The effects of farnesoid X receptor activation on arachidonic acid metabolism, NF-kB signaling and hepatic inflammation

Zhibo Gai, Michele Visentin, Ting Gui, Lin Zhao, Wolfgang E. Thasler, Stephanie Häusler, Ivan Hartling, Alessio Cremonesi, Christian Hiller and Gerd A. Kullak-Ublick*

Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland (Z.G., M.V., S.H., C.H. G.A. K.-U.).

Experiment Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (T.G.).

Department of Endocrinology, Chinese PLA 309 Hospital, Peking, China (L.Z.).

Department of General and Visceral Surgery, Rotkreuzklinikum Munich, Munich, Germany (W.E.T.).

Department of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Switzerland (I.H., A.C.).

Mechanistic Safety, Novartis Global Drug Development, Basel, Switzerland (G.A. K.-U.)
Running Title

FXR and arachidonic acid metabolism.

To whom correspondence should be addressed: Gerd A. Kullak-Ublick, M.D.
Department of Clinical Pharmacology and Toxicology, University Hospital Zurich,
Rämistrasse 100, CH-8091 Zurich, Switzerland, Telephone: + 41 44 255 2068; FAX:
+ 41 44 255 9676; E-mail: gerd.kullak@usz.ch

Text pages: 33
Tables: 1
Figures: 7
References: 39

Abstract Word Count: 233
Introduction Word Count: 319
Discussion Word Count: 443

Abbreviations: cytochrome P450, CYP450; dihydroxyeicosatrienoic acids, DHETs;
epoxyeicosatrienoic acids, EETs; farnesoid X receptor, FXR; high fat diet, HFD;
leukotrienes, LTBs; non-alcoholic fatty liver disease (NAFLD); non-alcoholic
steatohepatitis, NASH; obeticholic acid, OCA.
Abstract

Inflammation has a recognized role in non-alcoholic fatty liver disease (NAFLD) progression. The present work studied the effect of high fat diet (HFD) on arachidonic acid metabolism in the liver and investigated the role of the farnesoid X receptor (FXR, NR1H4) in eicosanoid biosynthetic pathways and NF-kB signaling, major modulators of the inflammatory cascade. Mice were fed a HFD to induce NAFLD, then, treated with the FXR ligand obeticholic acid (OCA). Histology and gene expression analysis were performed on liver tissue. Eicosanoid levels were measured from serum and urine samples. The molecular mechanism underlying the effect of FXR activation on arachidonic acid metabolism and NF-kB signaling was studied in Huh7 cells and primary cultured hepatocytes. NAFLD was characterized by higher (~25%) pro-inflammatory (leukotrienes, LTB4) and lower (~3fold) anti-inflammatory (epoxyeicosatrienoic acids, EETs) eicosanoid levels than in chow mice. OCA induced the expression of several hepatic Cyp450 epoxygenases, the enzymes responsible for EET synthesis, and mitigated HFD-induced hepatic injury. In vitro, induction of CYP450 epoxygenases was sufficient to inhibit NF-kB signaling and cell migration. The CYP450 epoxyenase pan-inhibitor gemfibrozil fully abolished the protective effect of OCA indicating that OCA-mediated inhibition of NF-kB signaling was EET-dependent. In summary non-alcoholic fatty liver disease (NAFLD) was characterized by an imbalance in arachidonate metabolism. Farnesoid X receptor (FXR) activation reprogramed arachidonate metabolism by inducing CYP450 epoxygenase expression and EET
Introduction

The activation of the farnesoid X receptor (FXR, NR1H4), a transcription factor that regulates lipid and glucose metabolism in the liver, reduced hepatic inflammation and fibrosis in a mouse model of non-alcoholic fatty liver disease (NAFLD) (Zhang et al., 2009). Conversely, FXR deficiency caused increased hepatic inflammation and fibrosis (Sinal et al., 2000). FXR activation has been shown to repress NF-κB activation and the production of pro-inflammatory cytokines and pro-fibrotic factors both *in vivo* and *in vitro* (Gai et al., 2016; Hu et al., 2012; Jiang et al., 2007; Miyazaki-Anzai et al., 2010).

Arachidonic acid breakdown and metabolism play a major role in triggering and resolving the inflammation. Indeed, the balance between anti-inflammatory (epoxyeicosatrienoic acids, EETs) and pro-inflammatory (leukotrienes, LTBs) arachidonate metabolites is critical in many pathophysiological conditions (Needleman et al., 1986; Zeldin, 2001). Persistent leukotriene B₄ (LTB₄) production is a hallmark of chronic inflammatory diseases, including high-fat diet-induced liver inflammation (Chou et al., 2010; Li et al., 2015a; Samuelsson et al., 1987; Spite et al., 2011; Subbarao et al., 2004; Tager and Luster, 2003). Conversely, High EET levels limit inflammation in cardiovascular disease and metabolic syndrome (Bettaieb et al., 2013; Deng et al., 2010; Imig, 2012; Luria et al., 2011; Sodhi et al., 2012).

EETs are generated from the epoxygenation of arachidonic acid by the cytochrome CYP450 epoxygenases (e.g. CYP2C, CYP2J). CYP450 epoxygenase levels were found decreased in liver of patients with progressive stages of nonalcoholic fatty liver disease (NAFLD), suggesting that CYP450 epoxygenase and EET levels might play a
role in the progression of NAFLD (Fisher et al., 2009). We recently reported that FXR activation induced cytochrome Cyp450 epoxygenase mRNA expression levels in mouse kidney proximal tubular cells (Gai et al., 2016). This work investigated the role of FXR in arachidonate metabolism and characterized the FXR-CYP450-EET interaction in mice with high fat diet (HFD)-induced NAFLD. Finally, we demonstrated in vitro that FXR-mediated NF-κB signaling repression is EET-dependent.
Materials and methods

Animals.

Female C57/BJ mice were randomly assigned to a HFD (D12331; Provimi Kliba, Switzerland) or a chow diet (D12329, Provimi Kliba) for 16 weeks. In a separate experiment, after 8 weeks of a HFD, half the obese mice were given OCA mixed into the food (25 mg/kg, Intercept Pharmaceuticals, NY, USA). Finally, mice were divided into three groups of six animals each: chow, HFD and HFD-OCA. Liver from each animal was used for RNA, protein extraction and histological examination.

Enzyme and metabolite measurements.

For 24h urine collection metabolic cages were employed. Urine and serum 14,15 dihydroxyeicosatrienoic acid (14,15-DHET) levels were measured by ELISA (ab175811, Abcam, Cambridge, UK). Serum triglycerides (TG), alanine aminotransferase (ALT), LTB₄ levels and 14,15-EET levels were measured with a triglyceride assay kit (ETGA-200, EnzyChrom), an ALT assay kit (ab105134, Abcam), a LTB₄ Parameter Assay Kit (KGE006B, R&D systems) and a 14,15-EET ELISA kit (DH2R, Detroit R&D), respectively. EETs and LTB₄ levels in the culture medium were also assessed by UPLC-MS/MS.

Sample preparation for UPLC-MS/MS metabolite analysis.

Five hundred µl of cell culture medium was mixed with 300 µl methanol and 300 µl of ultrapure water. Deuterated LTB₄ and 14,15-EET (d₄-LTB₄, d₁₁-14,15-EET; Cayman...
Chemical) were added as internal standards. The samples were incubated on ice then centrifuged for 10 min at 1200 x g at 4 °C. The supernatant was collected and diluted 3:1 with 1% NH₄OH then loaded onto a mixed mode solid phase extraction (SPE) column (Evolute Express AX, Biotage). The columns were preconditioned with 1 ml of methanol and 1 ml of 1% NH₄OH. After sample loading, the column was washed with 2 ml 0.5 M ammonium acetate/methanol (95:5) and 2 ml methanol. Analytes were eluted in 6 ml methanol/formic acid (98:2). The eluate was dried under nitrogen at 40 °C, was reconstituted in 30% methanol and injected into a UPLC-MS/MS system.

UPLC-MS/MS analysis of metabolites.

The UPLC-MS/MS method was adapted and modified from Weiss et al. (Weiss et al., 2013). Analytes were separated on a CSH C18 column (Acquity UPLC CSH C18 1.7 µm, 2.1 x 150 mm; Waters AG) thermostated at 35 °C using an UPLC (Nexera X2, Shimadzu Schweiz GmbH). Mobile phase A and B consisted of 0.125% NH₄OH in double distilled water and methanol:acetonitrile (70:30), respectively. The following gradient was used; T₀: 35% B, T₂: 35% B, T₄: 42% B, T₅₅: 44% B, T₇: 52% B, Tₖ₅: 52%, T₄: 70% B. Mobile phase B was then increased to 90% for 2 min to clean the column before returning to starting conditions for 2 min. Analytes were detected using a Sciex Triple Quad 6500+ mass spectrometer (AB SCIEX GmbH) in negative ion mode and scheduled multiple reaction monitoring (MRM). The optimized MS parameters were as follows: curtain gas (CUR) = 35, collision gas (CAD) = 9, ion spray voltage (IS) = -4500 V, temperature (TEM) = 600 °C, ion source gas 1 (GS1) = 70, ion
source gas 2 (GS2) = 70, declustering potential (DP) = -40 V, entrance potential (EP) = -10 V, cell exit potential (CXP) = -15 V. The MRM transitions used for quantification were 335.3→195.2 for LTB$_4$, 339.0→197.0 for LTB$_4$-d$_4$, 319.1→219.1 for 14,15-EET, and 330.2→219.1 for 14,15-EET-d$_{11}$. The collision energy was optimized for each analyte as follows; LTB$_4$ and LTB$_4$-d$_4$ = -22 V, 14,15-EET = -16 V, and 14,15-EET-d$_{11}$ = -18 V.

Liver pathological assessments and immunostaining. Livers were fixed overnight in formalin and embedded in paraffin. Three µm sections were stained with hematoxylin and eosin (HE) and Masson’s trichrome stains. The fibrotic areas were determined from the Masson’s trichrome stained sections by digital images analyzed by an unbiased observer. Immunostaining was performed on paraffin sections using a microwave-based antigen-retrieval technique. The antibodies used in this study were against CD4 (sc-7219, Santa Cruz), aSMA (NBP1-30894, Novus Biologicals), MAC387 (ab22506, Abcam). Sections were treated with the Envision+ DAB kit (Produktionsvej 42, Dako) according to the manufacturer's instructions. For NAFLD score analysis, histopathologic damage was scored using the system proposed by the NASH Clinical Research Network. Three representative areas were scored in each section and the average values were used as the final score.

Isolation of RNA from liver tissue and cells and quantification of transcript levels. Total RNA was prepared using standard Trizol extraction (Invitrogen). Two µg total
RNA were reverse transcribed using random primers and Superscript II enzyme (Invitrogen). First-strand complementary DNA was used as the template for real-time polymerase chain reaction analysis with TaqMan master mix and primers (Applied Biosystems). Data were calculated and expressed relative to levels of RNA for the housekeeping gene hypoxanthine phosphoribosyltransferase (Hprt) or β-actin.

Microarray and gene expression analysis.

RNA was extracted from mouse liver using an RNeasy Microarray Tissue Mini Kit (73304, Qiagen), followed by on-column DNase digestion to remove any contaminating genomic DNA. RNA samples from four mice per group were subjected to microarray analysis. Details on the analysis methods can be found at http://fgcz-bfabric.uzh.ch/wiki/tiki-index.php?page=app.two_groups. Gene ontology analysis, network analysis, and KEGG pathway analysis of the microarray data were completed using the MetaCore online service (Thomson Reuters, https://portal.genego.com/), and DAVID Bioinformatics Resources 6.8 (National Institute of Allergy and Infectious Diseases, NIH, https://david.ncifcrf.gov/).

Cell lines.

Huh7 and THP-1 cells were maintained in RPMI 1640 medium supplemented with 10% fetal calf serum (FCS), 100 units/ml penicillin, 100 µg/ml streptomycin at 37°C in a humidified atmosphere of 5% CO₂. THP-1 cells were supplemented with 2mM L-Glutamine. J774 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% FCS, 100 units/ml penicillin, 100 µg/ml streptomycin at 37°C in a humidified atmosphere of 5% CO₂.

Isolation of primary cultured mouse hepatocytes.

Primary culture of hepatocytes were isolated from female C57/BJ mice. After a midline incision, a sterile cannula was inserted through the right ventricle and pre-perfusion was performed at 37°C with pre-perfusion buffer (0.5 mM EGTA, 20 mM Hepes in Hank’s Balanced Salt (HBS) solution, pH 7.4) for 10 min. The pre-perfusion buffer was then replaced with perfusion buffer (20 mM NaHCO₃, 0.5 mg/ml BSA, 6.7 mM CaCl₂, 100 U/ml type II collagenase, in HBS, pH 7.4) for 7 min. The perfused liver was excised, rinsed in ice cold WME-a medium (Williams Medium E with 10% FCS, 2 mM L-Glutamine, 2.5 mU/ml Insulin, 1 µM Dexamethasone), and gently disaggregated. After centrifugation, cells were counted and tested for viability and cultured at 37°C. After 3 h incubation, WME-a medium was replaced with WME-b medium (Williams Medium E with 10% FCS, 2 mM L-Glutamine, 0.25 mU/ml Insulin, 0.1 µM Dexamethasone).

Isolation of primary cultured human hepatocytes.

Primary human hepatocytes (PHH) were prepared as previously described (Lee et al., 2014) and seeded in six-well plates in hepatocyte maintenance medium supplemented with UltraGlutamine for approximately 5 h before further treatment procedures. PHHs were cultured at 37 °C in a humidified atmosphere containing 5% CO₂.
Transient transfection.

Huh7 cells were transiently transfected with pCMV6-Cyp2c29 vector (MR20784, OriGENE). Cells were grown until 80% confluent in 6-well plates then transfected using Fugene HD (Promega) transfection reagent and Opti-MEM (Gibco), according to the manufacturer's protocol. Forty-eight hours after transfection, the cells were treated with the desired experimental conditions.

Migration assay.

Huh7 cells or primary cultured human hepatocytes were seeded on 12-well plates at a density of 0.5 x 10^4 cells/well and then treated with the indicated conditions. After 48-72 hours, 3 µm pore polycarbonate membrane inserts (Costar Corning) were mounted on the wells, seeded with THP-1 cells and incubated for 2h at 37°C. The inserts were washed, fixed and stained with crystal violet for analysis. The medium in which Huh7 cells were grown was collected for LTB₄, EET and DHET content assessment; total RNA was extracted from cells for Real Time PCR analysis. For the migration assay with primary cultured mouse hepatocytes, J774 mouse cells were employed as monocyte-like cells.

Statistics.

Data are expressed as mean ± SD. For microarray data, comparison was assessed by student’s t test with R/Bioconductor 3.6 (https://www.bioconductor.org/) to generate differentially expressed genes (Chow vs. HFD). For other data relating to baseline
characteristic analysis and histological analysis, comparisons between groups were assessed by either student’s t test or one-way ANOVA followed by Tuckey’s. Statistical comparisons were performed using GraphPad Prism (version 5.0 for Windows, GraphPad Software).

Study approval.

All animal experiments and protocols conformed to the Swiss animal protection laws and were approved by the Cantonal Veterinary Office (study number 2012058). The human study was conducted according to the Declaration of Helsinki guidelines regarding ethical principles for medical research involving human subjects. All patients provided written informed consent, and the study protocol was approved by the Scientific Ethical Committee of Peking University, Beijing, China, where patients were based (license number PKU2010034). Primary human hepatocytes (PHH) were isolated by Human Tissue and Cell Research (HTCR) Foundation upon written informed consent from the patient. The study was approved by the Ethics Committee of the Medical Faculty of the Ludwig Maximilians University (approval number 025-12), in compliance with the Bavarian Data Protection Act.

Results

HFD-induced hepatic inflammation is characterized by decreased expression of cytochrome P450 epoxygenases.
Mice fed a HFD for 16 weeks displayed a higher degree of hepatic lipid deposition and fibrosis than chow mice (Supplementary Fig. 1A and 1B). A NAFLD activity score (NAS) ≥5 is consistent with a diagnosis of non-alcoholic steatohepatitis (NASH). NAS from the liver of HFD mice was ≥5 (Supplementary Fig. 1C).

The arachidonic acid metabolism pathway was markedly changed in the liver from mice fed a HFD (Table 1). The mRNA levels of cytosolic phospholipase A2 (Pla2g) and Alox5, the first committed steps in LTB4 synthesis pathway, were higher (P<0.05) in the liver of HFD mice compared with that of chow mice (Fig. 1A and B). Serum LTB4 was increased as well in the HFD group as compared with the chow group (Supplementary Fig. 2A). Our data are consistent with a recent study demonstrating an increased hepatic expression of genes associated with eicosanoid synthesis in both diet- and genetic NAFLD mouse models (Hall et al., 2016). Hepatic EET synthesis and degradation in mammalian species are catalyzed mainly by CYP2C epoxygenases and epoxide hydrolase 2 (EPHX2), respectively (Spector and Norris, 2007). The expression of several Cyp2c genes was decreased (P<0.05) in the liver of HFD mice compared with that of chow mice (Fig. 1A and B and Table 1). In contrast, the mRNA level of Ephx2, which hydrolyzes EETs to the inactive dihydroxyeicosatrienoic acids (DHETs), was markedly higher than that in the liver of chow mice (Fig. 1B). The concomitant downregulation of several Cyp2c genes and upregulation of Ephx2 resulted in decreased serum 14,15-EET levels and increased urine 14,15-DHET levels in the HFD group in comparison with the chow group (Supplementary Fig. 2B and C).

Overall, HFD mice were characterized by an imbalance of arachidonate metabolism.
towards inflammation. The expression of canonical genes involved in inflammation and fibrosis strongly correlated with that of EET-related genes in HFD mice (Fig. 1C). Notably, the mRNA level of CYP2C8, one of the major epoxygenases in human liver, was decreased as compared with that from non-NAFLD patients (P<0.05) (Fig. 1D). A negative correlation between CYP2C8 mRNA levels and NAFLD score was observed (Fig. 1E). The present data suggest that the expression level of genes involved in EET metabolism and, in turn, EET levels, might regulate the hepatic expression of inflammatory cytokines. Indeed EET treatment could reduce the synthesis of pro-inflammatory cytokines (Li et al., 2015b).

Obeticholic acid induces CYP450 epoxygenase expression and protects the liver from inflammation in vivo.

The impact of FXR activation on arachidonic acid metabolism and on the progression of HFD-induced hepatic inflammation was evaluated. HFD+OCA group showed a reduction in (i) hepatic lipid accumulation, (ii) serum ALT levels, (iii) inflammation, (iv) fibrosis, as compared with the HFD group (Fig. 2 and Supplementary Fig. 3).

The arachidonate metabolism gene expression pattern was markedly changed by FXR activation (Fig. 3A). Alox5 was not affected by OCA treatment (Fig. 3C), but Cyp2c29, one of the main epoxygenase in mouse liver, was induced by OCA treatment (P<0.05) (Fig. 3D). mRNA levels of phospholipase A2 and Ephx2, induced by HFD, were restored to the levels of the chow mice by OCA (P<0.05) (Fig. 3B and E). Serum LTB4 levels were increased in HFD mice (P<0.05) (Fig. 3F). Serum 14,15-EET levels were
decreased in obese mice (P<0.05) (Fig. 3G). Similarly, urine 14,15-DHET were increased in HFD mice (P<0.05) (Fig 3I). 14,15-EET and 14,15-DHET levels in the HFD+OCA group resembled those in the chow group, in line with the induction of several Cyp2c and the downregulation of Ephx2 mRNA levels. Overall, serum LTB4/EET index, increased by HFD, was lowered by OCA to the level of the chow mice (P<0.05) (Fig. 3H). Overall OCA could fine tune the arachidonic acid metabolism by reducing LTB4 levels and inducing EET levels.

FFA-induced monocyte migration in vitro depends on CYP450 epoxygenase activity.

To characterize the interaction between CYP450 epoxygenase and OCA, migration assays were performed in vitro. OCA at an extracellular concentration of 2 μM activated FXR in Huh7 cells (Supplementary Fig. 4). The migration induced by FFA was completely abolished by co-incubation with OCA (P<0.05) (Fig. 4A and B). FFA-induced migration was associated with higher LTB4 levels in the culture medium as compared with that from the untreated cells and those co-exposed to FFA and OCA (P<0.05) (Fig. 4C). Interestingly 14,15 EET levels were not affected by FFA treatment, but Huh7 cells exposed to OCA showed higher levels of 14,15-EETs in the medium (P<0.05) (Fig. 4D). Overall the ratio of LTB4/14,15-EETs was markedly decreased in the medium of cells co-treated with FFA and OCA as compared with that in FFA treated cells (P<0.05) (Fig. 4E). 14,15-DHET levels in the culture medium were not changed among the different treatments (Fig. 4F), indicating the changes of 14,15 EET levels were not due to an increased degradation via EPHX2. Along with this, the mRNA level
of CYP2C8, one of the main CYP450 epoxygenases in human liver, was induced by OCA treatment (P<0.05) (Fig. 4G). Similar results were obtained using primary cultured hepatocytes from mouse (Supplementary Fig. 5A and B) and human (Supplementary Fig. 5C and D). The protective effect of OCA was fully abolished by the co-incubation with z-Guggulsterone (Gu), a FXR antagonist, ruling out any potential off-target effect of OCA on hepatocytes (Supplementary Fig. 6). The lack of protection by OCA when THP-1 cells were exposed to exogenous LTB4 indicates that OCA inhibited migration by modulating the synthesis of eicosanoids and not by altering the downstream signaling pathway (Supplementary Fig. 7).

When Huh7 cells were co-incubated with FFA and benzoxathiole derivative (BOT), a NF-κB inhibitor (Kim et al., 2008), FFA-induced THP-1 migration was completely abolished, suggesting that FFA-induced inflammation was NF-κB dependent (Fig. 5A). EETs can suppress NF-κB signaling as well (Dai et al., 2015). In fact, induction of CYP2C gene expression levels in Huh7 cells by pre-treatment with rifampicin, a FXR-independent pan-inducer of CYP2C epoxygenases (Raucy et al., 2002), or by transfection of Cyp2c29, abolished FFA-induced THP-1 cell migration (Fig 5B and C) as well as FFA-induced NF-κB signaling (Fig 5D to G).

It is possible that the inhibitory effect of FXR activation on NF-κB-induced inflammation is EET-dependent. To address this issue, Huh7 cells were co-incubated with FFA, OCA and gemfibrozil (GM), a pan-inhibitor of CYP2C activity (Shitara et al., 2004; Wen et al., 2001). GM abolished the effect of OCA on arachidonate metabolite synthesis.
and on THP-1 migration induced by FFA (Fig. 6). Overall, these results indicate that the inhibitory effects of FXR activation on NF-κB signaling was EET-dependent.

Discussion

In the present study, mice fed a HFD displayed an inflammatory and fibrotic pattern compatible with NASH which strongly correlated with a switch in the expression pattern of arachidonate-partitioning genes, notably the downregulation of a number of Cyp2c enzymes which epoxygenate arachidonic acid to EETs, and upregulation of the Ephx2 which inactivates EETs to DHETs (Capdevila et al., 1990; Chacos et al., 1983). As a result, mice fed a HFD were characterized by a dramatic increase in the LTB₄/EET ratio. Arachidonic acid breakdown and LTB₄ formation is known to drive hepatic inflammation (Martinez-Clemente et al., 2010). The present data suggests that EETs are also important in the inflammatory process and may serve as a quencher of LTB₄ signal, buffering the inflammation. The reduced quenching capacity of mice fed a HFD is likely to “unleash” the inflammatory signal produced by the resident macrophages. OCA treatment elicited less hepatic steatosis, lower expression of pro-inflammatory cytokines and less macrophage infiltration. OCA treatment reprogrammed arachidonate metabolism by inducing Cyp450 epoxygenase expression and downregulating phospholipase A2. These adjustments channeled arachidonic acid into EET synthesis. By boosting EET synthesis, OCA increase the buffering capacity of the liver, and antagonize the inflammatory process. Furthermore, mice fed a HFD and treated with OCA showed a reduced expression of Ephx2 which further contributed to
sustain higher levels of EETs. The anti-inflammatory effect of OCA in vitro was fully abolished by co-incubation with the FXR inhibitor z-Guggulsterone, suggesting that OCA regulated the arachidonic acid pathway via FXR activation with no off-target effects (e.g. TGR5 activation). As FXR activation was reported to modulate macrophage activity, resident macrophages may also respond to the treatment with OCA and contribute to anti-inflammatory effect (McMahan et al., 2013; Verbeke et al., 2016).

Independent studies have shown that both EETs and FXR inhibit the NF-kB pathway (Carroll et al., 2006; Xu et al., 2010; Yang et al., 2007). However when the CYP450 epoxygenase activity was inhibited, OCA could not inhibit NF-kB signaling, suggesting that CYP450 epoxygenase activity is a precondition for FXR-mediated repression of NF-kB signaling (Fig. 7).

To conclude, the induction of CYP450 epoxygenase expression and EET levels is a novel feature of FXR activation and is required for the FXR-mediated NF-kB signaling repression. EET analogs have been reported to attenuate adipogenesis, insulin resistance and inflammation in the adipose tissue of obese mice (Li et al., 2015a; Sodhi et al., 2012; Spite et al., 2011; Zha et al., 2014). Thus, restoring the proper levels of EETs is likely to be beneficial in NAFLD management as well. The induction of endogenous EET levels may contribute to the protective effect of obeticholic acid observed in NAFLD in the clinical setting.
Authors’ contribution:

Participated in research design: Gai, Visentin and Kullak-Ublick.

Conducted experiments: Gai, Visentin, Gui, Zhao, Thasler, Häusler, Hartling, Cremonesi, Hiller.

Performed data analysis: Gai, Visentin, Gui, Zhao, Hartling, Cremonesi.

Wrote or contributed to the writing of the manuscript: Gai, Visentin, Hartling, Kullak-Ublick.
References

Heart Circ Physiol 293(1): H142-151.

Footnotes

Conflict of Interest: The authors have no conflict of interest to declare.

Financial Support: This work was supported by the Swiss National Science Foundation [grant # 310030_175639] to Gerd A. Kullak-Ublick and by the “Forschungskredit” of the University Zurich 2015 [grant # FK-15-037] to Zhibo Gai.
Figure legends

Fig. 1. Arachidonic acid metabolism-related gene expression levels in the liver from mice fed a HFD. Scheme of the main arachidonic acid bioactive products (A). Heat-map generated from NGS data of mRNA profiling of genes involved in arachidonic acid metabolism. Blue and red colors indicate downregulation and upregulation in the HFD group, respectively (B). Spearman correlation matrices within the HFD group, between hepatic mRNA expression levels of EET-related enzymes and those of canonical genes involved in inflammation and fibrogenesis (C). CYP2C8 mRNA expression level in liver biopsies from NAFLD and non-NAFLD patients. n=5/group. Data are means ± SD, Student’s t test, *<0.05 (D). CYP2C8 mRNA expression in human liver biopsies and NAFLD score correlation, as determined by histology. Data were normalized for the lowest CYP2C8 mRNA expression value (shown in red) (E).

Fig. 2. Inhibitory effect of OCA on HFD-induced NASH. Serum ALT (A), serum hydroxyproline (B), hepatic NAFLD score (C). Hepatic mRNA levels of mCol1a1 (D), mCcl2 (E), mIcam (F), mTnfa (G), mIl1b (H) and mIl6 (I). n≥6 mice/group. Data are means ± SD, one-way ANOVA <0.05, Tukey’s test, *<0.05. Representative images of immunostaining for the macrophage marker MAC387 (J) and CD4 (K) in liver sections from chow (a), HFD (b) and HFD+OCA (c) groups.
Fig. 3. Regulatory effect of OCA on arachidonic acid metabolism. Heat-map of mRNA profiling of selected genes involved in arachidonic acid metabolism. The relative expression values of each target gene was measured in the chow, HFD and HFD+OCA mice, normalized for the expression of β-actin and then expressed as HFD:chow (HFD) or HFD+OCA:chow (HFD+OCA) ratio. Each column represents an individual sample. Blue and red colors indicate downregulation and upregulation, respectively (A).

Relative hepatic mRNA levels of arachidonate partitioning genes (B to E). Serum levels of LTB₄ (F) and 14,15-EET (G). Ratio between serum LTB₄ and serum 14,15-EET (H). Urinary levels of 14,15-DHET (I). Data are means ± SD, one-way ANOVA <0.05, Tukey’s test, *<0.05. n=6 mice/group.

Fig. 4. Effect of FXR activation on arachidonate metabolism and FFA-induced monocyte migration. Representative images showing crystal violet staining of THP-1 cells onto a 3 µm pore polycarbonate membrane insert upon exposure to the medium of Huh7 cells treated with 50 µM FFA in presence or absence of 2 µM OCA (A). Relative migration score (B). Levels of LTB₄ (C), 14,15-EET (D), LTB₄/14,15-EET ratio (E), and 14,15-DHET (F), in the medium of Huh7 cells exposed to 50 µM FFA in presence or absence of 2 µM OCA. mRNA levels of CYP2C8 in Huh7 cells with the different treatments (G). Data are means ± SD, one-way ANOVA <0.05, Tukey’s test, *<0.05. n=4/group
Fig. 5. Effect of NF-kB and CYP450 epoxygenase modulation on FFA-induced migration.

Migration score of THP-1 cells in the medium of Huh7 cells treated with 50 µM FFA in combination with 10 µM of the NF-kB inhibitor benzoxathiol derivative (BOT) (A) or 20 µM rifampicin (B). Effect of 50 µM FFA on the migration of THP-1 cells in the medium of Huh7 cells transiently overexpressing Cyp2c29 (C). mRNA expression levels of NF-kB target genes in Huh7 cells exposed to 50 µM FFA, 20 µM rifampicin (D and E). mRNA expression levels of NF-kB target genes in Huh7 cells transiently overexpressing cyp2c29 and exposed to 50 µM FFA (F and G). Data represents the mean ± SD, one-way ANOVA <0.05, Tukey’s test, *<0.05. n=3/group.

Fig. 6. Effect of gemfibrozil on OCA-mediated anti-inflammatory action.

Representative images showing crystal violet staining of THP-1 cells onto a 3 µm pore polycarbonate membrane insert upon exposure to the medium of Huh7 cells treated with 50 µM FFA in the presence or absence of 2 µM OCA and 100 µM gemfibrozil (GM) (A). Relative migration score (B). Levels of LTB4 (C), 14,15-EET (D) in the medium of Huh7 cells exposed to 50 µM FFA in the presence or absence of 2 µM OCA and 100 µM gemfibrozil (GM).

Fig. 7. Model of the FXR-mediated repression of NF-kB signaling. Increased LTB4 levels and decreased and EET levels promote NF-κB signaling which triggers hepatic
inflammation (A). Transactivation of cyp450 epoxygenase expression and EET synthesis by FXR, which, in turns, inhibits the NF-κB signaling (B).
Table 1. Selected differentially expressed genes in liver from chow mice and HFD mice.

<table>
<thead>
<tr>
<th>Pathways differentially regulated in HFD-liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid metabolism</td>
</tr>
<tr>
<td>Gpat2 (0.7), Abhd4 (0.6), Acacb (1.2), Acsl5 (0.6), Acsm3 (1.0), Bche (0.7), Echs1 (0.5), Hadh (0.9), Acaca (0.7)</td>
</tr>
<tr>
<td>TGFβ-induced EMT</td>
</tr>
<tr>
<td>TGFb2 (0.8), Jun (1.7), Fos (1.48), Fosl1 (0.8), Mmp2 (1.0), Edn1 (1.4), Vim (0.8), Ocln (-0.8)</td>
</tr>
<tr>
<td>Fatty acid metabolism</td>
</tr>
<tr>
<td>Cd74 (1.5), Elovl5 (1.6), Aacs (2.0), Acaa1b (1.3), Acacb (1.2), Acsf3 (0.7), Acsl5 (0.6), Acsm3 (1.0), Ch25h (1.3), Elovl2 (0.9), Echs1 (0.5), Fads1 (0.8), Fads2 (1.3), Fasn (1.5), Gpam (0.9), Hao2 (3.0), Hadh (0.9), Hsd17b4 (0.5), Myo5a (1.0), Elovl6 (0.9), Acaca (0.7), Scd1 (1.6), Scd2 (1.0), Scd3 (1.5)</td>
</tr>
<tr>
<td>Arachidonic acid metabolism</td>
</tr>
<tr>
<td>Cbr3 (1.6), Pla2g6 (0.9), Cyp2c29 (-1.2), Cyp2c37 (-0.8), Cyp2c39 (-0.7), Cyp2c44 (-1.0), Cyp2c50 (-0.7), Cyp2c54 (-1.2), Cyp2c55 (-1.3), Cyp2c70 (-1.6), Cyp4f14 (-0.7)</td>
</tr>
</tbody>
</table>

Numbers in parentheses indicate gene expression levels quantified as log2 of fold changes.
Fig 1

A
- Phospholipid
- Arachidonate
- EETs
- HETEs
- Anti-inflammation

B
- Expression level (Log2)
- ID
 - Pla2g6
 - Ephx2
 - Cyp2c39
 - Cyp2c37
 - Cyp2c44
 - Cyp2c50
 - Cyp4f14
 - Cyp2c55
 - Cyp2c54
 - Cyp2c29
 - Cyp2c70

C
- Spearman’s rho
 - Cyp2c29: 0.8
 - Cyp2c39: 0.5
 - Pla2g: 0.3
 - Ephx2: 0
 - Tnf: -0.3
 - Ccl2: -0.5
 - Ccr2: -0.8
 - Tgfb2: -0.9
 - Il1b: -0.8
 - Col14a1: -0.9

D
- CYP2C8 mRNA level (fold change)
- Normal NAFLD

E
- CYP2C8 mRNA level (fold change) vs. NAFLD score
- $r = -0.6$
 $p < 0.01$.

This article has not been copyedited and formatted. The final version may differ from this version.
Fig 2

A. serum ALT activity

B. Hydroxyproline

C. NAFLD Score

D. mRNA level (fold change)

E. mRNA level (fold change)

F. mRNA level (fold change)

G. mRNA level (fold change)

H. mRNA level (fold change)

I. mRNA level (fold change)

J. Chow

K. CD4

MAC387

L. H6

This article has not been copyedited and formatted. The final version may differ from this version.
Fig 3

A) Heatmap showing expression levels of various genes (Alox12, Alox5, Alox5ap, Pla2g, Ephx2, Il1b, Il6, Tnf, Cyp2c29) across different diets (Chow, HFD, HFD+OCA).

B) mRNA level (fold change) of Pla2g4a across different diets.

C) mRNA level (fold change) of Alox5 across different diets.

D) mRNA level (fold change) of Cyp2c29 across different diets.

E) mRNA level (fold change) of Ephx2 across different diets.

F) Serum LTB4 levels across different diets.

G) Serum 14,15-EET levels across different diets.

H) Serum LTb4/14,15-EET levels across different diets.

I) Urine 14,15-DHET levels across different diets.

* denotes statistical significance.
Fig 4

A

a Cont b OCA c FFA d FFA+OCA

B

migration score

Cont OCA FFA FFA+OCA

C

medium LTE\(_4\)

Cont OCA FFA FFA+OCA

D

medium 14,15-EET

Cont OCA FFA FFA+OCA

E

medium LTE\(_4\) / 14,15-EET

Cont OCA FFA FFA+OCA

F

medium 14,15-DHET

Cont OCA FFA FFA+OCA

G

CYP2C8

Cont OCA FFA FFA+OCA
This article has not been copyedited and formatted. The final version may differ from this version.
Fig 6

A) Images of tissue sections under different conditions:
- **EtOH** (a)
- **FFA** (b)
- **FFA+OCA** (c)

GM- and GM+ conditions are labeled above each set of images.

B) Migration score for different treatments:
- FFA
- OCA
- GM

C) Concentration of medium LTB4:
- FFA
- OCA
- GM

D) Concentration of medium 14,15-EET:
- FFA
- OCA
- GM
Fig 7

A

FXR → LTB₄

↓ EETs

↓ Cyp2c

↑ NF-κB → inflammation

FFA

B

FXR

↓ LTB₄

↑ EETs

↑ Cyp2c

↑ NF-κB → inflammation

FFA+OCA