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Abstract 

Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 

and/or CB2 receptors. However, unwanted CB1-mediated cannabimimetic effects limit 

clinical use. We asked whether CP55,940, a potent cannabinoid that binds with similar 

affinity to CB1 and CB2 in vitro, produces functionally separable CB1- and CB2-mediated 

pharmacological effects in vivo. We evaluated anti-allodynic effects, possible tolerance, 

and cannabimimetic effects (i.e., hypothermia, catalepsy, and CB1-dependent withdrawal 

signs) following systemic CP55,940 treatment in a mouse model of toxic neuropathy 

produced by a chemotherapeutic agent paclitaxel. The contribution of CB1 and CB2 

receptors to in vivo actions of CP55,940 was evaluated using CB1 knockout (CB1KO), 

CB2 knockout (CB2KO), and wildtype (WT) mice. Low dose CP55,940 (0.3 mg/kg/day 

i.p.) suppressed paclitaxel-induced allodynia in WT and CB2KO, but not CB1KO mice. 

Low dose CP55,940 also produced hypothermia and rimonabant-precipitated withdrawal 

in WT, but not CB1KO mice. In WT mice, tolerance developed to CB1-mediated 

hypothermic effects of CP55,940 earlier than to anti-allodynic effects. High dose 

CP55,940 (10 mg/kg/day i.p.) produced catalepsy in WT mice, which precluded 

determination of anti-allodynic efficacy, but produced sustained CB2-mediated 

suppression of paclitaxel-induced allodynia in CB1KO mice; these anti-allodynic effects 

were blocked by the CB2 antagonist AM630. High dose CP55,940 did not produce 

hypothermia or rimonabant-precipitated withdrawal in CB1KO mice. Our results using 

the mixed CB1/CB2 agonist CP55,940 document that CB1 and CB2 receptor activations 

produce mechanistically distinct suppression of neuropathic pain. Our study highlights 
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the therapeutic potential of targeting cannabinoid CB2 receptors to bypass unwanted 

central effects associated with CB1 receptor activation.   
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Introduction  

Peripheral neuropathic pain induced by chemotherapy detrimentally impacts the 

lives of cancer patients and is one of the major side effects responsible for 

discontinuation of anticancer treatment (Windebank and Grisold, 2008). To date, the 

mechanisms underlying chemotherapy-induced neuropathic pain remain poorly 

understood (Windebank and Grisold, 2008). Additional challenges for the management of 

chemotherapy-induced neuropathy include limited efficacy and significant side effects of 

existing medications (Pachman et al., 2011). Thus, identification of therapeutic strategies 

that are both safe and effective for managing chemotherapy-evoked neuropathic pain 

remains an unmet clinical need.  

Cannabinoids produce antinociceptive effects in preclinical models of neuropathic 

pain (Guindon and Hohmann, 2009; Herzberg et al., 1997; Ibrahim et al., 2003; Kinsey et 

al., 2009; Pertwee, 2009; Schlosburg et al., 2009). However, unwanted psychotropic 

effects of cannabinoids limit their potential clinical use (Ben Amar, 2006; 

Dhopeshwarkar and Mackie, 2014; Pertwee, 2009). Two major subtypes of cannabinoid 

receptors, CB1 and CB2, are the key receptors responsible for the pharmacological effects 

of cannabinoids (Mackie, 2006). Both CB1 and CB2 receptors are G-protein-coupled 

receptors (GPCRs) whose signaling pathways include inhibition of adenylyl cyclase and 

activation of mitogen-activated protein kinases (Mackie, 2006). CB1 receptors are 

predominantly located in the central nervous system (CNS), whereas CB2 receptors are 

found primarily in the immune cells (Galiegue et al., 1995; Marsicano and Lutz, 1999; 

Onaivi et al., 2006; Schatz et al., 1997) and are upregulated in the CNS in response to 

inflammation or injury (Maresz et al., 2005; Zhang et al., 2003). Evaluation of the 
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receptor mechanisms underlying therapeutic and psychotropic effects of cannabinoids, 

following both acute and chronic administration, may facilitate the development of safe 

and effective cannabinoid-based pharmacotherapies (Ben Amar, 2006; Pertwee, 2009). 

CP55,940 is a potent non-selective synthetic cannabinoid that has similar affinity 

for both CB1 and CB2 receptors in vitro (Abood et al., 1997; Felder et al., 1995; Griffin et 

al., 2000). Whereas CB2 agonists exhibit strong ligand-biased selectivity for different 

signal transduction pathways (Atwood et al., 2012), CP55,940 is a balanced agonist that 

has not been found to show functional selectivity at CB1 or CB2 (Atwood et al., 2012; 

Howlett et al., 2002). Thus, CP55,940, used in combination with CB1 knockout (CB1KO) 

and CB2 knockout (CB2KO) mice, represents a useful pharmacological tool for studying 

the functions of CB1 and CB2 receptors in vivo. CP55,940 has been reported to possess 

antinociceptive efficacy in various preclinical pain models, including acute pain, 

inflammatory pain, and neuropathic pain induced by traumatic nerve injury (Choong et 

al., 2007; Hohmann et al., 1999; Lichtman and Martin, 1997; Romero et al., 2002; Sain et 

al., 2009; Scott et al., 2004). Pharmacological antagonism of CB1 receptors alone 

(Choong et al., 2007; Lichtman and Martin, 1997; Romero et al., 2002) or of both CB1 

and CB2 receptors (Scott et al., 2004) blocks the antinociceptive effects of CP55,940 in 

rats. However, a study using CB1KO and CB2KO mice reported that the antinociceptive 

effects of systemic CP55,940 (at 0.3 mg/kg i.p.), administered acutely, is mediated by 

CB1, but not CB2 receptors (Sain et al., 2009). This finding has led to the conclusion that 

agonist activity at CB2 is not relevant to antinociceptive effects of mixed CB1/CB2 

agonists, at least following systemic administration. By contrast, we hypothesized that, 

due to the abundance of CB1 receptors (relative to CB2 receptors) in the CNS, higher 
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doses of mixed cannabinoids are required to activate CB2 receptors (compared to the dose 

that is sufficient to activate CB1) and that CB2-mediated antinociceptive effects, rather 

than being absent, are masked by CB1-mediated catatonia associated with mixed 

cannabinoid agonists. The differences between the in vitro and in vivo profiles of 

CP55,940 raise questions on differential roles and functions of CB1 and CB2 receptors in 

vivo, particularly in persistent pain states in which chronic dosing is required for clinical 

use. 

In the present study, we investigated the contribution of cannabinoid CB1 and CB2 

receptor subtypes to the in vivo actions of the mixed cannabinoid CP55,940 in a mouse 

model of chemotherapy-induced neuropathy using transgenic (i.e., CB1KO, CB2KO) and 

wildtype (WT) mice. We evaluated antinociceptive effects, possible tolerance, and 

typical CNS-associated side effects (i.e., hypothermia, catalepsy, and physical 

withdrawal) following chronic administration of CP55,940 at multiple doses. 

Importantly, CB1KO mice were used to test the hypothesis that CB2-mediated signaling 

can be engaged by mixed cannabinoids in vivo to produce sustained anti-allodynic 

efficacy without producing side effects. Thus, under conditions in which confounding 

effects of CP55,940 at CB1 receptors are absent (i.e., in CB1KO mice), CB2-mediated 

effects can be fully characterized to ascertain the therapeutic potential of targeting CB2 

receptors. 

Materials and Methods 

Subjects 

Adult CB1KO and WT littermates on a CD1 background, and adult CB2KO and 

WT littermates on a C57BL/6J background, weighing 26-35 g and of both sexes, were 

MOL #98483
This article has not been copyedited and formatted. The final version may differ from this version.

Molecular Pharmacology Fast Forward. Published on April 22, 2015 as DOI: 10.1124/mol.115.098483
 at A

SPE
T

 Journals on A
pril 18, 2024

m
olpharm

.aspetjournals.org
D

ow
nloaded from

 

http://molpharm.aspetjournals.org/


8 
 

used in these experiments. CB2KO (B6.129P2-CNR2(tm1Dgen/J)) and corresponding 

WT (C57BL/6J) mice were originally purchased from Jackson Laboratory (ME, USA). 

CB1KO mice were generated as previously described (Ledent et al., 1999), whereas 

corresponding WT littermates were periodically outcrossed with CD1 mice (strain #022) 

from Charles River Laboratories (MA, USA) to maintain genetic diversity. Animals were 

single housed in a temperature-controlled facility (73 ± 2 °F, 45% humidity, regular 12 h 

light/dark cycle, lights on at 7 am), with food and water ad libitum provided. All 

experimental procedures were approved by the Bloomington Institutional Animal Care 

and Use Committee of Indiana University and followed the guidelines of the International 

Association for the Study of Pain (Zimmermann, 1983).  

Drugs and chemicals 

Paclitaxel was purchased from Tecoland Corporation (NJ, USA) and was 

dissolved in cremophor-vehicle (1:1:18 ratio of cremophor® EL/ethanol/saline). 

Cremophor® EL, ethanol, dimethyl sulfoxide (DMSO), and acetone were purchased from 

Sigma-Aldrich (MO, USA). Alkamuls EL-620 was obtained from Rhodia (NJ, USA). 

Saline was purchased from Aqualite System (IL, USA). (-)-CP55,940 (CP55,940) 

(Compton et al., 1992) was provided by the National Institute on Drug Abuse (NIDA, 

MD, USA) or purchased from Santa Cruz Biotechnology (TX, USA). Rimonabant 

(SR141716A) (Yoshioka et al., 1989) was provided by NIDA. AM630 (Ross et al., 1999) 

was purchased from Cayman Chemical Company (MI, USA). CP55,940, rimonabant, and 

AM630 were dissolved in vehicle (5:2:2:16 ratio of DMSO /alkamuls EL-620/ ethanol/ 

saline) and were administered intraperitoneally (i.p.) to mice in a volume of 5 ml/kg.  

General experimental protocol 
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Animals were randomly assigned to experimental groups and tested by an 

experimenter blinded to experimental conditions. Paclitaxel (4 mg/kg i.p.) was 

administered four times on day 0, 2, 4, 6 following initiation of paclitaxel dosing in a 

volume of 6.67 ml/kg (cumulative dose: 16 mg/kg i.p.) to induce neuropathy, as 

previously described (Deng et al., 2015; Ward et al., 2011). The control group received 

an equivalent volume of cremophor-vehicle. Development of paclitaxel-induced 

mechanical and cold allodynia was assessed on day 0, 4, 7 and 15 following initiation of 

paclitaxel dosing.  

Effects of pharmacological manipulations were evaluated over 9 consecutive days 

of repeated once daily injections. Chronic dosing was initiated during the maintenance 

phase of paclitaxel-induced allodynia (i.e., from day 16 to day 24 post initial paclitaxel 

injection) and behavioral responsiveness was evaluated 30 min following injection of 

drug or vehicle. In Experiment #1, we evaluated anti-allodynic effects of chronic 

CP55,940 (0.3 mg/kg/day i.p. x 8 days) in paclitaxel-treated CB1KO, CB2KO, and 

respective WT littermates. Responsiveness to mechanical and cold stimulation was 

evaluated on treatment days 1, 4 and 8. To examine the time course of the development 

of antinociceptive tolerance, a subset of WT animals were treated with CP55,940 (0.3 

mg/kg/day i.p. x 16 days) and assessed for mechanical and cold responsiveness on 

treatment days 1, 4, 8, 11 and 16. In Experiment #2, we investigated possible side effects 

of CP55,940 (0.3 mg/kg/day i.p. x 9 days) in paclitaxel-treated CB1KO and WT (CD1) 

mice. Rectal temperature was evaluated on treatment days 2 and 7. CB1-mediated 

cannabinoid withdrawal symptoms (i.e., paw tremors, headshakes, and scratching bouts) 

elicited by challenge with rimonabant (10 mg/kg i.p.) in comparison to vehicle were 
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examined on treatment day 9. In Experiment #3, we assessed acute effects of CP55,940 

(0.3, 1, 3 and 10 mg/kg i.p.) on mechanical and cold allodynia in paclitaxel-treated 

CB1KO mice. Both CB1KO and WT mice receiving CP55,940 (0.3 and 3 mg/kg i.p.) 

were evaluated for catalepsy in the ring test. CP55,940 (3 mg/kg i.p.) produced motor 

impairment and sedation in WT littermates that precluded the assessment of 

responsiveness to mechanical and cold stimulation. In Experiment #4, we assessed the 

anti-allodynic effects and possible side effects of chronic CP55,940 (3 mg/kg/day i.p. x 9 

days) in paclitaxel-treated CB1KO mice. Responsiveness to mechanical and cold 

stimulation was evaluated on treatment days 1, 4 and 8. Rectal temperature was evaluated 

on treatment days 2 and 7. Withdrawal symptoms evoked by rimonabant (10 mg/kg i.p.) 

challenge were examined on treatment day 9. In Experiment #5, we examined the 

receptor mechanism underlying the anti-allodynic effects of CP55,940 (3 mg/kg/day i.p. 

x 8 days) in CB1KO mice. Paclitaxel-treated CB1KO mice that received vehicle, 

CP55,940 (3 mg/kg/day i.p. x 8 days) alone or co-administered with AM630 (5 

mg/kg/day i.p. x 8 days) were examined.  

Assessment of mechanical allodynia 

Withdrawal thresholds (g) to mechanical stimulation were measured in duplicate 

for each paw using an electronic von Frey anesthesiometer supplied with a 90-gram range 

probe (IITC Life Science Inc., CA, USA) as described previously (Deng et al., 2012). 

Briefly, mice were individually placed in transparent plastic chambers on an elevated 

metal mesh table and were habituated to the testing apparatus for 30 min prior to testing. 

When animals ceased exploratory behaviors, a force was applied to the midplantar region 
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of the hind paw by a semi-flexible tip connected to the anesthesiometer. Mechanical 

stimulation was terminated upon paw withdrawal.  

Assessment of cold allodynia 

Response time (s) to cold stimulation was assessed in triplicate for each paw by 

the acetone method as described previously (Deng et al., 2015). Briefly, Mice were 

individually placed underneath transparent plastic chambers on an elevated metal mesh 

table. After habituation, an acetone bubble that formed at the end of a blunt one ml 

syringe was gently presented onto the plantar surface of the hind paw. Time that the 

animal spent attending to (i.e., elevating, licking, biting, or shaking) the acetone-

stimulated paw was measured over a 60-second observation period.  

Evaluation of cannabinoid withdrawal symptoms 

WT mice were treated chronically with vehicle or CP55,940 (0.3 mg/kg/day i.p.) 

for 9 days. CB1KO mice were treated chronically with vehicle or CP55,940 (0.3 or 3 

mg/kg/day i.p.) for 9 days. On treatment day 9, at 30 min post final treatment injection, 

animals were first challenged with vehicle, and 30 min later challenged with the CB1 

antagonist rimonabant (10 mg/kg i.p.). Mice were video-recorded, and the numbers of 

paw tremors, headshakes, and scratching bouts were scored over 30 min following each 

challenge by an experimenter blinded to experimental conditions, as previously described 

(Cook et al., 1998; Deng et al., 2015).  

Rectal temperature 

Rectal temperature (°C) was measured using a thermometer (Physitemp 

Instruments Inc., NJ, USA) equipped with a mouse rectal probe (Braintree Scientific Inc., 

MA, USA) as previously described (Deng et al., 2015). 
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Ring test 

 Catalepsy was assessed using the ring test as previously described (Pertwee, 

1972). Immobility latency (s) that the animal spent motionless on the ring during a 5-min 

observation period was recorded. 

Statistical analyses 

Analysis of variance (ANOVA) for repeated measures was used to determine the 

time course of allodynia and chronic drug effects. The Sphericity-Assumed correction 

was applied to all repeated factors; degrees of freedom for significant interactions are 

reported as uncorrected values. One-way ANOVA was used to identify the source of 

significant interactions and compare post-injection responses with pre-paclitaxel 

baselines, followed by Bonferroni post hoc tests or 2-tailed t-tests, as appropriate. No 

gender differences were detected in chemotherapy-induced responses to mechanical or 

cold stimulation (P>0.41 for all comparisons) nor in the effects of CP55,940 (P>0.15 for 

all comparisons), and therefore results from both genders were pooled for statistical 

analyses. Statistical analyses were performed using IBM-SPSS Statistics version 22.0 

(SPSS Inc., IL, USA). P<0.05 was considered significant. 

Results 

Paclitaxel-induced allodynia developed similarly in WT, CB1KO, and CB2KO mice 

Prior to paclitaxel treatment, there were no genotype or gender differences in 

responses to mechanical (CB1: P=0.70, Fig. 1A; CB2: P=0.22, Fig. 1C) or cold 

stimulation (CB1: P=0.15, Fig. 1B; CB2: P=0.89, Fig. 1D).  

Paclitaxel decreased thresholds to mechanical stimulation (F3,62=72.33, P<0.0001, 

Fig. 1A) and increased response time to cold stimulation (F3,62=19.04, P<0.0001, Fig. 
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1B) in CB1KO and WT littermates. Similarly, paclitaxel induced hypersensitivity to 

mechanical (F3,33=140.24, P<0.0001, Fig. 1C) and cold (F3,88=71.71, P<0.0001, Fig. 1D) 

stimulation in both CB2KO and WT littermates. Mechanical and cold allodynia were 

established in mice treated with paclitaxel relative to cremophor-vehicle group beginning 

on day 4 and were sustained throughout the testing interval in CB1KO, CB2KO, and WT 

mice (P<0.0001). Paclitaxel-induced mechanical and cold allodynia developed 

equivalently in CB1KO and WT mice, as well as in CB2KO and WT mice across all time 

points (P=1.000), consistent with our previously published work (Deng et al., 2015). 

Chronic low dose CP55,940 suppressed paclitaxel-induced allodynia in WT but not 

in CB1KO mice 

In WT mice, chronic low dose treatment with CP55,940 (0.3 mg/kg/day i.p.) 

reversed paclitaxel-induced mechanical (F1,9=91.73, P<0.0001, Fig. 2A) and cold 

(F1,9=26.84, P<0.002, Fig. 2B) allodynia relative to vehicle (P<0.0001 for all 

comparisons) and pre-injection levels (F4,36=18.58, P<0.0001 mechanical, F4,36=17.11, 

P<0.0001 cold). The anti-allodynic effects of low dose CP55,940 were stable from 

treatment day 1 to day 8 (F2,18=0.42, P=0.66 mechanical, F2,18=1.50, P=0.25 cold). Low 

dose CP55,940 fully suppressed paclitaxel-induced allodynia and restored responses to 

pre-paclitaxel baseline levels (F3,20=2.24, P=0.12 mechanical, F3,20=0.93, P=0.44 cold, 

Fig. 2A-B) in WT mice. 

By contrast, in CB1KO mice, CP55,940 (0.3 mg/kg/day i.p.) failed to attenuate 

paclitaxel-evoked mechanical (F1,8=0.31, P=0.60, Fig. 2C) or cold hypersensitivities 

(F1,8=1.79, P=0.22, Fig. 2D) relative to vehicle (P>0.07 for all comparisons) on any day 

(F4,32=0.93, P=0.46 mechanical, F4,32=0.98, P=0.43 cold). 
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Chronic low dose CP55,940 attenuated paclitaxel-induced allodynia in CB2KO mice 

 Chronic low dose treatment with CP55,940 (0.3 mg/kg/day i.p.) suppressed 

paclitaxel-induced mechanical (F3,21=88.71, P<0.0001, Fig. 2E) and cold (F3,21=62.59, 

P<0.0001, Fig. 2F) allodynia relative to vehicle (P<0.0001 for all comparisons) and pre-

injection levels (F12,84=30.20, P<0.0001 mechanical, F12,84=20.81, P<0.0001 cold) in both 

CB2KO and WT mice. CP55,940-produced anti-allodynic effects were stable from 

treatment day 1 to day 8 (F6,42=0.67, P=0.67 mechanical, F6,42=0.46, P=0.83 cold) and 

normalized responses to pre-paclitaxel levels (WT: F3,24=0.15, P=0.93 mechanical, 

F3,24=0.96, P=0.43 cold; CB2KO: F3,16=1.19, P=0.34 mechanical, F3,16=0.41, P=0.75 

cold, Fig. 2E-F). Low dose CP55,940 reversed paclitaxel-induced allodynia with similar 

efficacy in CB2KO and WT mice at all time points (P=1.00 for all comparisons, Fig. 2E-

F). 

Tolerance developed to the anti-allodynic effects of low dose CP55,940 

To further evaluate whether tolerance develops to the anti-allodynic effects of low 

dose CP55,940 (0.3 mg/kg/day i.p.), a subset of WT mice were tested with a 16-day once 

daily chronic dosing paradigm. In WT mice, CP55,940 (0.3 mg/kg/day i.p.) suppressed 

paclitaxel-evoked mechanical (F1,6=78.01, P<0.0001, Fig. 3A) and cold (F1,6=28.58, 

P<0.01, Fig. 3B) allodynia relative to vehicle in a time-dependent manner (F6,36=14.53, 

P<0.0001 mechanical, F6,36=25.08, P<0.0001 cold). CP55,940 (0.3 mg/kg/day i.p.) no 

longer suppressed paclitaxel-induced allodynia relative to vehicle after 11 days of chronic 

injection (P>0.10 for all comparisons) in WT mice (Fig. 3A-B).  

Chronic low dose CP55,940 produced transient hypothermia in paclitaxel-treated 

WT but not CB1KO mice 
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 Chronic low dose administration of CP55,940 (0.3 mg/kg/day i.p.) decreased 

body temperature relative to vehicle on treatment day 2 (P<0.0001), but not day 7 

(P=0.20), in paclitaxel-treated WT mice (Fig. 4A). Thus, tolerance developed to the 

hypothermic effect of low dose CP55,940 following repeated dosing. By contrast, the 

same dosing paradigm failed to alter body temperature in paclitaxel-treated CB1KO mice 

on any day tested (P>0.07, Fig. 4B), consistent with classic CB1-mediated hypothermia.  

Chronic low dose CP55,940 produced cannabinoid withdrawal signs in paclitaxel-

treated WT but not CB1KO mice 

 In paclitaxel-treated WT mice, rimonabant (10 mg/kg i.p.) challenge produced 

prototypical CB1-mediated withdrawal signs, such as paw tremors (F3,20=57.79, 

P<0.0001) and headshakes (F3,20=8.59, P<0.002) in mice treated chronically with low 

dose CP55,940 (0.3 mg/kg/day i.p.) relative to vehicle challenge (P<0.01) and relative to 

the vehicle group (P<0.01, Fig. 5A). Challenge with rimonabant, but not vehicle, elicited 

scratching behaviors in paclitaxel-treated WT animals that received chronic 

administration of vehicle or CP55,940 (F3,20=7.88, P<0.002); WT mice treated with 

chronic CP55,940 (0.3 mg/kg/day i.p.) showed more rimonabant-produced scratching 

behaviors compared to the vehicle group (P<0.05, Fig. 5A). 

 By contrast, rimonabant challenge did not elicit paw tremors (F3,12=0.62, P=0.62), 

headshakes (F3,12=1.80, P=0.20), or scratching bouts (F3,12=1.34, P=0.31) relative to 

vehicle challenge in CB1KO mice receiving either chronic CP55,940 (0.3 mg/kg/day i.p.) 

or chronic vehicle (Fig. 5B), suggesting that rimonabant-induced scratching in the 

vehicle-treated mice is mediated by CB1 receptors. 
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Acute high dose CP55,940 produced catalepsy and severe hypothermia in WT but 

not in CB1KO mice 

In paclitaxel-treated WT mice, a higher dose (3 mg/kg i.p.) of CP55,940, 

administered acutely, induced catalepsy (F2,14=391.89, P<0.0001, Fig. 6A) and 

hypothermia (F2,14=35.59, P<0.0001, Fig. 6C) relative to either vehicle (P<0.0001) or 

low dose CP55,940 (0.3 mg/kg i.p.) treatment (P<0.02). By contrast, in paclitaxel-treated 

CB1KO mice, neither doses of CP55,940 (0.3 or 3 mg/kg i.p.) altered immobility latency 

(F2,12=0.75, P=0.50, Fig. 6B) or body temperature (F2,12=1.19, P=0.34, Fig. 6D) relative 

to vehicle treatment.  

Acute CP55,940 dose-dependently suppressed paclitaxel-induced neuropathy in 

CB1KO mice 

In CB1KO mice, acute systemic treatment with CP55,940 suppressed paclitaxel-

induced mechanical (F4,21=11.19, P<0.0001, Fig. 7A) and cold (F4,21=12.61, P<0.0001, 

Fig. 7B) allodynia in a dose-dependent manner. Low dose CP55,940 (0.3 mg/kg i.p.) 

failed to attenuate paclitaxel-evoked allodynia relative to vehicle (P>0.84 for both 

modalities) in CB1KO mice (Fig. 7A-B). Medium dose CP55,940 (1 mg/kg i.p.) partially 

attenuated paclitaxel-induced mechanical and cold hypersensitivities in CB1KO mice 

(P<0.01, Fig. 7A-B). Higher doses of CP55,940 (3 or 10 mg/kg i.p.) fully reversed 

paclitaxel-induced mechanical and cold allodynia in CB1KO mice relative to vehicle 

(P<0.0001) and normalized responses to pre-paclitaxel levels (P>0.49, Fig. 7A-B). WT 

mice treated with CP55,940 (3 mg/kg i.p.) exhibited severe catalepsy and thus were not 

used for the assessments of mechanical and cold allodynia. 
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Chronic high dose CP55,940 suppressed paclitaxel-induced allodynia in CB1KO 

mice 

In CB1KO mice, chronic high dose treatment with CP55,940 (3 mg/kg/day i.p.) 

reversed paclitaxel-induced mechanical (F1,10=110.07, P<0.0001, Fig. 8A) and cold 

(F1,10=98.41, P<0.0001, Fig. 8B) hypersensitivities relative to vehicle (P<0.0001 for all 

comparisons) and pre-injection levels (F4,40=24.88, P<0.0001 mechanical, F4,40=60.38, 

P<0.0001 cold). The anti-allodynic effects of high dose CP55,940 were stable throughout 

the chronic dosing regimen (F2,20=0.41, P=0.67 mechanical, F2,20=0.74, P=0.49 cold). 

High dose CP55,940 fully suppressed paclitaxel-induced allodynia and restored responses 

to pre-paclitaxel baseline levels (F3,24=0.31, P=0.82 mechanical, F3,24=0.97, P=0.51 cold, 

Fig. 8A-B). 

Chronic high dose treatment with CP55,940 (3 mg/kg/day i.p.) did not alter body 

temperature in paclitaxel-treated CB1KO mice on any day tested (F1,6=0.79, P=0.41, Fig. 

8C). Moreover, rimonabant challenge did not induce paw tremors (F3,12=1.37, P=0.30), 

headshakes (F3,12=0.40, P=0.75), or scratching bouts (F3,12=0.14, P=0.93) relative to 

vehicle challenge in CB1KO mice receiving chronic treatment with either CP55,940 (3 

mg/kg/day i.p.) or vehicle (Fig. 8D). 

Anti-allodynic effects of high dose CP55,940 in CB1KO mice were mediated by CB2 

receptors 

 In paclitaxel-treated CB1KO mice, the anti-allodynic effects of high dose 

CP55,940 (3 mg/kg/day i.p.) on mechanical (F3,17=88.50, P<0.0001, Fig. 9A) and cold 

(F3,17=59.44, P<0.0001, Fig. 9B) hypersensitivities were blocked by the CB2 antagonist 

AM630 (5 mg/kg/day i.p.) at all time points (P<0.0001). AM630 (5 mg/kg/day i.p.) alone 
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did not alter mechanical or cold responsiveness relative to vehicle (P=1.00 for all 

comparisons) in CB1KO mice (Fig. 9A-B). 

Discussion  

Psychotropic effects have represented significant hurdles for advancing 

cannabinoids as pharmacotherapies (Dhopeshwarkar and Mackie, 2014). Tolerance 

develops to CB1-mediated locomotor effects of CP55,940 and Δ9-tetrahydrocannabinol 

(Δ9-THC) and is accompanied by down-regulation of cannabinoid receptor binding sites 

in the absence of nerve injury (Oviedo et al., 1993). However, if tolerance develops 

differentially to psychotropic effects and therapeutic effects of cannabinoids, the clinical 

potential of these agents would be enhanced. A better understanding of the receptor 

mechanisms underlying the therapeutic and side effect profiles of cannabinoids observed 

with chronic dosing may improve current pharmacotherapies and validate novel targets 

(Ben Amar, 2006; Pertwee, 2009). In the present study, we used CP55,940, a potent 

synthetic cannabinoid with similar affinities for mouse CB1 and CB2 receptors in vitro 

(Abood et al., 1997; Griffin et al., 2000), and knockout mice to study the 

pharmacological effects associated with activation of distinct cannabinoid receptor 

subtypes in a model of paclitaxel-induced neuropathic pain. CP55,940 at a dose of 0.3 

mg/kg i.p. suppressed paclitaxel-induced allodynia and produced undesirable side effects 

(i.e., hypothermia and physical withdrawal) through activation of CB1 receptors. 

Interestingly, we unmasked a novel CB2-mediated component of CP55,940-induced anti-

allodynic effects through the use of CB1KO mice. CP55,940 at a dose of 3 mg/kg i.p. 

(i.e., ten times higher than the dose producing CB1-mediated pharmacological effects in 

WT mice) activated CB2 receptors and produced anti-allodynic effects in CB1KO mice. 
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This desirable therapeutic profile of CB2-mediated anti-allodynic efficacy was sustained 

following chronic dosing and was not accompanied by adverse cannabimimetic effects 

typical of CB1 receptor activation.  

In our study, low dose CP55,940 (0.3 mg/kg/day i.p.) suppressed paclitaxel-

induced allodynia in WT and CB2KO, but not in CB1KO mice, suggesting that the anti-

allodynic effects at this low dose were mediated solely by CB1, without a contribution 

from CB2 receptors. Moreover, activation of CB1 receptors was sufficient to fully reverse 

paclitaxel-induced neuropathic pain behaviors. Our results confirmed a previous study 

showing that CP55,940 at this dose produces CB1-mediated antinociception in various 

pain models (Sain et al., 2009). These results are in agreement with previous reports 

suggesting that CP55,940 produces antinociceptive effects via CB1 receptors (Choong et 

al., 2007; Lichtman and Martin, 1997; Romero et al., 2002; Sain et al., 2009). Mixed 

cannabinoid agonists can produce CB1–mediated antinociception through central and 

peripheral mechanisms (Fox et al., 2001; Lim et al., 2003), and suppress central 

sensitization in spinal dorsal horn neurons (Chapman, 2001) in neuropathic pain models.  

CP55,940 at a ten-fold higher dose (3 mg/kg/day i.p.) produced severe catalepsy 

in WT but not CB1KO mice, consistent with previous reports on CB1-mediated catalepsy 

(Lichtman and Martin, 1997; Oviedo et al., 1993). Cataleptic effects of CP55,940 were 

absent in CB1KO mice, we therefore used CP55,940 in conjunction with CB1KO mice as 

a tool for studying CB2-mediated signaling in isolation from CB1 receptors (i.e., without 

the confounding effects of the drug on motor behavior). CP55,940 administered at the 

higher dose produced anti-allodynic effects in CB1KO mice. Moreover, these anti-

allodynic effects were blocked by the CB2 antagonist AM630, suggesting that CP55,940 
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at the higher dose engages CB2 receptors to produce anti-allodynic effects. Our results are 

in line with a previous study showing that both CB1 and CB2 receptors are involved in the 

actions of CP55,940 on acute pain and spinal nerve ligation-induced neuropathic pain 

(Scott et al., 2004). Activation of spinal and/or peripheral CB2 receptors by CB2 agonists, 

following acute or chronic administration, suppresses neuropathic pain (Deng et al., 

2015; Hsieh et al., 2011; Landry et al., 2012; Yamamoto et al., 2008). CB2 agonists are 

likely to suppress neuropathic nociception by down-regulation of pro-inflammatory 

cytokines and chemokines (Deng et al., 2015; Eljaschewitsch et al., 2006; Klegeris et al., 

2003; Wilkerson et al., 2012) as well as inhibition of central sensitization (Elmes et al., 

2004; Nackley et al., 2004). 

CP55,940 binds with similar affinity to mouse CB1 (Kd = 0.77 nM) (Abood et al., 

1997) and CB2 receptors (Kd = 0.73 nM) (Griffin et al., 2000) in in vitro assays. This 

relationship also holds for human CB1 and CB2 receptors (Felder et al., 1995). 

Interestingly, in our in vivo study, a ten-fold higher dose of CP55,940 was required to 

produce CB2-mediated anti-allodynic efficacy relative to CB1-mediated anti-allodynic 

efficacy. Thus, low dose CP55,940 preferentially engaged CB1-mediated processes, 

consistent with the high expression levels of CB1 compared to CB2 in the CNS (Galiegue 

et al., 1995; Marsicano and Lutz, 1999; Onaivi et al., 2006; Schatz et al., 1997). At a 

higher dose, CP55,940 suppresses pain by triggering CB2 signaling in addition to the 

CB1-mediated mechanism. Indeed, in an inflammatory pain model, CB2 receptors are 

involved in the peripheral antihyperalgesic actions of a mixed CB1/CB2 agonist 

WIN55,212-2, when administered locally in the paw, under conditions in which central 

CB1 receptors would not be activated (Nackley et al., 2003). We postulate that the higher 
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dose of systemic CP55,940 activates both CB1 and CB2 receptors, but the beneficial 

antinociceptive effects (mediated by both CB1 and CB2) are masked by CB1-mediated 

cataleptic effects.  

As expected, CP55,940 produced hypothermia in WT, but not CB1KO mice 

(McGregor et al., 1996; Rawls et al., 2002; Varvel et al., 2005). By contrast, chronic 

CP55,940, at a dose that produced CB2-mediated anti-allodynic efficacy, failed to 

decrease body temperature in CB1KO mice, documenting that prolonged activation of 

CB2 receptors does not result in hypothermia (Amenta et al., 2012; Elliott et al., 2011; 

Kinsey et al., 2011; Malan et al., 2001; Valenzano et al., 2005; Yao et al., 2009). Chronic 

CP55,940-treated WT, but not CB1KO mice, showed profound withdrawal signs when 

challenged with the CB1 antagonist rimonabant, suggesting precipitation at CB1 receptors 

produces withdrawal symptoms (Aceto et al., 1996; Cook et al., 1998; Lichtman et al., 

2001; Rubino et al., 1998; Tsou et al., 1995). Interestingly, although rimonabant 

challenge preferentially increased scratching bouts in mice treated with CP55,940 

compared to vehicle, rimonabant-elicited scratching was notably absent in CB1KO mice, 

demonstrating that antagonist-induced scratching [analogous to pruritis (Proietto et al., 

2010)] in the absence of chronic cannabinoid dosing is mediated by CB1 receptors, rather 

than an off-target effect of rimonabant. Our studies are the first to evaluate possible signs 

of physical dependence in animal pain models associated with repeated systemic 

activation of CB2 receptors (present data and (Deng et al., 2015)). These studies provide 

strong evidence that activation of CB2 receptors produce substantial anti-allodynic 

efficacy independent of CB1 receptors. 
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One of the common features of GPCRs is that prolonged exposure to their 

agonists lead to the development of tolerance (Martin et al., 2004; Taylor and Fleming, 

2001). A striking observation of our study was that tolerance to the therapeutic effects of 

CP55,940 (0.3 mg/kg/day i.p.) occurred later than tolerance to its psychotropic effects. 

Our results, along with published reports (Bass and Martin, 2000; McKinney et al., 2008; 

Nguyen et al., 2012), suggested that the time course of tolerance may vary between 

different CB1-mediated pharmacological effects (e.g., analgesia, hypothermia, 

hypoactivity). Interestingly, using the same mouse model of paclitaxel-induced 

neuropathy, complete tolerance developed to both antinoiceptive and hypothermic effects 

of the prototypical cannabinoid Δ9-THC over 8 days (Deng et al., 2015). CP55,940 and 

Δ
9-THC differ in potency at CB1 receptors (Darmani et al., 2007; Wiley et al., 1995) and 

tolerance development (De Vry et al., 2004). Ligand-dependent differences in tolerance 

development for different pharmacological effects may be attributed to the different 

signaling pathways recruited by CB1 receptors (Martin et al., 2004) and regionally 

specific differences in receptor density and/or efficacy (McKinney et al., 2008; Oviedo et 

al., 1993). For instance, CP55,940 and Δ9-THC differ in CB1 receptor internalization 

(Hsieh et al., 1999) and inhibition of adenylyl cyclase activity (Breivogel et al., 1998; 

Childers and Deadwyler, 1996; Fan et al., 1996; Rubino et al., 2000a; Rubino et al., 

2000b; Sim et al., 1995), whereas these ligands act similarly with respect to other CB1 

signaling pathways, such as extracellular-signal-regulated kinase (ERK) activation 

(Daigle et al., 2008; Rubino et al., 2005). More studies that correlate behavior 

observations and functional signaling pathways are needed to understand tolerance 

associated with CB1 receptors. In addition to CB1-associated tolerance, the present report 
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also asked whether the high dose CP55,940 treatment in CB1KO mice would produce 

tolerance to CB2-mediated anti-allodynic effects. Notably, no decrement in CB2-mediated 

anti-allodynic effects was observed in CB1KO mice treated with daily administration of 

the high dose CP55,940, similar to previous reports with CB2-preferring agonists (Deng 

et al., 2015; Yao et al., 2009). 

In conclusion, the present report demonstrated distinct roles of cannabinoid 

receptor subtypes in mediating the beneficial and adverse effects of CP55,940 in the 

animal model of paclitaxel-induced neuropathy. CP55,940 suppressed the maintenance of 

paclitaxel-induced neuropathic pain through both CB1- and CB2-dependent mechanisms. 

CB2-mediated antinociceptive effects were engaged at doses approximately ten times 

higher than those required to produce CB1-mediated antinociception. On the other hand, 

CB1, but not CB2 receptors were engaged in CP55,940-produced hypothermia, catalepsy, 

and cannabimimetic physical withdrawal. Our results further demonstrate that CB2 

receptors represent a potential therapeutic target for effectively and safely managing 

chemotherapy-induced neuropathic pain without unwanted effects. 
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Figure Legends 

Fig. 1. Development of paclitaxel-induced painful neuropathy. (A, C) Mechanical and 

(B, D) cold allodynia developed equivalently in (A, B) CB1KO, (C, D) CB2KO, and 

corresponding WT littermates following paclitaxel treatment. Non-chemotherapy controls 

received cremophor-vehicle in lieu of paclitaxel. Arrows show timing of paclitaxel or 

cremophor-vehicle injections (inj). Data are expressed as mean ± SEM (n=5-31 per 

group). *P<0.05 vs. cremophor-vehicle control, repeated measures ANOVA and one-way 

ANOVA at each time point. 

 

Fig. 2. Low dose CP55,940 suppressed paclitaxel-induced neuropathic pain in WT 

and CB2KO, but not in CB1KO mice. (A-D) CP55,940 (0.3 mg/kg/day i.p. x 8 days) 

reversed paclitaxel-induced (A, C) mechanical and (B, D) cold allodynia in (A, B) WT 

(CD1) littermates, but not (C, D) CB1KO mice. (E-F) CP55,940 (0.3 mg/kg/day i.p. x 8 

days) attenuated paclitaxel-induced (E) mechanical and (F) cold allodynia with similar 

efficacy in CB2KO and WT (C57BL/6J) littermates. BL, pre-paclitaxel baseline; PTX, 

post-paclitaxel baseline; Veh, vehicle. Data are expressed as mean ± SEM (n=5-7 per 

group). *P<0.05 vs. vehicle, 2-tailed t-test or one-way ANOVA followed by Bonferroni 

post hoc test. #P<0.05 vs. pre-paclitaxel baseline, repeated measures ANOVA. 

 

Fig. 3. Tolerance developed to the anti-allodynic effects of low dose CP55,940 in WT 

mice. CP55,940 (0.3 mg/kg/day i.p.) failed to suppress paclitaxel-induced (A) 

mechanical or (B) cold allodynia on day 11 of chronic dosing in WT mice. BL, pre-

paclitaxel baseline; PTX, post-paclitaxel baseline; Veh, vehicle. Data are expressed as 
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mean ± SEM (n=4 per group). *P<0.05 vs. vehicle, 2-tailed t-test. #P<0.05 vs. pre-

paclitaxel baseline, repeated measures ANOVA. 

 

Fig. 4. Chronic low dose CP55,940 produced transient hypothermia in WT but not 

CB1KO mice. (A) CP55,940 (0.3 mg/kg/day i.p. x 8 days) decreased  body temperature 

in paclitaxel-treated WT mice on treatment day 2, but not day 7. (B) CP55,940 (0.3 

mg/kg/day i.p. x 8 days) did not alter body temperature in paclitaxel-treated CB1KO 

mice. Data are expressed as mean ± SEM (n=4-6 per group). *P<0.05 vs. vehicle, two-

tailed t-test. 

 

Fig. 5. Rimonabant precipitated withdrawal signs in paclitaxel-treated WT but not 

CB1KO mice receiving low dose chronic CP55,940. Challenge with the CB1 antagonist 

rimonabant (10 mg/kg i.p.) elicited paw tremors, head shakes, and scratching bouts in 

paclitaxel-treated (A) WT but not (B) CB1KO mice receiving CP55,940 (0.3 mg/kg/day 

i.p. x 9 days). PTX, post-paclitaxel baseline; Veh, vehicle. Data are expressed as mean ± 

SEM (n=4-7 per group). xP<0.05 vs. Veh+Rim (chronic vehicle treatment and challenged 

by rimonabant), $P<0.05 vs. Veh+Veh (chronic vehicle treatment and challenged by 

vehicle), one-way ANOVA followed by Bonferroni post hoc test or two-tailed t-test. 

 

Fig. 6. High dose CP55,940 produced catalepsy and hypothermia in paclitaxel-

treated WT but not CB1KO mice. (A, C) Acute high dose treatment with CP55,940 (3 

mg/kg i.p.) induced (A) catalepsy and (C) hypothermia in paclitaxel-treated WT mice. (B, 

D) Acute high dose treatment with CP55,940 (3 mg/kg i.p.) did not induce (B) catalepsy 
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or (D) hypothermia in paclitaxel-treated CB1KO mice. PTX, paclitaxel; Veh, vehicle. 

Data are expressed as mean ± SEM (n=4-7 per group). *P<0.05 vs. vehicle, +P<0.05 vs. 

CP55,940 (0.3 mg/kg i.p.), one-way ANOVA followed by Bonferroni post hoc test. 

 

Fig. 7. Acute CP55,940 produced dose-dependent anti-allodynic effects in paclitaxel-

treated CB1KO mice. Dose response of CP55,940 (0.3, 1, 3, and 10 mg/kg i.p.) on 

paclitaxel-evoked (A) mechanical and (B) cold allodynia in CB1KO mice. BL, pre-

paclitaxel baseline; PTX, post-paclitaxel baseline; Veh, vehicle. Data are expressed as 

mean ± SEM (n=4-7 per group). *P<0.05 vs. vehicle, +P<0.05 vs. CP55,940 (1 mg/kg 

i.p.), one-way ANOVA followed by Bonferroni post hoc test. 

 

Fig. 8. In CB1KO mice, high dose CP55,940 suppressed paclitaxel-induced allodynia 

without producing hypothermia or rimonabant-elicited precipitated withdrawal 

symptoms. (A, B) CP55,940 (3 mg/kg/day i.p. x 8 days) reversed paclitaxel-induced (A) 

mechanical and (B) cold allodynia in CB1KO mice. (C, D) CP55,940 (3 mg/kg/day i.p. x 

9 days) did not alter (C) body temperature or (D) produce rimonabant-elicited 

precipitated withdrawal symptoms in CB1KO mice. BL, pre-paclitaxel baseline; PTX, 

post-paclitaxel baseline; Veh, vehicle. Data are expressed as mean ± SEM (n=4-7 per 

group). *P<0.05 vs. vehicle, 2-tailed t-test. #P<0.05 vs. pre-paclitaxel baseline, repeated 

measures ANOVA. 

 

Fig. 9. Anti-allodynic effects of high dose CP55,940 in CB1KO mice were mediated 

by CB2 receptors. In CB1KO mice, high dose CP55,940 (3 mg/kg/day i.p. x 8 days)-

MOL #98483
This article has not been copyedited and formatted. The final version may differ from this version.

Molecular Pharmacology Fast Forward. Published on April 22, 2015 as DOI: 10.1124/mol.115.098483
 at A

SPE
T

 Journals on A
pril 18, 2024

m
olpharm

.aspetjournals.org
D

ow
nloaded from

 

http://molpharm.aspetjournals.org/


36 
 

induced suppressions of paclitaxel-evoked (A) mechanical and (B) cold allodynia were 

blocked by the CB2 antagonist AM630 (5 mg/kg/day i.p. x 8 days). BL, pre-paclitaxel 

baseline; PTX, post-paclitaxel baseline; Veh, vehicle. Data are expressed as mean ± SEM 

(n=4-7 per group). *P<0.05 vs. vehicle, xP<0.05 vs. CP55,940 (3 mg/kg i.p.), one-way 

ANOVA followed by Bonferroni post hoc test. #P<0.05 vs. pre-paclitaxel baseline, 

repeated measures ANOVA. 
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