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ABSTRACT 

The regulator of G protein signaling (RGS) family of proteins serves critical roles in G protein 

coupled receptor (GPCR) and heterotrimeric G protein signal transduction. RGS proteins are 

best understood as negative regulators of GPCR/G protein signaling. They achieve this by 

acting as GTPase activating proteins (GAPs) for Gα subunits and accelerating the turnoff of G 

protein signaling. Many RGS proteins also bind additional signaling partners that either regulate 

their functions or enable them to regulate other important signaling events. At neuronal 

synapses, GPCRs, G proteins, and RGS proteins work in coordination to regulate key aspects 

of neurotransmitter release, synaptic transmission, and synaptic plasticity that are necessary for 

CNS physiology and behavior. Accumulating evidence has revealed key roles for specific RGS 

proteins in multiple signaling pathways at neuronal synapses, regulating both pre- and 

postsynaptic signaling events and synaptic plasticity. Here, we review and highlight the current 

knowledge of specific RGS proteins (RGS2, RGS4, RGS7, RGS9-2, RGS14) that have been 

clearly demonstrated to serve critical roles in modulating synaptic signaling and plasticity 

throughout the brain, and consider their potential as future therapeutic targets.  
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INTRODUCTION 

G protein coupled receptors (GPCRs) are necessary for functional neurotransmission 

throughout the central nervous system (CNS), controlling neurophysiological processes ranging 

from movement to mood (Betke et al., 2012; Lagerstrom and Schioth, 2008; Rojas and 

Dingledine, 2013). Receptor activation of heterotrimeric G proteins (Gαβγ) results in release of 

Gα-GTP and Gβγ that stimulate downstream effectors and second messenger pathways to 

mediate intracellular physiology (Bourne et al., 1990; Hamm, 1998; Hepler and Gilman, 1992; 

Simon et al., 1991). GPCR and linked G protein signaling is tightly controlled by the family of 

regulator of G protein signaling (RGS) proteins. RGS proteins act as GTPase activating proteins 

(GAPs) on the alpha subunits of the Gαi and Gαq subfamilies of heterotrimeric G proteins, 

greatly enhancing the intrinsic GTPase activity of the Gα subunit to facilitate the termination of 

downstream signaling by both the Gα and Gβγ subunits (De Vries et al., 2000; Hollinger and 

Hepler, 2002; Ross and Wilkie, 2000; Willars, 2006). RGS proteins are a structurally diverse 

family of signaling proteins with many identified signaling partners distinct from Gα and GPCRs. 

In this regard, considerable evidence shows that many RGS proteins have cell signaling roles in 

addition to their shared established roles as GAPs for G protein alpha subunits (Gα) (Abramow-

Newerly et al., 2006; Burchett, 2000; Sethakorn et al., 2010).  

GPCR signaling regulates key aspects of both pre- and postsynaptic neurotransmission, 

leading to changes in synaptic plasticity, including long-term potentiation (LTP), long-term 

depression (LTD), reversal of LTP (depotentiation), and presynaptic vesicle release potential. 

Various metabotropic GPCRs either positively or negatively regulate presynaptic 

neurotransmitter release (Betke et al., 2012; Tedford and Zamponi, 2006). On postsynaptic 

membranes, GPCRs and G protein signaling pathways regulate neuronal excitability, 

modulating fast acting neurotransmission mediated by ligand-gated ion channels including 

glutamate (Chalifoux and Carter, 2010; Liu et al., 2006; Rojas and Dingledine, 2013) and 

gamma-aminobutyric acid (GABA) receptors (Bormann, 1988). Following GPCR activation of 
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Gα, released Gβγ directly binds to and activates G protein-coupled inwardly rectifying 

potassium (GIRK) channels. GIRK channels hyperpolarize the neuron and dampen the overall 

capacity of the postsynaptic signaling to potentiate (Dascal, 1997), a process known as 

depotentiation, or the reversal of LTP. As such, GIRK channels are required for depotentiation 

and many RGS proteins regulate the rate at which GPCR-coupled GIRK channels close 

following agonist removal (Doupnik et al., 1997; Saitoh et al., 1997; Saitoh et al., 2001; Ulens et 

al., 2000). Presynaptically, active Gβγ subunits can inhibit voltage-gated calcium (CaV) channels 

necessary for calcium-dependent neurotransmitter release following an action potential 

(Bormann, 1988; Zamponi and Currie, 2013). In this case, RGS proteins can antagonize the 

effects of Gβγ on N- and P/Q-type CaV channels (CaV2.2 and CaV2.1), facilitating 

neurotransmitter release (Jeong and Ikeda, 2000; Kammermeier and Ikeda, 1999; Mark et al., 

2000). Additionally, canonical heterotrimeric G protein signaling through Gα subunits has been 

shown to affect plasticity via modulation of postsynaptic glutamate receptors (Chalifoux and 

Carter, 2010; Liu et al., 2006) and multiple other signaling pathways necessary for synaptic 

plasticity. 

Our current understanding of roles for RGS proteins in physiology and behavior has 

been greatly aided by the development and use of RGS-insensitive Gα subunits (DiBello et al., 

1998; Fu et al., 2004; Kaur et al., 2011), allowing examination of neurophysiology under 

conditions that mimic functional uncoupling of Gα-RGS. Studies with these mutants have 

revealed key roles for RGS proteins in multiple signaling pathways in neurons, as well as pre- 

and postsynaptic signaling and plasticity specifically (Chen and Lambert, 2000; Goldenstein et 

al., 2009; Talbot et al., 2010). By examining the role of RGS proteins in synaptic signaling, we 

can better understand the function of GPCR and G protein signaling in synaptic plasticity as well 

as diseases associated with RGS protein dysfunction. Here, we highlight and review our current 

knowledge of the function of specific RGS proteins demonstrated to have a clear role in 

modulating synaptic signaling and plasticity throughout the brain.  
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RGS2 

RGS2 is a ~24 kDa protein consisting of a single RGS domain with minimal flanking 

amino and carboxy terminal regions. RGS2 was first discovered and characterized as a member 

of the R4 family of RGS proteins (Siderovski et al., 1996), exhibiting selective GAP activity 

toward Gαq subunits (Heximer et al., 1997), though further studies have reported situational and 

receptor-dependent modulation of Gαi/o signaling as well (Han et al., 2006; Herlitze et al., 1999; 

Heximer et al., 1999; Ingi et al., 1998) (Table 1). While many RGS proteins can act as a GAP on 

Gαq and/or Gαi/o, a key feature of RGS2 is the induction of its expression in response to stimuli 

capable of evoking plasticity in multiple brain regions, leading to the characterization of RGS2 

as an immediate early gene. This phenomenon was first seen when RGS2 mRNA expression 

was induced in the cortex, striatum, and hippocampus following maximum electroconvulsive 

shock (MECS), a reliable means with which to induce immediate early gene expression 

throughout the brain. More targeted induction of expression has been shown to occur in the 

striatum (caudate putamen and nucleus accumbens) of rats following amphetamine 

administration (Taymans et al., 2002). In a model more closely related to synaptic plasticity, 

high frequency stimulation (HFS), which is commonly used to induce hippocampal LTP, has 

been shown to strongly induce the expression of RGS2 mRNA within the dentate gyrus of the 

hippocampus (Ingi et al., 1998). Furthermore, stable expression of RGS2 with no induction 

protocol has been found throughout the brain in the same regions in which its expression is 

induced: the hippocampus, cortex, striatum, ventral tegmental area (VTA), and amygdala 

(Grafstein-Dunn et al., 2001; Ingi and Aoki, 2002; Taymans et al., 2002). 

Due to its high expression throughout the brain and its unique role as an immediate early 

gene, functions for RGS2 in neurological diseases and disorders have been extensively studied. 

Multiple reports have shown a role for this RGS protein in modulating anxiety, with 

polymorphisms in RGS2 associated with generalized anxiety disorder (Hohoff et al., 2015; 
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Koenen et al., 2009; Smoller et al., 2008), panic disorder (Hohoff et al., 2015; Koenen et al., 

2009; Otowa et al., 2011), post-traumatic stress disorder (Amstadter et al., 2009), as well as 

suicide (Cui et al., 2008) in humans. Studies in mice have also shown an association between 

RGS2 and anxiety (Lifschytz et al., 2012; Okimoto et al., 2012; Oliveira-Dos-Santos et al., 2000; 

Yalcin et al., 2004) with decreased RGS2 expression causing anxiety (Lifschytz et al., 2012; 

Oliveira-Dos-Santos et al., 2000) and depression-like (Lifschytz et al., 2012) phenotypes. In 

order to better treat these diseases associated with RGS2, it is necessary to understand how 

RGS2 modulates synaptic plasticity and signaling. 

Functions for RGS2 in synaptic signaling and plasticity have been examined largely 

within the hippocampus and VTA. Within the hippocampus, RGS2 regulates short-term synaptic 

plasticity. High concentrations of RGS2 within the neuron appear to facilitate paired pulse 

depression, while low expression of RGS2 leads to paired pulse facilitation (PPF). In other 

words, probability of neurotransmitter release is high in the presence of RGS2 and low in its 

absence. Notably, pertussis toxin (PTX) blocks the PPF in RGS2-knockout (KO) mice, indicating 

that RGS2’s effects at the presynaptic terminal in this case are due to its modulation of Gαi/o-

coupled GPCR signaling as opposed to Gαq (Han et al., 2006). Activation of Gαi/o leads to the 

dissociation of Gβγ subunits which can inhibit presynaptic voltage-gated CaV2.2 channels, 

preventing calcium influx necessary for neurotransmitter release (Ikeda, 1996; Kajikawa et al., 

2001) (Figure 1A). Decreased expression of RGS2 leads to increased Gβγ-mediated inhibition 

of calcium influx and decreased probability of neurotransmitter release from the synapse, hence 

the observed PPF (Han et al., 2006). This interpretation is strengthened by in vitro evidence 

showing RGS2-mediated facilitation of CaV2.1 calcium channels, which are also inhibited by 

Gβγ subunits (Mark et al., 2000). 

RGS2 also has reported roles in postsynaptic spines within the hippocampus in the 

context of long-term synaptic plasticity (Figure 1C). However, studies with RGS2-KO mice 

examining this topic are conflicting. There is no change in canonical hippocampal LTP as 
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compared to RGS2 heterozygous mice (Oliveira-Dos-Santos et al., 2000), but increased LTP as 

compared to wild type (Hutchison et al., 2009). However hippocampal-dependent learning and 

memory does not appear to be affected in RGS2-KO mice (Oliveira-Dos-Santos et al., 2000), 

leaving RGS2’s role in modulating canonical hippocampal LTP unclear. RGS2 has been shown 

to modulate signaling through mGluR1a, with increases in RGS2 expression blocking Gαq 

mediated signaling while leaving Gαi-mediated signaling unaffected (Kammermeier and Ikeda, 

1999). Furthermore, mGluR1a has been shown to be responsible for a unique form of 

postsynaptic NMDA receptor-independent LTP within hippocampal interneurons, which possibly 

could be regulated by changes in expression of RGS2 (Perez et al., 2001). The numbers of 

apical and basilar spines of dendrites in CA1 hippocampal neurons are also significantly 

decreased in RGS2-KO mice (Oliveira-Dos-Santos et al., 2000), with the amount of spines 

being indicative of overall synapse numbers and synaptic plasticity (Moser, 1999). These 

changes in spine number could be explained by the discovery that RGS2 binds tubulin directly, 

stimulating microtubule polymerization (Heo et al., 2006) and potentially aiding in the 

development of dendritic spines (Gu et al., 2008). Additionally, CA1 hippocampal neurons of 

RGS2-KO mice show decreased overall basal electrical activity as measured by decreased field 

excitatory postsynaptic potential (fEPSP) amplitude following stimulation via Schaeffer 

collaterals (Oliveira-Dos-Santos et al., 2000).  

Roles for RGS2 also have been examined in the VTA (Labouebe et al., 2007). RGS2 is 

selectively expressed postsynaptically in tyrosine hydroxylase-positive dopamine neurons within 

the VTA. Here, RGS2 associates specifically with GIRK3, one of four GIRK channel subunits, to 

decrease the coupling efficiency between the GABAB receptor and GIRK channels (Labouebe et 

al., 2007) (Figure 1C). These GIRK channels mediate the inhibitory postsynaptic effects of 

Gαi/o-coupled receptors, including the GABAB receptor. Because RGS2 is not highly expressed 

in GABA neurons, GABAB receptor-GIRK channel coupling efficiency is much higher in GABA 

neurons of the VTA than those that release dopamine. This allows application of γ-
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hydroxybutyrate (GHB), a GABAB receptor agonist, to cause disinhibition of dopamine neurons 

in the VTA, which are typically inhibited by GABA neurons, leading to induction of addictive 

behavior. However, chronic exposure of mice to GHB reduces the mRNA expression of RGS2 

in dopamine neurons, increasing GABAB–GIRK channel coupling and providing a possible 

mechanism through which tolerance to GHB occurs and demonstrating a novel mechanism 

through which changes in RGS2 expression mediate signaling at the synapses of dopamine 

neurons in the VTA (Labouebe et al., 2007).  

Roles for RGS2 in the brain also have been examined outside the hippocampus and 

VTA, but are less well defined. In the amygdala, RGS2 expression is induced upon 

administration of oxytocin (Okimoto et al., 2012), potentially mediating the anxiolytic effects of 

the neuropeptide. This may explain the relationship between anxiety and RGS2 although 

additional studies where RGS2 expression cannot be induced by oxytocin (RGS2-KO mice) 

must be performed to ensure that RGS2 is necessary to mediate oxytocin’s anxiolytic effect. 

RGS2 also is expressed in olfactory neurons where it inhibits the activity of adenylyl cyclase III 

downstream of active olfactory receptors, regulating signal transduction and possibly 

contributing to long-term adaptation to odorants (Sinnarajah et al., 2001). Overall, the status of 

RGS2 as an immediate early gene highly expressed in multiple types of neurons throughout the 

brain allows it to play a unique role in modulating G protein signaling at the synapse.  

 

RGS4 

Another member of the R4 family of RGS proteins, RGS4, also acts as a GAP on both 

Gαi/o (Berman et al., 1996; Huang et al., 1997) and Gαq subunits (Hepler et al., 1997; Huang et 

al., 1997) (Table 1). Similar to RGS2, RGS4 is a ~24 kDa protein consisting of a single RGS 

domain with modest flanking amino and carboxy terminal regions. Like RGS2, RGS4 is 

expressed throughout the brain (Gold et al., 1997; Ingi and Aoki, 2002), with expression 

reported in the prefrontal cortex (Ding and Hegde, 2009; Mirnics et al., 2001; Paspalas et al., 
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2009), hippocampus (Gold et al., 1997; Heraud-Farlow et al., 2013; Saugstad et al., 1998), 

thalamus (Gold et al., 1997; Ingi and Aoki, 2002; Kim et al., 2014; Ni et al., 1999), and striatum 

(Larminie et al., 2004). Furthermore, in studies comparing abundance of mRNA coding for RGS 

proteins, RGS4 has the highest measured levels within the brain (Larminie et al., 2004), though 

a peculiar property of RGS4 is that its basal protein levels are typically low due to a robustly 

regulated degradation of the protein (Bodenstein et al., 2007; Davydov and Varshavsky, 2000; 

Lee et al., 2005). With such a broad expression pattern across brain regions, RGS4 has been 

widely studied for its role in physiology relating to neuronal signaling and plasticity, as well as in 

neurological diseases. Here, we will examine the function of RGS4 in the brain regions where its 

effect on synaptic plasticity and signaling is best characterized: the hippocampus, striatum, 

hypothalamus, and prefrontal cortex.  

Potential roles for RGS4 in the modulation of GPCR signaling in brain were first 

described in the hippocampus. In the CA1 region, the group I metabotropic glutamate receptor, 

mGluR5, is localized perisynaptically in dendrites (Ottersen and Landsend, 1997). Here, 

activation of mGluR5 mediates suppression of the afterhyperpolarization current that follows 

action potential firing as well as potentiation of NMDA receptor currents (Mannaioni et al., 2001), 

thereby increasing neuronal excitability by intensifying both firing and depolarization, 

respectively. RGS4 has been shown to inhibit signaling through group I mGluRs (mGluR1 and 

5), blocking mGluR5-mediated inhibition of the afterhyperpolarization current in CA1 neurons 

(Saugstad et al., 1998) (Figure 1C). However, the effect of RGS4 on mGluR5’s potentiation of 

NMDA receptor currents as well as its effect on signaling through mGluR1 within the 

hippocampus have not been examined. While the role of endogenous RGS4 within the 

hippocampus is not fully understood, changes in RGS4 expression potentially could regulate 

group I mGluR-mediated changes in neuronal excitability within the CA1 region as well as other 

regions of the hippocampus.  
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While the precise role of RGS4 in modulating synaptic signaling and plasticity in the 

hippocampus remains poorly defined, roles for RGS4 in the striatum are better understood. In 

Parkinson’s disease (PD), decreased striatal dopamine leads to increased striatal acetylcholine 

release, which exacerbates the motor symptoms of the disease. Notably, dopamine depletion in 

the striatum also upregulates RGS4 expression specifically in cholinergic interneurons (Ding et 

al., 2006). Here, RGS4 diminishes signaling through presynaptic M4 muscarinic acetylcholine 

autoreceptors (Figure 1B). Activation of Gαo-coupled M4 receptors in striatal cholinergic 

interneurons causes Gβγ-mediated inhibition of voltage-gated CaV2.2 (N-type) channels, 

leading to decreased acetylcholine release into the synapse. Increased RGS4 expression 

blocks this inhibition and allows more acetylcholine release, exacerbating Parkinsonian motor 

symptoms (Ding et al., 2006).  

Within the striatum, RGS4 also regulates dopaminergic control of striatal LTD. Here, 

RGS4 modulates G protein signaling postsynaptically in indirect pathway medium spiny neurons 

(MSNs), the primary projection neurons of the striatum. Striatal endocannabinoid-dependent 

LTD (eCB-LTD) is induced by postsynaptic production of endocannabinoids (eCBs), which act 

on presynaptic CB1 receptors to lower the probability of neurotransmitter release (Figure 1D). 

Activation of group I mGluRs (Gq-coupled) is necessary for eCB-LTD, while activation of Gαi-

coupled D2 dopamine receptors (D2DRs) positively modulates this form of synaptic plasticity 

(Kreitzer and Malenka, 2005). Activation of Gαs-coupled adenosine A2A receptors antagonizes 

LTD induction (Lerner et al., 2010). Interestingly, in RGS4-KO mice, eCB-LTD can be induced 

even in the presence of D2DR antagonist and adenosine A2A receptor agonist (Lerner and 

Kreitzer, 2012). Activation of the A2A receptor increases PKA activity, which has been shown to 

induce RGS4 activity via phosphorylation (Huang et al., 2007). This allows RGS4 to inhibit 

mGluR1/5 and D2DR-mediated release of eCBs, blocking LTD. Furthermore, when RGS4’s 

block on eCB-LTD is removed, mice in a model of Parkinson’s exhibit fewer behavioral deficits 

(Lerner and Kreitzer, 2012). In this case as well as in the case of M4 receptor signaling in 
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striatal cholinergic interneurons, inhibition of RGS4 could be a valuable non-dopaminergic 

therapeutic option that targets multiple signaling pathways within the striatum in the treatment of 

PD.  

Outside of its links to PD in striatum, RGS4 has been studied most extensively in the 

context of neurological disease in the prefrontal cortex. Polymorphisms in RGS4 and decreased 

protein expression in the dorsolateral prefrontal cortex are strongly implicated in schizophrenia 

(Ding and Hegde, 2009; Gu et al., 2007; Mirnics et al., 2001; Paspalas et al., 2009; Prasad et 

al., 2010; Prasad et al., 2005; Vrajova et al., 2011). One approach to understanding RGS4 roles 

in signaling in the prefrontal cortex has been to examine its subcellular localization in pyramidal 

neurons there. In macaques, postsynaptic RGS4 immunoreactivity appears high in 

extrasynaptic and perisynaptic regions of asymmetric synapses, which are typically excitatory. 

Furthermore, at inhibitory symmetric synapses, RGS4 expression is high within presynaptic 

regions of axons (Paspalas et al., 2009), indicating a role for RGS4 modulation of G protein 

signaling both pre- and postsynaptically in the prefrontal cortex. In the context of signaling at the 

synapse, RGS4 has been shown to specifically modulate 5-HT1A serotonin receptor signaling, 

blocking postsynaptic serotonin-mediated inhibition of NMDA receptor current (Figure 1D), 

thereby providing a possible functional role for RGS4 in the pathogenesis of schizophrenia (Gu 

et al., 2007). Activation of other GPCRs in the prefrontal cortex can also modulate postsynaptic 

glutamate receptor currents. Activation of α2 adrenergic receptors (α2ARs) reduces AMPA 

receptor currents while activation of GABAB receptors (GABABRs) reduces NMDA receptor 

calcium influx. Both α2ARs and GABABRs are Gαi-coupled, decreasing PKA activity and 

modulating glutamate receptor activity. Even when all of these receptors are expressed in the 

same spine, RGS4 appears capable of limiting crosstalk between the two Gαi-coupled 

receptors, aiding the inactivation of the G proteins and preventing interference between the two 

receptors’ neuromodulatory functions despite their close proximity (Lur and Higley, 2015). 
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Decreases in RGS4 expression in schizophrenia could lead to increased crosstalk between 

different signaling pathways, leading to aberrant function. 

Finally, RGS4 also has been shown to play a role in synaptic signaling and plasticity in 

the hypothalamus. Parvocellular neuroendocrine cells (PNCs) in the paraventricular nucleus 

(PVN) of the hypothalamus are at the head of the hypothalamic-pituitary-adrenal (HPA) axis, 

both mediating glucocorticoid release and responding to negative feedback (Wamsteeker and 

Bains, 2010). Sustained stress unmasks presynaptic LTDGABA in which the probability of GABA 

release onto these neurons is decreased by retrograde opioid release (Wamsteeker Cusulin et 

al., 2013). Notably, due to the decreased capacity for chloride extrusion of PNCs during stress, 

GABA is actually excitatory (Hewitt et al., 2009), meaning that in this case LTDGABA is 

decreasing excitation and potentially imposing a ceiling on HPA activation during prolonged 

glucocorticoid release. This LTDGABA requires activation of postsynaptic mGluR5 in the PNC, 

which mediates the retrograde release of opioids from the somatodendritic compartment. RGS4 

typically inhibits mGluR5 signaling here (Wamsteeker Cusulin et al., 2013). However, 

glucocorticoid receptor activation suppresses RGS4 expression (Ni et al., 1999), which 

increases mGluR5 signaling, thereby unmasking LTDGABA (Wamsteeker Cusulin et al., 2013) 

and presenting a role for RGS4 as an inhibitor of synaptic plasticity in this system (Figure 1C). 

Overall, RGS4’s expression in multiple brain regions as well as multiple subcellular 

compartments provides insight into the many ways in which the duration, location, and intensity 

of G protein activation can affect synaptic signaling and plasticity throughout the brain.  

 

RGS7 and RGS9-2 

Shared Signaling properties: RGS7 and RGS9-2 are closely related proteins within the R7 

subfamily of RGS proteins that share structural similarities and binding partners (Table 1). 

Unlike RGS2 and RGS4, which are small, simple RGS proteins containing a single RGS 

domain, RGS7 and RGS9 are larger, more complex proteins containing multi-domains that bind 
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various common binding partners. Both proteins serve as a GAP for Gαi/o family members with 

varying degrees of selectivity for the different Gαi and Gαo subunits (Hooks et al., 2003). In 

addition to the canonical RGS domain, both proteins also contain a DEP (disheveled, Egl-10, 

pleckstrin) domain, an R7H (R7 homology) domain, and a GGL (G protein gamma subunit-like) 

domain. The GGL domain shares close homology with G protein gamma subunits and 

specifically binds G protein β5 (Gβ5) with high affinity (Snow et al., 1999). Therefore, RGS7 and 

RGS9-2 each exist as obligate heterodimers in complex with Gβ5 (Hollinger and Hepler, 2002; 

Snow et al., 1999; Witherow et al., 2000). Binding partners and functions for the R7H domain 

remain elusive. The DEP domain binds R7BP, which can form a reversible complex with either 

RGS7:Gβ5 or RGS9-2:Gβ5  (Drenan et al., 2005; Grabowska et al., 2008; Martemyanov et al., 

2005). R7BP is a regulatory protein that, when palmitoylated, anchors the RGS7:Gβ5 and the 

RGS9:Gβ5 complexes at the plasma membrane (Drenan et al., 2005; Drenan et al., 2006; Jia et 

al., 2011), and protects these RGS proteins from degradation. R7BP palmitoylation is regulated 

by Gαi/o signaling, and R7BP facilitates R7:Gβ5 complex association with GIRK channels, 

which speeds up deactivation kinetics (Jia et al., 2014). Roles of R7BP in R7 family RGS 

signaling have been thoroughly reviewed (Jayaraman et al., 2009). 

R7BP can serve to regulate the balance between RGS7 and RGS9-2 signaling by 

preferentially anchoring either protein at the membrane, leaving the other unprotected in the 

cytosol and subject to degradation. For example, RGS7 and RGS9-2 are both expressed within 

the same postsynaptic dendritic compartments of striatal neurons. R7BP binding (or lack 

thereof) dictates RGS protein plasma membrane localization versus degradation, and therefore 

the cellular ratio of RGS9-2 versus RGS7. Under basal conditions, R7BP preferentially couples 

to RGS9-2 at the plasma membrane. This system is tightly regulated by increased neuronal 

activity, increased cellular oxygen and calcium levels, and activation of protein kinase C, all of 

which can shift the ratio toward degradation of RGS9-2 (Anderson et al., 2009).  In this case, 
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R7BP uncouples from RGS9-2, is released into the cytosol, and binds RGS7 to recruit it to the 

membrane, where it is protected from degradation. Of note, recent reports suggest that RGS7 is 

membrane-recruited and stabilized by the orphan GPCR, GPR158 (Orlandi et al., 2012). 

Interestingly, GPR158 contains a C terminal region that is homologous with R7BP, which 

competitively binds the DEP domain of RGS7, and binding of RGS7 to GPR158 potentiates 

GAP activity of RGS7 (Orlandi et al., 2012; Orlandi et al., 2015). Though GPR158 and R7BP 

form a mutually exclusive complex with RGS7 (Orlandi et al., 2012), future studies are needed 

to establish whether these binding partners are functionally redundant, divergent, or synergistic. 

In summary, RGS7 and RGS9-2 have very similar signaling properties despite being divergent 

in their brain expression pattern and regulation.   

RGS7: RGS7 is found throughout the brain (Khawaja et al., 1999), with reports 

indicating dense mRNA expression in the cerebellum, hypothalamus, thalamus (Lopez-Fando et 

al., 2005), and mRNA and protein expression in hippocampus (Fajardo-Serrano et al., 2013; 

Shelat et al., 2006) and striatum (Anderson et al., 2009; Larminie et al., 2004) (Table 1). Within 

the hippocampus, RGS7 is found mostly extrasynaptically in dendrites at asymmetric (primarily 

excitatory) synapses (Fajardo-Serrano et al., 2013), with Gβ5 regulating the cellular distribution 

of RGS7 (Rose et al., 2000). RGS7 acts as a GAP for Gαo and Gαi subunits (Lan et al., 1998; 

Posner et al., 1999; Rose et al., 2000; Shuey et al., 1998) and negatively modulates GABABR 

signaling (Fajardo-Serrano et al., 2013; Ostrovskaya et al., 2014). Of note, RGS7 interacts in a 

phosphorylation-dependent manner with the regulatory protein 14-3-3, which binds the RGS 

domain of RGS7 to inhibit its GAP activity (Benzing et al., 2000). TNF-α negatively regulates 

this interaction (Benzing et al., 2002), and simultaneously prevents proteasomal degradation of 

RGS7, consequentially leading to stabilization and upregulation of RGS7 protein (Benzing et al., 

1999).  

Within postsynaptic membranes of neurons, the RGS7:Gβ5 complex regulates GIRK 

channels (Fajardo-Serrano et al., 2013; Kovoor et al., 2000; Ostrovskaya et al., 2014; Saitoh et 
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al., 1999; Xie et al., 2010), which serve important roles in mediating hyperpolarization of the 

neuron (Figure 1C). This process can be regulated by 14-3-3. RGS7 greatly accelerates the 

deactivation GIRK in oocytes, and the introduction of 14-3-3 reduces the RGS7-mediated 

deactivation of GIRK currents, consistent with its negative regulatory effects on RGS7 GAP 

activity (Benzing et al., 2002). Co-expression with R7BP enhances the capacity of RGS7 to 

regulate GIRK channel activity, presumably by stabilizing RGS7:Gβ5 at the plasma membrane 

(Drenan et al., 2005). Compelling evidence suggests that RGS7’s effect on GIRK channels is 

due to its action at the GABABR. RGS7, Gβ5, GABABR and GIRK all coexist in a 

macromolecular complex (Fajardo-Serrano et al., 2013), and genetic knockout of either RGS7 

(Ostrovskaya et al., 2014), Gβ5 (Xie et al., 2010), or R7BP (Ostrovskaya et al., 2014) delays 

deactivation of GABABR-coupled GIRK currents. Furthermore, ablation of RGS7 or R7BP 

increases coupling efficiency between GABABR and GIRK (Ostrovskaya et al., 2014), in that 

lower doses of the GABABR agonist baclofen produce a stronger GIRK current. Additionally, 

ablation of RGS7 decreases the intrinsic excitability of hippocampal pyramidal neurons, and 

impairs LTD and depotentiation (which is reliant on GIRK channels). This was shown to be a 

postsynaptic mechanism, as paired pulse facilitation was unaltered in the RGS7 knockout mice, 

which is consistent with RGS7’s subcellular expression pattern. In summary, RGS7 is tightly 

coupled with GABABR-GIRK signaling on postsynaptic dendrites and spines, which serves as a 

major player in the modulation of depotentiation of LTP. 

Though defined roles for RGS7 in human diseases are unclear, mouse models have 

begun to elucidate roles for RGS7 in plasticity and behavioral output. Consistent with RGS7 

regulation of hippocampal excitability, RGS7 knockout mice show deficits in several tasks of 

learning and memory, including contextual fear learning, and spatial/contextual learning and 

memory (Morris water maze, and novel object recognition) (Ostrovskaya et al., 2014). Evidence 

for RGS7 mediating the effects of the GABABR on neuronal excitability extends to behavior. As 

discussed, Gβ5 is an obligate dimer with RGS7, and loss of Gβ5 results in loss of R7 family of 
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RGS proteins, including RGS7 (Chen et al., 2003). Gβ5 knockout mice show a dose-dependent 

decrease in locomotion in response to the GABAB agonist baclofen (Xie et al., 2010). Within the 

striatum, RGS7 knockdown enhances locomotor sensitization to cocaine (Anderson et al., 

2010), but not in R7BP knockout mice, suggesting a unique role, separate from RGS9-2, in 

psychostimulant-induced behavior. RGS7 also has been associated with panic disorder (Hohoff 

et al., 2009) as well as ischemia (Shelat et al., 2006), though RGS7’s roles in these neurological 

disorders, if any, need further elucidation. 

RGS9-2: RGS9 was originally cloned from retina (now identified as RGS9-1), and 

characterized as a retina specific GAP for the resident G protein, transducin (Gαt) (Cowan et al., 

1998; He et al., 1998). However, this sequence was recognized as a shorter splice variant of a 

longer, striatum-specific isoform of RGS9, which was named RGS9-2 (Rahman et al., 1999). 

Subsequent work demonstrated that RGS9-2 also is found in other brain regions, specifically 

periaqueductal grey (PAG) (Zachariou et al., 2003) and thalamus (Lopez-Fando et al., 2005) 

(Table 1). RGS9-2 was initially characterized as a GAP for Gαi/o coupled to the μ-opioid 

receptor (MOR) (Rahman et al., 1999), and was later found to modulate D2 dopamine receptor 

(D2DR) signaling and trafficking. Consistent with these findings, RGS9-2 colocalizes with D2DR 

and enkephalin in medium spiny neurons (Kovoor et al., 2005; Rahman et al., 2003). The DEP 

binding protein, R7BP, which protects RGS9-2 from proteasomal degradation (Anderson et al., 

2007), is reported to mediate RGS9-2 interaction with the D2DR at the plasma membrane. In 

one study, an expressed DEP motif alone was recruited to the membrane by D2DR, whereas 

DEP-less RGS9-2 remained in the cytosol, indicating that the DEP domain is both necessary 

and sufficient for targeting RGS9-2 to the D2DR and the plasma membrane (Kovoor et al., 

2005).  

Similar to RGS7, RGS9-2 accelerates the off-kinetics for D2-coupled GIRK channels 

when co-expressed in oocytes (Rahman et al., 2003) (Figure 1D), an effect that is dependent on 

the DEP domain (Kovoor et al., 2005), and a functional RGS domain (Celver et al., 2010). In 
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medium spiny neuron (MSN) slice preparations of RGS9-2 knockout (RGS9-2-KO) mice, 

glutamate-evoked inward currents are inhibited by a D2DR agonist, suggesting a functional role 

of RGS9-2 in postsynaptic excitability. Indeed, RGS9-2-KO mice show severe abnormal 

movements following administration of a D2DR agonist (Kovoor et al., 2005). RGS9-2 also 

regulates receptor internalization, a method of modulating neuronal excitability. Overexpression 

of the RGS9-2:Gβ5 complex (but not full length RGS9-2 alone or DEP-less RGS9-2) inhibits 

agonist-dependent D2DR internalization (Celver et al., 2010). MOR signaling and sensitization 

is also heavily dependent on RGS9-2 activity (Figure 1D). RGS9-2 depletion (and Gβ5 

depletion, consistent with the requisite dimer) enhances the analgesic potency and duration of 

morphine (Sanchez-Blazquez et al., 2003) as well as MOR endocytosis (Psifogeorgou et al., 

2007), likely due to unabated stimulation of MOR-activated signals. Further supporting evidence 

for RGS9-2 functional interactions with MOR signaling includes the finding that RGS9-2 inhibits 

morphine-induced ERK activation (while a DEP-less RSG9-2 enhances pERK), along with the 

observation that RGS9-2 translocates to the plasma membrane following MOR activation 

(Psifogeorgou et al., 2007). In summary, RGS9-2 modulates receptor-membrane localization as 

well as postsynaptic neuronal excitability by regulating Gαi/o-linked GPCRs coupled to GIRK 

channels. 

Beyond the synapse, RGS9-2 protein expression is both influenced by (Burchett et al., 

1998; Rahman et al., 2003), and regulates (Rahman et al., 2003) psychostimulant-induced 

behavior. These observations are not unexpected given the striatal expression of RGS9-2. In 

these studies, RGS9-2 overexpression inhibits cocaine-induced hyperactivity, whereas RGS9-2 

knockout mice show enhanced sensitivity to cocaine-induced hyperactivity and place preference 

(Rahman et al., 2003). Perhaps due to its role in dopaminergic signaling in the striatum, RGS9-2 

also has been implicated in both schizophrenia (Seeman et al., 2007) and dyskinesias (Kovoor 

et al., 2005). Activation of opiate receptors alters and is affected by RGS9-2 expression. For 

example, acute morphine treatment increases RGS9-2 protein expression, whereas chronic 
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morphine treatment decreases RGS9-2 in the nucleus accumbens (Psifogeorgou et al., 2007; 

Zachariou et al., 2003). This finding correlates with behavioral output driven by opiates. RGS9-2 

knockout mice have a 10-fold greater sensitivity to the rewarding effects of morphine, as 

measured by place preference (Zachariou et al., 2003), a phenotype that is rescued by local, 

virally-driven overexpression of RGS9-2. RGS9-2-KO animals also are more sensitive to 

morphine analgesia (Garzon et al., 2003), and have delayed tolerance to, and enhanced 

physical dependence on, morphine (Zachariou et al., 2003). In summary, RGS9-2 plays a 

prominent role in both psychostimulant- and opiate-induced plasticity, likely by regulating slow 

acting GPCR modulatory signals at synapses. 

RGS14 

RGS14, a member of the R12 subfamily of RGS proteins, is a selective GAP for Gαi/o 

(Cho et al., 2000; Hollinger et al., 2001; Traver et al., 2000), having no effect on the GTPase 

activities of other Gα. Like RGS7 and RG9-2, RGS14 has a complex domain structure (Snow et 

al., 1997) that contains additional domains/motifs that interact with both heterotrimeric and 

monomeric G proteins, modulating their function. The GPR motif (also known as a GoLoco 

motif) of RGS14 specifically binds inactive Gαi1-GDP and Gαi3-GDP subunits (Hollinger et al., 

2001; Kimple et al., 2001; Mittal and Linder, 2004), thereby serving to recruit cytosolic RGS14 to 

the plasma membrane and anchoring it there (Shu et al., 2007). In so doing, the GPR motif 

promotes formation of a RGS14:Gαi complex that is capable of interacting with GPCRs in the 

absence of Gβγ (Vellano et al., 2011b). Furthermore, RGS14 interacts with the monomeric G 

proteins Rap1 (Traver et al., 2000), Rap2 (Traver et al., 2000), and H-Ras (Shu et al., 2010; 

Vellano et al., 2013; Willard et al., 2009) at its tandem Rap/Ras binding domains, although H-

Ras is likely the functional binding partner in cells (Vellano et al., 2013; Willard et al., 2009). 

The first hints of RGS14 function in neuronal signaling came from studies of its protein 

expression patterns in brain (Table 1), with protein and mRNA expression in adult rodents 

limited largely to the hippocampus and olfactory cortex (Grafstein-Dunn et al., 2001; Traver et 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on December 11, 2015 as DOI: 10.1124/mol.115.102210

 at A
SPE

T
 Journals on A

pril 10, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #102210 

20 

 

al., 2000) (http://mouse.brain-map.org/). Within the hippocampus, RGS14 expression is limited 

to area CA2, specifically within postsynaptic dendrites and spines of pyramidal neurons (Evans 

et al., 2014; Lee et al., 2010; Traver et al., 2000). Notably, proximal dendrites of CA2 neurons 

that receive Schaffer collateral projections from area CA3 are incapable of eliciting LTP under 

the same conditions that reliably provoke LTP in hippocampal CA1 neurons (Zhao et al., 2007). 

However, mice lacking RGS14 (RGS14-KO) exhibit robust LTP in CA2 neurons, demonstrating 

that RGS14 is a natural suppressor of synaptic plasticity within these neurons (Lee et al., 2010). 

Consistent with this idea, RGS14-KO mice perform markedly better than wild type mice in 

hippocampal-dependent tasks of spatial/contextual learning (Morris water maze) and memory 

(novel object recognition) that are associated with LTP (Lee et al., 2010).  

The exact mechanism by which RGS14 suppresses LTP is currently unclear, though 

RGS14 engages signaling proteins and pathways that are critical for LTP. RGS14 binds active 

H-Ras to inhibit ERK activation (Shu et al., 2010), which is necessary for AMPA receptor 

trafficking and LTP in CA1 neurons (Atkins et al., 1998; English and Sweatt, 1997). RGS14 also 

can bind calcium-activated calmodulin (Ca2+/CaM) (Evans and Hepler, 2012), which is essential 

for regulating both CaMKII- and ERK-dependent signaling events that underlie induction of LTP. 

Recent evidence suggests that the RGS domain of RGS14 maintains GAP activity when its 

GPR motif is bound to inactive Gαi subunits at the plasma membrane (Brown et al., 2015). This 

supports a model (Brown et al., 2015) in which cytosolic RGS14 could be recruited initially to the 

postsynaptic density (PSD) through its RGS domain following GPCR and Gαi activation, where 

its GPR motif captures the resulting inactive Gαi-GDP (Figure 1C). In this way, the newly formed 

RGS14:Gαi complex is properly placed to GAP other nearby Gαi/o-GTP enabling those 

resulting Gαi-GDP to recruit and cluster additional RGS14:Gαi complexes to form a signaling 

node at or near the plasma membrane and possibly the PSD(Brown et al., 2015). In this 

speculative scenario, RGS14 would be well positioned to intercept local signals necessary for 

the induction of LTP, such as H-Ras activation of ERK and/or Ca2+/CaM activation of CaMKII. 

This article has not been copyedited and formatted. The final version may differ from this version.
Molecular Pharmacology Fast Forward. Published on December 11, 2015 as DOI: 10.1124/mol.115.102210

 at A
SPE

T
 Journals on A

pril 10, 2024
m

olpharm
.aspetjournals.org

D
ow

nloaded from
 

http://molpharm.aspetjournals.org/


MOL #102210 

21 

 

Further studies are necessary to confirm this model. In summary, RGS14’s modulation of 

synaptic plasticity in hippocampal area CA2 provides a unique example of RGS protein action at 

the synapse, with the RGS domain acting in concert with multiple other domains and signaling 

partners/pathways to tightly modulate downstream synaptic signaling.  

 

Other RGS Proteins 

While many RGS proteins are expressed in brain (Gold et al., 1997; Grafstein-Dunn et 

al., 2001), only those highlighted here have so far been reported to directly affect synaptic 

plasticity through modulation of G protein signaling at the synapse. The following RGS proteins 

also have reported roles in modulating synaptic signaling, but further work is necessary to 

determine their precise function in synaptic plasticity. One such protein is RGS6, another 

member of the R7 subfamily, which is highly expressed in cerebellar granule neurons (CGNs) 

(Maity et al., 2012). Similar to RGS7 and RGS9-2, RGS6 forms a stable signaling complex with 

Gβ5 and is a selective GAP for Gαi/o family members (Hooks et al., 2003; Posner et al., 1999). 

Studies indicate that RGS6 antagonizes GABABR-mediated GIRK currents, as shown by ataxia 

and increased CGN GIRK currents exhibited by RGS6-KO mice that can be rescued by 

administration of a GABABR antagonist (Maity et al., 2012). Additionally, RGS6 is required for 

adult maintenance of dopaminergic neurons in the ventral substantia nigra (Bifsha et al., 2014) 

and a recent study has proposed a role for RGS6 as a key mediator of both reward-related 

behavioral and pathological responses to alcohol (Stewart et al., 2015), though it is unclear 

whether these effects are due to changes in synaptic signaling or plasticity. Furthermore, RGS6 

is expressed in the soma and dendrites of hippocampal and cortical neurons. In both brain 

regions, RGS6 can promote anxiety and depression-like behavior by inhibiting signaling through 

the 5-HT1AR (Stewart et al., 2014). These findings would suggest a possible role for RGS6 

antagonists not only as novel antidepressants but also as a way to reduce alcohol cravings and 
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withdrawal, though such inhibition may be contraindicated due to necessary RGS6 functions in 

other parts of the brain (Bifsha et al., 2014; Maity et al., 2012). 

RGS8 has also been shown to modulate signaling in neurons in the cerebellum. Here, 

RGS8 is expressed exclusively in the soma and dendrites of Purkinje cells (Itoh et al., 2001; 

Saitoh et al., 2003; Saitoh and Odagiri, 2003), where it increases both the on and off rate of 

Gβγ-mediated GIRK channel current following GPCR activation (Saitoh et al., 1997). 

Interestingly, rapid activation of the GIRK channel appears to be mediated by the N-terminal 

region of RGS8 as opposed to the RGS domain (Jeong and Ikeda, 2001), demonstrating a 

function for RGS8 independent of GAP activity.  

Little is known about the neuronal function of RGS12, a member of the R12 family of 

proteins that also contains RGS14 and RGS10. Although RGS12 mRNA is found in the brain 

(Lopez-Aranda et al., 2006) (http://mouse.brain-map.org/), the protein’s known actions are in 

dorsal root ganglion (DRG) neurons in the spinal cord. In these neurons, RGS12 modulates the 

presynaptic GABABR-mediated inhibition of presynaptic CaV2.2 channels (Schiff et al., 2000) by 

interacting with the SNARE-binding region of the channel (Richman and Diverse-Pierluissi, 

2004; Richman et al., 2005). Further research is needed to determine the function of RGS12 in 

modulating synaptic signaling and plasticity within the brain, though it is possible that it acts 

through a similar mechanism as that shown in DRG neurons. 

RGS10, the third member of the R12 family, is also expressed highly in the brain. While 

much of this expression is in microglia, RGS10 immunolabelling is also high within the nuclei of 

neurons throughout the brain as well as both pre- and postsynaptically (Waugh et al., 2005), 

indicating a possible role in synaptic plasticity. Another, RGS protein, Axin, is also expressed at 

the synapse (Chen et al., 2015). Here, Axin, has a clearly defined role in modulating neuronal 

differentiation and synapse development, acting as a scaffold for GSK-3β and β-catenin to 

manipulate canonical Wnt signaling at the both pre- and postsynaptic compartments (Chen et 

al., 2013). Notably, GSK-3β has been shown to play a role in the induction of LTD (Peineau et 
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al., 2007), potentially implicating Axin in modulation of synaptic plasticity as well. Additionally, 

RGS19 (GAIP) has been shown to be expressed in striatal neurons where it may attenuate 

D2DR downstream signaling, though synaptic localization and specific function of RGS19 at the 

synapse is unclear (Jeanneteau et al., 2004). While these RGS proteins are highly expressed in 

the brain, with some shown to affect signaling specifically at the synapse, further research is 

necessary to elucidate their exact role in modulating synaptic plasticity.  

 

 

 

CONCLUDING REMARKS 

Here we have highlighted specific roles for particular RGS proteins (RGS2, RGS4, 

RGS7, RGS9-2 and RGS14) in the modulation of GPCR and G protein signaling at the synapse. 

Of these, RGS2 and RGS4 are expressed throughout the brain, suggesting broad and less 

specific actions, whereas RGS7, RGS9-2 and RGS14 are expressed more discretely within only 

a few brain regions, suggesting more targeted actions. These actions likely are paired with the 

GPCRs whose signaling they regulate. One open question centers on how the specificity of 

these RGS protein actions is achieved within neurons. Several converge upon and regulate the 

same signaling event within the same brain region and neuron (e.g. GPCR regulation of 

postsynaptic GIRK channels) (Doupnik, 2015). For example, RGS7 and RGS9-2, two closely 

related RGS proteins, are both expressed in the same postsynaptic dendritic compartment of 

striatal neurons (Anderson et al., 2009). The relative level of expression of RGS7 and RGS9-2 

in these neurons is tightly controlled by the availability of R7BP (Anderson et al., 2009), 

suggesting distinct functional roles for these two RGS proteins. In other neurons, two very 

different RGS proteins, RGS2 (Labouebe et al., 2007) and RGS7 (Fajardo-Serrano et al., 2013; 

Ostrovskaya et al., 2014), can regulate the GABAB-GIRK signaling complex. In all of these 

cases, specificity of RGS action is likely dictated by proper localization in space and time by 
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preferential coupling between the RGS protein and a specific GPCR/G protein complex (Neitzel 

and Hepler, 2006). Specific examples of preferential GPCR-RGS coupling have been reported 

(Bernstein et al., 2004; Zeng et al., 1998), including RGS7 coupling with GPR158 as discussed 

here (Orlandi et al., 2012). Another area in need of clarification centers on understanding roles 

for non-RGS domains in the larger, multi-domain RGS proteins (e.g. RGS7, RGS9, RGS14, 

etc.) and the signaling functions of the multi-protein complexes they form. How these are 

assembled in time and space, and their functions beyond regulating G protein signaling remain 

unclear. Clarifying this will be important for understanding specific roles of these RGS proteins 

at the synapse moving forward.  

Due to the importance of RGS proteins in regulating GPCR/G protein signaling in 

synaptic plasticity and other physiological processes, many RGS proteins (including those 

highlighted here) have emerged as attractive therapeutic targets (Sjogren et al., 2010; Sjogren 

and Neubig, 2010). To date, efforts have focused on the identification and development of 

inhibitors of the RGS domain/Gα protein-protein interactions. This idea has been bolstered by 

the intriguing phenotypes observed in mice carrying RGS-insensitive Gα mutants, which 

showed that blocking RGS actions potentiate neurotransmitter actions and linked behaviors in a 

targeted fashion (Lamberts et al., 2013; Talbot et al., 2010). While initial efforts focused on the 

identification and development of peptide inhibitors of RGS proteins as proof of concept (Jin et 

al., 2004; Wang et al., 2008), more recent work has focused on the development of small 

molecule inhibitors with the goal of treating multiple diseases, including neurological disorders 

(Blazer et al., 2010; Blazer et al., 2011; Roman and Traynor, 2011; Storaska et al., 2013; Turner 

et al., 2012). Thus far, RGS4 has been the main focus for the development of small molecule 

RGS inhibitors.  Of reported compounds that act on RGS4, all act by modifying cysteine 

residues in the RGS domain through an irreversible covalent interaction, thereby preventing 

association with Gα (Kimple et al., 2007; Roman and Traynor, 2011). More recently, a novel, 

cell-based high throughput assay with regulated RGS4 expression has identified new RGS4 
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small molecule inhibitors that not only have cellular activity, but are also reversible (Storaska et 

al., 2013), thereby increasing their utility as potential future therapeutics.  As outlined above, 

other RGS proteins including RGS2, RGS7, RGS9 and RGS14 also are attractive drug targets. 

Similar assays must be used to identify inhibitors/modulators for these and other RGS proteins, 

not only as experimental pharmacological tools, but also as possible therapeutic agents to treat 

identified neurological disorders associated with RGS proteins in the CNS.  

As potential therapeutic targets, multiple RGS proteins have been implicated in various 

neurological disorders. RGS2 has been implicated in panic disorder (Hohoff et al., 2015; Otowa 

et al., 2011) and PTSD (Amstadter et al., 2009; Koenen et al., 2009), and RGS4 in 

schizophrenia (Ding and Hegde, 2009; Mirnics et al., 2001; Prasad et al., 2005). The clear roles 

for certain RGS proteins in synaptic plasticity, as outlined here and supported by findings with 

RGS-insensitive Gα (Neubig, 2015), allow new insights into how these proteins are regulated, 

and also the myriad of ways in which G protein signaling can affect synaptic connections. Future 

studies must not only elucidate the role of RGS proteins in neuronal signaling, but also work 

towards the application of newly developed RGS inhibitors as therapeutics in the CNS (Blazer et 

al., 2015; Sjogren et al., 2010). Beyond disrupting the RGS/Gα interface as a drug target, 

protein binding domains outside of the RGS domain should also be considered (Sjogren and 

Neubig, 2010) as we begin to better understand the broader multifunctional signaling roles of 

RGS proteins. In conclusion, RGS proteins regulate multiple forms of synaptic plasticity 

throughout the brain through regulation of neuronal G protein signaling and represent a 

compelling new target for the development of therapeutics for the treatment of a variety of 

neurological disorders. 
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Figure Legends 

Figure 1. RGS Protein Regulation of Synaptic Signaling. RGS proteins regulate many 

aspects of pre- and post- synaptic signaling. A) Activation of presynaptic GPCRs releases Gβγ 

to inhibit CaV2.2 (N-Type) Ca2+ channels and suppress neurotransmitter (glutamate, Glu and 

gamma-aminobutyric acid, GABA) release. Stimulated upregulation of RGS2 expression blocks 

Gβγ inhibition of CaV2.2 channels. B) Presynaptic release of acetylcholine activates M4 

muscarinic acetylcholine autoreceptors that release Gβγ, and inhibit CaV2.2 channels to 

suppress neurotransmitter release.  RGS4 blocks Gβγ inhibition of CaV2.2 channels. C) RGS14 

associates with Gαi/o and forms a stable complex with Gαi at the plasma membrane, where it 

regulates H-Ras/ERK- and possibly calmodulin and CaMKII-dependent signaling events that 

underlie induction of LTP. Independent of this, RGS4 inhibits mGluR5 and Gαq-mediated 

suppression of the afterhyperpolarization current following action potential firing. Postsynaptic 

mGluR5 signaling also stimulates retrograde opioid release, which activates presynaptic mu-

opioid receptors (MORs), suppressing presynaptic GABA release. RGS4 blocks mGluR5-

mediated retrograde opioid release from parvocellular neuroendocrine cells (PNCs) in the 

hypothalamus, increasing GABA release onto these neurons.  RGS2 and the RGS7-Gβ5 

complex both block postsynaptic GABAB receptor-stimulated GIRK currents by promoting Gβγ 

deactivation. D) RGS4 blocks postsynaptic serotonin 5-HT1A receptor and Gαi/o-mediated 

inhibition of NMDA receptor currents. Postsynaptic mGluR5 and dopamine D2 receptor 

signaling stimulates retrograde release of endocannabinoids that stimulate presynaptic 

cannabinoid CB1 receptors to suppress Glu release and induce long-term depression (LTD) at 

the synapse. RGS4 suppresses both mGluR5/Gαq and D2DR/Gαi/o-mediated retrograde opioid 

release to inhibit induction of LTD. The RGS9-2:Gβ5 complex blocks postsynaptic GABAB 

receptor-stimulated GIRK currents by enhancing Gβγ deactivation. Finally, the RGS9-2:Gβ5 

complex inhibits agonist-induced internalization of MORs and D2DRs. See the text for further 

details. 
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Tables 

Table 1. Summary of RGS protein functions at the synapse and possible role in disease. 

Here, we list the binding partners, brain distribution, subcellular localization, functional signaling 

roles, and possible roles in disease of specific RGS proteins (RGS2, RGS4, RGS7, RGS9-2, 

RGS14) that have been clearly demonstrated to serve critical roles in modulating synaptic 

signaling and plasticity throughout the brain. 

*Additional binding partners for many of these RGS proteins have been identified and shown to 

have functional roles modulating or mediating RGS protein signaling (Abramow-Newerly et al., 

2006; Sethakorn et al., 2010). 

 

RGS 

Binding 
Partners at 

Defined 
Domains* 

Brain 
Distribution 

Subcellular 
Localization 

Role in Synaptic 
Plasticity/Signaling 

Links to Neurological 
Disease 

R
G

S
2 

Gαq at the RGS 
domain(Heximer 
et al., 1997; Ingi 

et al., 1998)  
 

Gαi/o at the RGS 
domain (Han et 
al., 2006; Ingi et 

al., 1998)  

Hippocampus 
(Han et al., 2006) 

Presynaptic in 
hippocampal 

pyramidal 
neurons (Han et 

al., 2006) 

Regulates short term synaptic 
plasticity in the hippocampus 

(Han et al., 2006) 
 

Disinhibits GABA mediated 
inhibition of dopamine neurons 

in the VTA (Labouebe et al., 2007) 

Anxiety (Doupnik et al., 1997; 
Hohoff et al., 2015; Lifschytz et 
al., 2012; Okimoto et al., 2012) 

 
Depression (Lifschytz et al., 
2012; Mandelli and Serretti, 

2013) 
 

Post-traumatic stress disorder 
(Amstadter et al., 2009) 

 
Suicide (Cui et al., 2008) 

 
Panic disorder (Hohoff et al., 

2015; Koenen et al., 2009; Otowa 
et al., 2011) 

Striatum 
(Labouebe et al., 

2007) 

Postsynaptic in 
dopamine 

neurons in the 
VTA (Labouebe et 

al., 2007) 
Amygdala 

(Okimoto et al., 
2012) 

NA 

Thalamus (Ingi 
and Aoki, 2002), 
Neocortex (Ingi 
and Aoki, 2002), 
Cerebellum (Ingi 
and Aoki, 2002) 

NA 

R
G

S
4 

Gαq at the RGS 
domain (Hepler 

et al., 1997) 
 

Gαi/o at the RGS 
domain (Berman 

et al., 1996)  

Layer V 
Prefrontal 

Cortex (Paspalas 
et al., 2009) 

Distal Dendrites, 
Spines, and 

Axons (Paspalas 
et al., 2009) 

Block postsynaptic serotonin-
mediated signaling (Gu et al., 
2007) and prevent signaling 
crosstalk between multiple 

GPCRS at the synapse (Paspalas 
et al., 2009) 

 
LTDGABA (Wamsteeker Cusulin et 

al., 2013) 

 

Increase neuronal excitability 
(Saugstad et al., 1998) 

 
Inhibition of M4 autoreceptor 

signaling (Ding et al., 2006) 
 

Striatal LTD (Lerner and Kreitzer, 
2012) 

Fragile X Syndrome 
(Pacey et al., 2011) 

 
Schizophrenia (Prasad et 

al., 2010; Prasad et al., 
2005) 

 
Parkinson’s Disease (Ding 

et al., 2006; Lerner and 
Kreitzer, 2012) 

Hypothalamus 
(Gold et al., 1997; 
Kim et al., 2014; 
Ni et al., 1999; 
Wamsteeker 
Cusulin et al., 

2013) 

Parvocellular 
neuroendocrine 

cells in the 
paraventricular 

nucleus 
(Wamsteeker 
Cusulin et al., 

2013) 
Hippocampus 

(Gold et al., 1997; 
Heraud-Farlow et 

al., 2013; 
Saugstad et al., 

Postsynaptic in 
CA1 pyramidal 
neurons (Gold et 
al., 1997; Heraud-
Farlow et al., 
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1998) 2013; Saugstad et 
al., 1998) 

 

Striatum (Ding et 
al., 2006; Geurts 

et al., 2003; 
Lerner and 

Kreitzer, 2012; 
Schwendt and 
McGinty, 2007) 

Presynaptic in 
cholinergic 

interneurons 
(Ding et al., 2006) 

 
Postsynaptic in 
indirect pathway 

medium spiny 
neurons (Lerner 

and Kreitzer, 
2012) 

R
G

S
7 

Gαi/o at the RGS 
domain (Hooks et 
al., 2003; Posner 
et al., 1999; Rose 

et al., 2000) 
 

Gβ5 at the GGL 
domain (Snow et 

al., 1999) 
 

R7BP at the DEP 
domain  (Drenan 

et al., 2005; 
Martemyanov et 

al., 2005) 

Hippocampus 
(Fajardo-Serrano 
et al., 2013; Ingi 
and Aoki, 2002; 
Khawaja et al., 

1999; 
Ostrovskaya et 

al., 2014; Shelat 
et al., 2006; Xie 

et al., 2010) 

Extrasynaptic in 
dendrites 

(Fajardo-Serrano 
et al., 2013) 

Accelerates GIRK deactivation 
via GABAB Receptors (Fajardo-

Serrano et al., 2013) 
 

LTD and depotentiation in 
hippocampus (Ostrovskaya et al., 

2014) 
 
 

Hippocampal Ischemia (Shelat 
et al., 2006) 

 
Panic disorder (Hohoff et al., 

2009) 

Striatum 
(Anderson et al., 
2010; Anderson 

et al., 2009; 
Khawaja et al., 
1999; Lopez-
Fando et al., 

2005) 

Postsynaptic 
(Anderson et al., 

2010; Anderson et 
al., 2009) 

Cerebellum (Ingi 
and Aoki, 2002; 
Khawaja et al., 

1999) 
 

Thalamus (Ingi 
and Aoki, 2002; 
Khawaja et al., 

1999) 
 

Hypothalamus 
(Khawaja et al., 

1999) 
 

Amygdala 
(Khawaja et al., 

1999) 

NA 

R
G

S
9-

2 

Gαi/o at the RGS 
domain (Hooks et 

al., 2003) 
 

Gβ5 at the GGL 
domain (Makino 

et al., 1999) 
 

R7BP at the DEP 
domain 

(Martemyanov et 
al., 2005) 

Striatum (Gold et 
al., 1997; 

Rahman et al., 
1999) 

Extrasynaptic in 
dendrites 

(Mancuso et al., 
2010) 

Accelerates GIRK deactivation 
rate via D2 dopamine receptors 
(Celver et al., 2010; Kovoor et al., 

2005; Rahman et al., 2003) 

Dyskinesias (Kovoor et al., 
2005) 

 
Schizophrenia (Seeman et al., 

2007) 

Periaqueductal 
grey (Zachariou 

et al., 2003) 
NA 

Thalamus 
(Lopez-Fando et 

al., 2005) 
NA 

R
G

S
14

 

Gαi/o at the RGS 
domain (Cho et 

al., 2000; 
Hollinger et al., 
2001; Traver et 

al., 2000) 
 

Hippocampus 
(Evans et al., 

2014; Lee et al., 
2010; Traver et 

al., 2000) 

Somatodendritic 
compartment of 
CA2 pyramidal 

neurons 
including the 

PSD (Lee et al., 
2010) 

Suppresses LTP in CA2 
hippocampal neurons (Lee et al., 

2010; Vellano et al., 2011a) 
Anxiety (Parker et al., 2012) 
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 H-Ras at the R1 
Ras binding 

domain (Vellano 
et al., 2013; 
Willard et al., 

2009) 
 

Gαi1/3 at the 
GPR (GoLoco) 

motif (Hollinger et 
al., 2001; Kimple 
et al., 2001; Mittal 
and Linder, 2004) 

Piriform cortex 
(Evans et al., 

2014; Grafstein-
Dunn et al., 2001) 

 
Orbital cortex 
(Evans et al., 

2014) 
 

Striatum (Lopez-
Aranda et al., 

2006) 

NA 
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