 1321N1 glioblastoma cells stimulated through a subset of GPCRs. 

These GPCRs are distinguished by their ability to activate RhoA, and including not only 

PAR1, but also receptors for LPA and S1P (Walsh et al., 2008a; Walsh et al., 2008b; 

Zhao et al., 2014). Work from other laboratories supports the concept that activation of 

RhoA signaling in response to stretch or receptor ligands induces CCN1 gene 

expression (Han et al., 2003; Kim et al., 2013; Young et al., 2009). CCN1 is a 

matricellular protein that is secreted and resides in the extracellular matrix where it 

regulates cellular responses through interactions with integrins (Lau, 2011). We 

demonstrated that CCN1 expression and resulting integrin activation are required for 

thrombin stimulated proliferation of 1321N1 glioblastoma cells (Walsh et al., 2008a) and 

that induction of CCN1 contributes to S1P and RhoA mediated protection of 

cardiomyocytes against ischemic injury (Zhao et al., 2014). The importance of CCN1 as 

a target gene is indicated by these findings as well as by a wealth of evidence 
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implicating CCN1 in cancer cell proliferation, survival, and invasion (Jun and Lau, 2011; 

Lau, 2011). 

Early studies on CCN1 induction by GPCRs demonstrated its regulation by AP-1 (Han 

et al., 2003). S1P treatment led to rapid and robust increases in CCN1 expression in 

primary cultures of bovine smooth muscle cells. This response was dependent on Rho 

and ROCK signaling and shown to involve transcriptional regulation through an AP-1 

site as indicated by mutagenesis of the CCN1 promoter. Mechanistically, actin 

dynamics and p38 MAP kinase signaling were also implicated in the transcriptional 

response (Han et al., 2003). Other studies using vascular smooth muscle cells 

confirmed that S1P induced CCN1 through AP-1, and showed that this occurred  

through RhoA and  G12/13 but not Gq or Gi signaling (Kim et al., 2011). Our studies in 

glioblastoma cells also implicated AP-1 in CCN1 induction by GPCRs and RhoA (Walsh 

et al., 2008a). Thus, signaling from GPCRs to RhoA and c-Jun increases AP-1 activity 

to regulate gene expression, with CCN1 as a prominent example. Notably, however, 

CCN1 is highly regulated and its promoter is enriched in binding sites for a great 

number of transcription factors in addition to AP-1 (Jun and Lau, 2011; Walsh et al., 

2008b). Remarkably many of these are downstream targets of RhoA signaling (AP-1, 

NFkB, MRTF-A, YAP) thus, as discussed further, CCN1 induction may play an 

integrative role in responding to transcriptional signals from GPCR mediated activation 

of RhoA. In addition, since secreted CCN1 activates integrins and integrins signal to 

tyrosine kinases (Walsh et al., 2008a), this provides another mechanism (similar to 

EGFR activation) for GPCRs to engage and utilize parallel growth factor pathways. 
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GPCR AND RHOA SIGNALING TO NFkB  

NFkB regulation by RhoA  

Another transcriptional regulatory pathway shown to be regulated through RhoA 

signaling is that for nuclear factor kappa-light-chain-enhancer of activated B cells 

(NFkB). NFkB exists as a complex of two subunits (p50 and p65) and a third protein, 

IkB which prevents the dimer from translocating to the nucleus to activate gene 

expression (Verma et al., 1995). When IkB is phosphorylated by its upstream regulator 

IkB kinase (IKK) it dissociates from the complex and is targeted for proteasomal 

degradation, promoting nuclear localization of NFkB p50/p65 and transcriptional 

responses.   

Constitutively activated RhoA was shown to robustly increase the transcriptional activity 

of NFkB though increased phosphorylation of IkB (Perona et al., 1997). Others have 

suggested that RhoA signaling to NFkB is not mediated through the actions of the 

canonical upstream activator IKK (Cammarano and Minden, 2001). Some Rho 

GTPases (Rac1, Cdc42) regulate NFkB activation through a pathway involving the 

JNK/SAPK members of the MAP kinase family, but this was determined not to be the 

mechanism by which RhoA  signals to NFkB (Montaner et al., 1999). One downstream 

RhoA effector that has been implicated in RhoA mediated NFkB activation is Rho 

kinase (ROCK) (Benitah et al., 2003; Segain et al., 2003) however the molecular link 

between ROCK and NFkB activation is not clear.   

NFkB regulation by GPCRs 
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Agonists shown to activate NFkB through RhoA signaling include neurotensin (Zhao et 

al., 2003), bradykinin (Pan et al., 1998), gastrin releasing peptide (Slice et al., 2003), 

angiotensin (Cui et al., 2006), fMLP (Huang et al., 2001), thrombin (Dusaban et al., 

2013; Kang et al., 2005; Kawanami et al., 2011; Leonard et al., 2013), S1P (Siehler et 

al., 2001) and LPA (Hwang et al., 2006). 

S1P activates NFkB in human embryonic kidney (HEK293) cells through collaborative 

effects of RhoA and protein kinase C activation (Siehler et al., 2001). Collaborative 

signaling mechanisms are likely to be quite common since many receptors coupled to 

G12/13 and RhoA also couple to Gq and phospholipase C. Thus the S1P2 and S1P3 

receptors, which can couple either to G12/13 and Rho activation, or to Gq with subsequent 

phospholipase C activation, were found to be effectively linked to NFkB signaling; in 

contrast the S1P1 receptor, which couples exclusively to Gi, does not activate RhoA or 

NFkB signaling in most cells (Mutoh et al., 2012; Siehler et al., 2001). Protein kinase C, 

which is activated downstream of phospholipase C, has been demonstrated to enhance 

NFkB activation in T-cells through formation of a complex involving a scaffold of 

proteins including CARMA, Bcl10 and MALT1. A series of studies using a Bcl10 gene 

deletion, dominant negative proteins and siRNA demonstrated that these scaffolding 

proteins were also required for NFkB activation in response LPA, angiotensin II and 

endothelin-1 (Klemm et al., 2007; McAllister-Lucas et al., 2007; Wang et al., 2007). 

There is also some evidence that GPCRs lead to NFkB activation through RhoA 

mediated phosphorylation of the NFkB subunit, RelA/p65, as observed for angiotensin II 

in vascular smooth muscle cells (Cui et al., 2006) and thrombin in endothelial cells 

(Anwar et al., 2004).  
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The ability of GPCRs to activate RhoA through enhanced Gq signaling was mentioned 

earlier. In addition, hematopoietic cells have pathways for activation of RhoA through Gi. 

In human peripheral blood leukocytes the GPCR ligand fMLP activates RhoA through a 

pertussis toxin dependent (Gi) pathway which involves stimulation of PI3 kinase and 

effects of its product, PIP3, on a RhoA guanine nucleotide exchange factor (Huang et 

al., 2001). Thus in these cells NFkB is activated by fMLP through Gi but it is, as in the 

other systems discussed, blocked by functional inactivation of RhoA with its inhibitor C3 

toxin (Huang et al., 2001). The fundamental message is that multiple routes of GPCR 

induced RhoA activation in native cells can stimulate NFkB nuclear signaling. Whether 

this occurs through RhoA mediated increases in phosphorylation of IKK or of RelA/p65, 

and whether it involves protein kinase C or ROCK or other kinases remains to be 

clarified. 

NFkB activation through protein kinase D  

Another mechanism that could support the cooperative effects of RhoA and Gq or Gi 

signaling pathways on NFkB is through regulation of protein kinase D (PKD). PKD is a 

serine/threonine kinase that is activated by both diacylglycerol and protein kinase C (Fu 

and Rubin, 2011; Yuan et al., 2003).  Protein kinase D can be regulated through RhoA 

activation in response to thrombin and S1P (Dusaban et al., 2013; Xiang et al., 2013). 

The GPCR agonist bombesin was also shown to activate PKD through G13 (to RhoA) 

and Gq (to protein kinase C) (Yuan et al., 2001). PKD has been implicated in LPA 

induced NFkB activation in human colonic epithelial cells (Chiu et al., 2007) and in 

NFkB activation in response to thrombin and S1P in astrocytes (Dusaban et al., 2013). 

Moreover we identified the novel phospholipase C epsilon (PLCɛ) as the mediator 
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through which activation of RhoA leads to sustained PKD activation (Dusaban et al., 

2013; Xiang et al., 2013). How PKD activation regulates NFkB and whether it is involved 

in phosphorylation of IKK or RelA/p65 has not to our knowledge been examined.  

Phospholipase C epsilon in NFkB and cyclooxygenase-2 regulation 

Cyclooxygenase (COX-2), which converts arachidonic acid to prostaglandins and other 

eicosanoids that mediate inflammation, is rapidly induced as an immediate early gene in 

response to pro-inflammatory signals (Kujubu et al., 1991). S1P and thrombin effectively 

induce COX-2 through NFkB signaling (Dusaban et al., 2013; Ki et al., 2007; Syeda et 

al., 2006). Earlier studies also demonstrated COX-2 induction in response to expression 

of RhoA and its upstream regulators G13 and Gq (Slice et al., 1999). Neither cytoskeletal 

effects of RhoA nor tyrosine kinase activation mediated this response. COX-2 induction 

by RhoA was also shown to be independent of Ras and Rac activation (Slice et al., 

2000). As mentioned above, these same investigators linked RhoA and G12/13 signaling 

to protein kinase C and subsequent protein kinase D activation (Yuan et al., 2002; Yuan 

et al., 2003). A link between GPCR signaling to G12/13 and RhoA, and the subsequent 

activation of PKD, NFkB, and COX-2 was elucidated by recent work from our laboratory 

(Dusaban et al., 2013). 

RhoA is a direct activator of PLC(Seifert et al., 2004; Wing et al., 2003)We 

previously demonstrated that PLC is required for thrombin, S1P, and LPA induced PI 

hydrolysis as well as  thrombin mediated proliferation in murine astrocytes (Citro et al., 

2007). Astrocytes are major mediators of neuroinflammation induced by thrombin, LPA 

and S1P (Dusaban et al., 2013; Nicole et al., 2005; Sorensen et al., 2003) and we 
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hypothesized that RhoA signaling to PLCcontributes to inflammatory signals in 

astrocytes. We tested this using astrocytes from PLC knockout mice with COX-2 as a 

primary readout for inflammation. Our studies demonstrated that thrombin induced 

COX-2 expression requires PLCFurthermore we showed that PLCis required for 

activation of PKC and prolonged activation of PKD in response to thrombin (Dusaban et 

al., 2013). Using inhibitors and siRNA to PKD we demonstrated that PKD mediates 

activation of NFkB and its downstream inflammatory targets including COX-2 and 

various cytokines. We also demonstrated that stab wound injury in vivo, and the 

associated upregulation of inflammatory cytokines and astrogliotic markers, are 

attenuated in the absence of PLC(Dusaban et al., 2013). It is likely that released 

cytokines or eicosanoids formed through the RhoA/NFkB pathway also feedback and 

contribute to sustained inflammation in vivo and in vitro. 

PLC contains unique regulatory domains not found in other PLC subtypes, most 

importantly a CDC25 Rap exchange domain. We propose that activated Rap feeds back 

on the enzyme’s RA2 domain to lead to further PLC activation and sustained signaling. 

This feedback is additionally enabled by localization of PLCɛ to the Golgi (Dusaban and 

Brown, 2015; Smrcka et al., 2012; Zhang et al., 2013). Sustained activation, and thus, 

sustained generation of diacylglycerol and activation of its regulated kinases, PKC and 

PKD appears to be critical for mediating inflammatory gene expression (Dusaban and 

Brown, 2015; Smrcka et al., 2012). We also demonstrated that PLC mediates RhoA 

signaling to PKD in cardiomyocytes (Xiang et al., 2013). This leads to phosphorylation 

and inactivation of the cofilin phosphatase, slingshot. Cofilin phosphorylation was 

recently implicated in thrombin induced NFkB activation in endothelial cells (Leonard et 
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al., 2013). Since slingshot is regulated by PKD phosphorylation (Fu and Rubin, 2011; 

Xiang et al., 2013), PKD effects on cofilin mediated responses could play a role in the 

activation of NFkB. 

GPCR AND RHOA REGULATION OF MRTF-A  

MRTF-A Activation  

Serum response factor (SRF)  was identified more than 25 years ago as the  

transcription factor through which serum regulates the c-Fos gene  (Norman et al., 

1988). SRF is considered to be constitutively bound to the serum response element 

(SRE) on its target genes and control of its activity is through transcriptional co-

activators. Ternary complex factor or TCF is the transcriptional co-activator first 

determined to bind SRF and contribute to c-Fos regulation by ligands that activate MAP 

kinase signaling (Shaw et al., 1989). In contrast when SRF dependent gene regulation 

was examined in response to LPA, a major component of serum, it was shown to occur 

independently of activation of TCF (Hill et al., 1995; Sahai et al., 1998). Myocardin-

related transcription factor A (MRTF-A, also known as MKL and MAL) is part of the 

myocardin family of transcriptional coactivators which includes MRTF-A, MRTF-B, and 

myocardin (Cen et al., 2004). MRTF-A was identified, through studies using MRTF-A 

knockdown, as the alternate transcriptional co-activator responding to serum-stimulated 

RhoA activation and responsible for c-Fos induction (Cen et al., 2003; Miralles et al., 

2003). 

Under basal conditions MRTF-A is largely sequestered in the cytoplasm where it binds 

free G-actin. Activation of RhoA by serum or other ligands induces polymerization of G-
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actin to form F-actin filaments, freeing MRTF-A to translocate to the nucleus (Cen et al., 

2004; Guettler et al., 2008; Miralles et al., 2003). Not only is this interaction observed in 

response to changes in cytosolic actin polymerization, but there is also polymerization 

of nuclear actin which directly regulates the amount of free MRTF-A and its association 

with SRF in the nucleus to control MRTF-A dependent smooth-muscle cell transcription 

(Baarlink et al., 2013; Staus et al., 2014; Vartiainen et al., 2007). 

GPCR Activation of MRTF-A 

A convenient method of assessing MRTF-A activation in cells is by using a SRE.L 

(TCF-independent serum response element) luciferase construct. This reporter gene 

shows low activity when SRF is constitutively bound but increased activity in response  

to LPA and constitutively active G12 and G13 ,which effectively activate RhoA to increase 

nuclear MRTF-A. Recent studies using LPA and the SRE.L construct to carry out 

chemical screens identified CCG-1423, a compound that potently and selectively 

inhibits MRTF-A signaling (Evelyn et al., 2007). This inhibitor and another subsequently 

identified as higher potency have been used to block and thereby identify downstream 

MRTF-A mediated cellular responses (Haak et al., 2014; Zhao et al., 2014). 

As mentioned above, we determined that CCN1, the founding member of the CCN gene 

family of matricellular proteins, is highly and rapidly induced by thrombin in 1321N1 

glioblastoma cells. This gene is induced in response to GPCRs that activate RhoA 

including the PAR1, LPA and S1P receptors, as well as in response to stretch  (Han et 

al., 2003; Walsh et al., 2008a; Young et al., 2009). MRTF-A was identified as the 

transcriptional co-activator that functions to mediate CCN1 gene expression in response 
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to stretch in smooth muscle cells (Hanna et al., 2009). We also recently demonstrated 

that RhoA mediated increases in nuclear MRTF-A are required for CCN1 induction in 

cardiomyocytes (Zhao et al., 2014). 

An important observation emerged from recent studies of gene regulation in fibroblasts 

treated with serum (Esnault et al., 2014). This work used genome wide analysis to  

demonstrate that early transcriptional responses of fibroblasts to serum are 

predominantly  regulated by MRTF rather than TCF binding to SRF (Esnault et al., 

2014). Indeed RNA sequencing analysis defined an SRF target gene set of 960 serum-

inducible genes of which more than 70% were MRTF targets, and this was confirmed 

with MRTF ChIP analysis (Esnault et al., 2014). Of additional interest, many of the 

MRTF-SRF dependent genes (i.e. CTGF and CCN1) overlap with genes regulated 

through the transcriptional coactivator Yes associated protein (YAP), discussed below.  

RHOA SIGNALING TO YAP 

YAP activation  

The most recent addition to the RhoA regulated transcriptional activation pathway is 

Yes-associated protein (YAP). YAP was originally discovered in Drosophila as a 

transcriptional coactivator that promotes cell proliferation and inhibits apoptosis (Huang 

et al., 2005). It is functionally inhibited in the Hippo kinase cascade by phosphorylation 

through the Lats 1/2 kinases. Phosphorylated YAP is unable to translocate to the 

nucleus and remains sequestered in the cytoplasm. Thus, YAP dependent genes 

involved in proliferation and cell survival are kept in check until appropriate stimulation 

leads to YAP dephosphorylation and activation (Hao et al., 2008; Zhao et al., 2007). 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on April 22, 2015 as DOI: 10.1124/mol.115.097857

 at A
SPE

T
 Journals on A

pril 10, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #97857 

19 
 

Much like MRTF-A, YAP is a transcriptional coactivator which does not contain a DNA 

binding domain but binds to transcription factors to induce gene transcription. A number 

of transcription factors have been reported to interact with YAP (Vassilev et al., 2001; 

Yagi et al., 1999), but the TEAD family of TEA-domain containing transcription factors 

appear to be the major target (Zhao et al., 2008). When constitutively active YAP was 

expressed with luciferase constructs containing response elements for various YAP 

associated transcription factors (TEAD, RunX2, or ErbB4) the most robust activation 

was of TEAD. In addition knockdown of YAP attenuated cell growth and expression of 

TEAD regulated genes, and  knockdown of TEAD with siRNA abolished YAP stimulated 

gene expression and cell growth  (Zhao et al., 2008).  

The YAP pathway was first shown to be regulated by cell/matrix interactions and 

changes in cell density. Guan and colleagues pioneered the concept that maintenance 

of YAP phosphorylation underlies contact inhibition, signaling cultured cells to stop 

dividing when they become confluent (Zhao et al., 2007). The regulation of YAP by 

cell/cell and cell/matrix contact suggested involvement in mechanotransduction which 

involves sensing the stiffness of the extracellular matrix. Indeed, YAP nuclear 

accumulation was demonstrated to occur in  cells exposed to stretch, or increased 

stiffness of the surrounding extracellular matrix (Aragona et al., 2013; Dupont et al., 

2011). Importantly, studies examining mechanotransduction demonstrated that 

treatment of mammary epithelial cells with C3, an inhibitor of Rho function, abolished 

YAP activation by stretch (Dupont et al., 2011). This data suggested that other 

interventions that activate RhoA might also lead to YAP activation.  

YAP activation by RhoA and GPCRs 
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The discovery that YAP activation was RhoA mediated was extended by work from the 

Guan laboratory showing that YAP activation could be regulated  through G-protein 

coupled receptors (GPCRs) and their receptor-specific activating ligands (Mo et al., 

2012; Yu et al., 2012). Specifically, stimulation with S1P, LPA and thrombin, all agonists 

that activate the G12/13 pathway and RhoA, caused a Rho-dependent translocation of 

YAP to the nucleus and YAP dephosphorylation, as assessed by phos-tag gels (Mo et 

al., 2012; Yu et al., 2012).  LPA also increased cell proliferation which was inhibited by 

knockdown of YAP using shRNA. Expression of dominant negative RhoA effectively 

blocked YAP activation while the constitutively active form of RhoA caused YAP to 

translocate to the nucleus (Yu et al., 2012).  

As indicated above, Rho activation is not always dependent on GPCR activation of the 

G12/13 pathways but can occur through high levels of Gq signaling (Chikumi et al., 2002). 

Uveal melanomas often have activating mutations in either the Gq or G11 genes and 

these mutations were recently shown to lead to RhoA mediated activation of YAP, 

resulting  in increased cancer cell proliferation and tumor progression (Feng et al., 2014; 

Yu et al., 2014). The Rho GEF Trio was identified as the guanine nucleotide exchange 

factor responsible for connecting Gq signaling to Rho and eventually YAP activation in 

these cells (Vaque et al., 2013), but as described above any route to RhoA could 

theoretically  lead to YAP dephosphorylation, nuclear accumulation, and increased cell 

growth. 

What remains to be determined is how RhoA and its effect on the actin cytoskeleton 

lead to YAP activation. The downstream Rho kinase ROCK has been implicated in 

MRTF-A activation (Olson and Nordheim, 2010; Parmacek, 2007) but its role in RhoA 
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mediated YAP activation is uncertain. In some settings YAP activation is independent of 

ROCK (e.g. pharmacological inhibition of ROCK does not affect YAP activation by LPA 

or thrombin) (Mo et al., 2012; Yu et al., 2012). Inhibition of ROCK did, however, abolish 

cytoskeletal tension and eliminate stretch induced YAP activation (Aragona et al., 

2013). Another potential regulator of YAP activation was identified through the discovery 

of a direct interaction of YAP with angiomotin (AMOT) family proteins, which appear to 

maintain YAP in its phosphorylated and inhibited state (Zhao et al., 2011). It was further 

established that F-actin polymerization prevents AMOT association with YAP, freeing it 

to enter the nucleus, whereas inhibition of actin polymerization increases YAP cytosolic 

sequestration with AMOT (Feng et al., 2014). Of particular interest, YAP was reported to 

be sequestered in the cytoplasm as part of the destruction complex responsible for 

phosphorylating and eliminating β-catenin. Stimulation of Frizzled using a Wnt ligand 

blocked YAP cytoplasmic sequestration by this complex, leading to its nuclear 

translocation as well as β-catenin stabilization (Azzolin et al., 2014; Imajo et al., 2012). 

While no direct relationship between GPCR mediated YAP activation and -catenin has 

been established, it is notable that the G12/13 proteins bind -catenin and that RhoA 

activation has been linked to -catenin signaling (Krakstad et al., 2004; Rossol-Allison 

et al., 2009). 

PATHOPHYSIOLOGICAL CONSEQUENCES OF GPCR AND RHOA MEDIATED 

TRANSCRIPTIONAL RESPONSES. 

Two fundamental characteristics of the GPCRs and transcriptional pathways delineated 

above underscore their potential importance in disease progression and treatment.  

First, known ligands for the GPCRs that most effectively couple to RhoA (e.g. thrombin, 
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LPA, S1P) are formed or delivered directly to sites of cell injury and inflammation, and 

are thus available to turn on GPCR signaling. Second, the gene expression programs 

elicited by the transcription factors/co-activators discussed above (AP-1, NFkB, MRTF-

A, YAP) have been extensively linked to pathophysiological processes including cancer 

cell growth, angiogenesis, inflammation and fibrosis. There is at present a gap, and 

concomitantly considerable future promise, in linking GPCR signaling through these 

transcriptional events to diseases and potential treatments.  We conclude by discussing 

some newer findings that begin to bridge the gap between GPCR and RhoA mediated 

transcriptional events and disease. 

The primary roles for MRTF-A signaling appear to be in regulating cell fate and 

differentiation. Studies using MRTF-A null mice demonstrated that they were protected 

against scar formation induced by myocardial infarction or chronic infusion of the GPCR 

agonist, angiotensin II (Small et al., 2010). Formation of scar tissue, part of the process 

generally referred to as cardiac remodeling, results from induction of a myofibroblast 

phenotype associated with transcriptional up regulation of genes such as - smooth 

muscle actin (-SMA). Subsequent fibrosis is characterized by increased collagen 

production and both of these events are attenuated in the MRTF-A knockout mouse 

heart (Small et al., 2010). The implication that MRTF-A activation drives fibrosis in the 

heart is complemented by work in other systems. Studies using the MRTF-A inhibitor 

developed in the Neubig lab demonstrated a role for MRTF-A in fibrosis associated with 

bleomycin induced skin injury (Haak et al., 2014). In this model, MRTF-A also mediates 

increases in -SMA expression, consistent with its role in mediating a fibroblast to 

myofibroblast transition.   
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MRTF-A has an established role as a regulator of vascular smooth muscle 

differentiation. Thus treatment with S1P induced -SMA and other markers of 

differentiation including smooth muscle 22 alpha (SM22α) and smooth muscle myosin 

heavy chain (SM-MHC) in vascular smooth muscle cells and these responses were 

inhibited by a dominant negative form of MRTF-A (Hinson et al., 2007; Lockman et al., 

2004; Mack, 2011). In the in vivo setting, pathological stress induces a switch in which 

smooth muscle cells become less contractile and better poised for proliferative and 

migratory responses that contribute to vascular remodeling. Vascular remodeling 

induced by femoral artery wire injury or ApoE deletion were shown to depend on MRTF-

A using MRTF-A knockout mice and CCG-1423 treatment, and were associated with 

regulation of SRF target genes, including -SMA, vinculin, integrin 1 and MMP-9  

(Minami et al., 2012). S1P signaling through G12/13 has also been linked to vascular 

injury mediated through AP-1 and its effect on its downstream target CCN1 (Kim et al., 

2011). 

Vascular remodeling is also induced by ischemia. Neovascularization in the murine 

ischemic hindlimb model has been shown to be mediated through MRTF-A (Hinkel et 

al., 2014) as has retinal vascularization in the postnatal mouse eye (Weinl et al., 2013). 

While these MRTF-A-mediated responses have not been linked to GPCR signaling, 

GPCR signaling through G13 was  recently demonstrated to play a critical role in 

development of in vivo retinal angiogenesis, mediated through effects of NFkB and 

subsequent expression of VEGF receptor 2  (Sivaraj et al., 2013). 

It is interesting to note that the CCN1 gene is a target for all the transcriptional 

regulators discussed in this review: AP-1, MRTF-A, NFkB and YAP. CCN1 in turn 
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serves multiple functions. Microvessel growth in ischemic muscle was linked to 

increased expression of CCN1 and its pro-angiogenic properties (Hinkel et al., 2014). 

CCN1 is also upregulated in liver injury along with myofibroblast markers such as-

SMA (Kim et al., 2013). Surprisingly loss of CCN1 exacerbates rather than attenuates 

liver fibrosis as a result of the ability of CCN1 to induce myofibroblast senescence, but 

whether senescence develops due to alterations in MRTF-A and SRF signaling is not 

yet known. Our recent studies linked MRTF-A activation to CCN1 induction in response 

to GPCR and RhoA signaling in cardiac myocytes and demonstrated that CCN1 

mediates protection against ischemic injury in myocytes and in the isolated perfused 

heart (Zhao et al., 2014).   

The importance of CCN1 signaling in cancer progression is indicated by a wealth of 

evidence implicating CCN1 dysregulation in cancer cell proliferation, survival and 

invasion (Jun and Lau, 2011; Lau, 2011). Increased YAP signaling to induce CCN1 

expression has been linked to lung cancer and basal cell carcinoma progression (Hsu et 

al., 2014; Quan et al., 2014). We demonstrated that CCN1 expression and resulting 

integrin activation were required for thrombin stimulated proliferation of 1321N1 

glioblastoma cells (Walsh et al., 2008a). Since GPCR and RhoA signaling can increase 

CCN1 induction through multiple transcriptional pathways this matricellular protein may 

serve as a global integrator and effector of aberrant cell growth responses initiated by 

enhanced GPCR signaling. 

The Hippo/YAP pathway has been widely implicated in cancer. Specifically, YAP was 

found to be one of the primary genes overexpressed in a myriad of cancers 

(Overholtzer et al., 2006). High levels of YAP expression in colorectal cancer resulted in 
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increased proliferation and dysplasia which was recapitulated in a mouse model in 

which YAP overexpression in hepatocytes lead to extensive liver growth culminating in 

liver cancer (Camargo et al., 2007). Interestingly transgenic mouse lines in which the 

LPA1 or LPA2 receptors were overexpressed in mammary epithelial cells were shown 

to have increased nuclear YAP staining and a greater tendency to develop mammary 

hyperplasias due to tissue overgrowth (Yu et al., 2012). Two recent papers demonstrate 

that uveal melanomas, which harbor activating mutations in the gene encoding Gq, 

signal through RhoA to activate YAP and induce YAP target genes. Importantly YAP 

knockdown was shown to decrease growth and proliferation of uveal melanoma cells 

both in vitro and in an in vivo xenograft model (Feng et al., 2014; Yu et al., 2014). 

A growing literature concerns the role of the Hippo/YAP pathway in cardiac growth 

responses. The heart is a terminally differentiated organ so proliferation of 

cardiomyocytes in the adult heart is extremely limited. Cardiomyocyte death, and the 

inability to replace these cells, underlies the development of heart failure following 

myocardial infarction (MI). Mice with cardiomyocyte-specific inactivation of YAP were 

shown to have increased infarct size and apoptosis after MI, and this was related to loss 

of the ability of YAP to stimulate cardiomyocyte proliferation (Del Re et al., 2013). 

Subsequent studies using both cardiac-specific YAP knockout and YAP transgenic mice 

subjected to MI demonstrated that the YAP pathway is necessary and sufficient for 

cardiomyocyte proliferation and regeneration of the neonatal heart (Xin et al., 2013). 

Two additional findings relevant to understanding YAP activation and YAP target genes 

in the heart have recently emerged. One is a role for -catenins, components of 

cardiomyocyte intercellular junctions, as upstream regulators of YAP activation (Li et al., 
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2015). The other is the finding that the p110 catalytic subunit of phosphoinositide 3-

kinase (encoded by the Pik3cb gene) is a transcriptional target of YAP, which through 

its transcriptional upregulation, enhances activation of the well-known cardioprotective 

signaling molecule, Akt. There is as yet no data relating GPCR and RhoA signaling to 

YAP-mediated protection in the heart. Notably, however, there is an extensive literature 

showing that S1P and RhoA signaling protect cardiomyocytes and the isolated perfused 

heart against ischemic injury (Del Re et al., 2007; Karliner, 2009; Means et al., 2007; 

Xiang et al., 2013; Xiang et al.), making involvement of YAP activation in this context an 

area ripe for further investigation.     

CONCLUSIONS 

Activated RhoA is the major “effector” mediating responses to GPCRs that couple to 

G12/13. Ligands for these receptors are generated or delivered in response to cell injury 

and clearly play a role in cell physiology.  While signals from RhoA may be intended to 

serve adaptive functions and protect cells from injury, chronic stimulation of these 

GPCRs turns on a plethora of transcriptional responses (Figure 1).  The transcriptional 

programs are clearly initiated by RhoA activation, and some of the molecular events 

allowing the transcription factor or cofactor to become active have been elucidated. 

Many involve cytosolic phosphorylation or dephosphorylation events, but there is as yet 

little consensus on what these events are, except perhaps in particular cell types.  

It seems likely that AP-1, NFkB, MRTF-A and YAP are regulated through divergent 

molecular interactions downstream of RhoA and thus differ in their regulatory control by 

feedback and other cellular signals. Thus RhoA activation would not necessarily turn on 
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all of these transcriptional programs and cellular responses simultaneously, or in all 

cells. Notably, GPCRs that couple to G12/13 and RhoA are typically able to also couple to 

Gq and Gi, albeit to different extents and in a cell type dependent manner. Coincident 

activation of these other G-protein signaling pathways would be expected to result in 

stimulation of PLC/protein kinase C and Ras/MAP kinase signaling cascades along 

with activation of RhoA. The extent to which each of these occurs would vary not only 

on cell type, but also on the ligand, since biased signaling through GPCRs could favor 

activation of RhoA versus activation of pathways that lead to Gq or β-arrestin signaling 

(Hollenberg et al., 2014; Soh and Trejo, 2011; Violin and Lefkowitz, 2007). With regard 

to the notion that the effects of RhoA on gene expression work in concert with other 

signaling pathways, this is indeed what was observed in the early seminal papers which 

showed that RhoA was required for and cooperates with Ras to mediate cell 

transformation (Olson et al., 1998; Qiu et al., 1995).   

There is, without a doubt, system and ligand based divergence in the extent to which 

one would observe activation of each of the RhoA transcriptional signals covered in this 

review. On the other hand there are clearly some intriguingly common gene targets for 

all of these transcription factors.  A prime example is  CCN1 (see Figure 1 and review) 

which is not only regulated by AP-1 and NFkB but appears, from our recent as yet 

unpublished studies, to require coordinate activation by MRTF-A and YAP. Regulation 

by multiple RhoA transcriptional activators could be the paradigm for genes that are 

central to the ability of RhoA to activate pathophysiological cellular programs but only 

gets the green light to do so when several simultaneous signals are received.  
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 We are currently analyzing the gene expression profiles associated with GPCR and 

RhoA signaling with the goal of understanding the extent to which specific versus 

distinct programs are mediated through the transcriptional co-activators/ transcription 

factors discussed in this review. Interrogating the extent to which these transcription 

factors drive physiological versus pathophysiologic gene programs will also inform 

future consideration regarding the therapeutic value of targeting these transcription 

factors or their upstream regulators.  
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FIGURE LEGEND 

 

Figure 1. Schematic of GPCR pathways involved in RhoA activation and gene       

expression. 
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