Dantrolene requires Mg$^{2+}$ and ATP to inhibit the ryanodine receptor

Gyula Diszházi¹*, Zsuzsanna Édua Magyar¹*, János András Mótyán², László Csernoch¹, István Jóna³, Péter Pál Nánási¹,⁴, #, János Almássy¹, #

¹ Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

² Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

³ Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary

⁴ Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary

* These authors contributed equally to this work
Running title: Dantrolene requires Mg\(^{2+}\) and ATP to inhibit RyR

Correspondence to:

János Almássy: almassy.janos@med.unideb.hu

Department of Physiology, Faculty of Medicine, University of Debrecen, 4002 Debrecen, Hungary, PO box: 400

Tel/fax: +36 52 255 575 / +36 52 255 116

Péter Pál Nánási: nanasi.peter@med.unideb.hu

Department of Physiology, Faculty of Medicine, University of Debrecen, 4002 Debrecen, Hungary, PO box: 400

Tel/fax: +36 52 255 575 / +36 52 255 116

The number of text pages: 17

tables: 0

figures: 4

references: 24

Number of words in the Abstract: 208

Introduction: 520

Discussion: 1096

Abbreviations:

Bridging solenoid (Bsol), calmodulin (CAM), 4-chloro-m-cresol (4CMC), dantrolene binding site (DBS) junctional solenoid (JSol), malignant hyperthermia (MH), N-terminal solenoid (Nsol), ryanodine receptor (RyR), sarcoplasmic reticulum (SR), terminal cisternae (TC)
Abstract

Dantrolene is a ryanodine receptor (RyR) inhibitor, which is used to relax muscles in malignant hyperthermia syndrome. Although dantrolene binds to the RyR protein, its mechanism of action is unknown, mainly because of the controversial results showing that dantrolene inhibited Ca\(^{2+}\)-release from intact fibers and sarcoplasmic reticulum (SR) vesicles, but failed to inhibit single ryanodine receptor (RyR) channel currents in bilayers. Accordingly, it was concluded that an important factor for dantrolene’s action was lost during the purification procedure of RyR.

Recently, Mg\(^{2+}\) was demonstrated to be the essential factor for dantrolene to inhibit Ca\(^{2+}\) release in skinned muscle fibers. The aim of the present study was to confirm these results in Ca\(^{2+}\) release- and bilayer experiments, using SR vesicles and solubilized channels, respectively. Our Ca\(^{2+}\)-release experiments demonstrated that the effect of dantrolene and Mg\(^{2+}\) was cooperative; and that ATP enhanced the inhibiting effect of dantrolene. Namely, 10 µM dantrolene reduced RyR channel open probability by ~50% in the presence of 3 mM free Mg\(^{2+}\) and 1 mM ATP, while channel activity further decreased to ~20% of control when [ATP] was increased to 2 mM.

Our data provide important complementary information that support the direct, Mg\(^{2+}\)-dependent mechanism of dantrolene’s action and suggest that dantrolene also requires ATP to inhibit RyR.
Introduction

Skeletal muscle contraction is caused by the rapid increase of myoplasmic [Ca^{2+}]. Under physiological conditions, this Ca^{2+} signal is generated by the action potential which triggers Ca^{2+}-release from the sarcoplasmic reticulum (SR) by opening ryanodine receptor (RyR) -Ca^{2+} channels in the SR membrane. However, under certain pathological conditions, such as malignant hyperthermia (MH) syndrome, Ca^{2+}-release may develop in unexcited muscle. MH is an idiosyncratic reaction of susceptible individuals to volatile anesthetics, like halothane, isoflurane or enflurane. These patients carry certain point mutations in the RyR1 gene, which sensitize the channel to be activated by volatile anesthetics. Therefore, even therapeutic concentrations of these anesthetics cause muscle contracture in the patients. Increased muscle activity during the MH episode leads to hyperthermia, acidosis, and hyperkalemia and finally to death - unless immediate interventions are taken, including cooling the whole body and resolving the muscle rigidity with the RyR-inhibitor dantrolene (e.g. Fill and Copello, 2002; Zucchi and Ronca-Testoni, 1997; Fruen et al., 1997). Since appropriate dantrolene treatment fails to rescue 5% of MH patients, improving its therapeutic efficiency is an important challenge, which cannot be completed without identifying the ideal conditions for drug action. This identification process was set back by the lack of our knowledge about dantrolene’s mechanism of action which primarily arises from controversial data, reported by our group as well as by others (Szentesi et al., 2001; Diaz-Sylvester et al., 2008; Wagner et al., 2014). Particularly, our group demonstrated that the drug inhibited Ca^{2+}-release from intact fibers and SR vesicles, but failed to inhibit single RyR channel currents (Szentesi et al., 2001). We then concluded that an
important factor for dantrolene’s action was lost during the purification procedure of RyR. Thus, in spite of the fact that dantrolene is the only muscle relaxant used to treat malignant hyperthermia episodes and its binding site was identified in the primary sequence of the RyR protein (Paul-Pletzer et al., 2002; Paul-Pletzer et al., 2005), its exact mechanism of action is still unknown. Apparently, in order to discover the mechanism of dantrolen’s action we must identify the missing factor(s) required for RyR inhibition.

The present work was motivated by two recent studies, which aimed to identify these unknown ingredients. In the more recent paper, Choi et al. postulated that only Mg\(^{2+}\) was absent in single-channel experiments, thus they investigated whether Mg\(^{2+}\) was required for dantrolene’s effect. They tested dantrolene in the presence of different Mg\(^{2+}\) concentrations in skinned muscle fibers and found that 10 \(\mu\text{M}\) dantrolene required at least 1 mM Mg\(^{2+}\) to significantly inhibit Ca\(^{2+}\)-release (Choi et al., 2017). These authors did not provide single-channel current data to confirm their result; direct evidence proving that the action of dantrolene is mediated by Mg\(^{2+}\) through a direct allosteric mechanism on the RyR1 protein itself, is still missing. Therefore, the present work aims to examine purified (accessory-protein-free) RyR1s to demonstrate that the channel requires the direct binding of Mg\(^{2+}\) to become dantrolene-sensitive.

The other paper identified calmodulin (CaM) as the essential factor for the effect of dantrolene (Oo et al., 2015), whose role in the drug action was further investigated in the present work.
Material and methods

Animals

All experiments complied with the Hungarian Animal Welfare Act, the 2010/63/EU guideline of the European Union, and had the approval of the Animal Welfare Committee of the University of Debrecen (22/2012/DEMÁB). Rabbits (~4 kg body weight, 6-10 months old males, n=4, Juráskó ltd, Debrecen-Józsa, Hungary) were killed by using a guillotine. Musculus longissimus dorsi was dissected and frozen in 50 g aliquots. Using these aliquots, terminal cisternae vesicles were prepared 3 times and RyR channels were purified 5 times.

Terminal cisternae vesicle preparation and RyR purification

Sarcoplasmic reticulum (SR) terminal cisternae (TC) were isolated from rabbit skeletal muscle with differential centrifugation. RyR was purified from TC vesicles by solubilization in 1% CHAPS and 0.45% phosphatidylcholine (PC) and 1 mM dithiothreithol (DTT) as described previously (Geyer et al., 2015; Sárközi et al., 2017, Szentesi et al., 2001).

Solubilized RyRs were purified on linear sucrose gradient (10-28% sucrose, 0.08-0.65% CHAPS, 0.005 g/ml PC, 786 μM NaCl, 80 μM EGTA, 118 μM CaCl2, 3.93 mM AMPx6H2O, 15.7 mM, 510 μM DTT Na-Pipes pH=7.3) at 100000xg, overnight. RyR-containing fractions of the gradient were collected and 50 μl aliquots were snap-frozen.
Ca^{2+}-release assay

TC vesicles (100 µg) were dispersed in 2 ml imaging medium containing 92.5 mM KCl, 1 or 3 mM MgCl₂, 0.5 or 1.5 mM ATP, 7.5 mM Na-piro-phosphate, 18.5 mM MOPS, 250 µM antipyrylazo III (APIII), pH=7.0. The vesicles were actively loaded in the cuvette with Ca^{2+} using SERCA activity by the addition of 4x10 µl of 5 mM CaCl₂. The extravesicular [Ca^{2+}] was monitored by the transmittance of the Ca^{2+} indicator APIII using a spectro-fluorimeter at 710 nm. Ca^{2+}-release was triggered using 400 µM 4-chloro-m-cresol (4CMC) in the presence or absence of 10 µM dantrolene at different Mg^{2+} and ATP concentrations (Sárközi et al., 2007). The rate of Ca^{2+}-release was obtained by measuring the slope of the initial segment of the process. Values were normalized to the average of the first 5 data points. The time between the Ca^{2+}-release curves were assessed at the half-maximum points.

RyR1 reconstitution and single-channel current recording in planar lipid bilayers

Measurements of channel activity were carried out using purified RyRs incorporated into planar lipid bilayers. Bilayers were painted using a mixture of phospholipids (phosphatidyl ethanolminine, phosphatidyl serine and phosphatidyl choline 5:4:1, >50 mg/ml, dissolved in decan) across a 200 µM diameter aperture of a Delrin cap in a symmetrical buffer solution containing 250 mM K⁺ as a charge carrier and 50 µM free Ca^{2+}. RyR channels were incorporated to bilayers by dispersing 50 µl of purified RyR suspension in 1 ml of recording solution. Dantrolene was applied to the cytoplasmic side of RyR under different conditions: 50 µM free Ca^{2+}, 3.94 mM total Mg^{2+} and 1 mM ATP (=3 mM free Mg^{2+}) or alternatively, 500 nM free Ca^{2+} and 2 mM ATP in the cytoplasmic
compartment. Further experiments were performed with 100 nM free Ca\(^{2+}\), 1 mM ATP and 100 nM CAM. The channel current was recorded using an Axopatch 200 amplifier and pCLAMP 6 software at a membrane potential of +/-60 mV. Currents were filtered at 1 kHz through an eight-pole low-pass Bessel filter and digitized at 3 kHz (Sárközi et al., 2017). After 30 s stirring, drug action was recorded at least for 5 min and longer than 3 min segments were analyzed.

Western blot analysis

Whole muscle homogenate, SR microsome suspension and purified RyR1 samples (identical to the samples used in the functional experiments) were loaded onto 7.5% SDS-polyacrylamide gel. After electrophoresis, the proteins were transferred onto nitrocellulose membrane (Bio-Rad, 1620115) at 100 V for 60 minutes. The membrane was blocked by 2.5% dry milk in Tris-buffered saline (TBS, pH 7.5) at room temperature for 1 hour, followed by incubation with a mouse anti-calmodulin monoclonal primary antibody (Abcam #ab5494-200) in a 1:800 dilution. The membrane was incubated with the primary antibody at 4 °C for 16 hours. After washing the membrane with TTBS (TBS complemented with TWEEN 20), it was incubated at room temperature for 1 hour with anti-mouse IgG secondary antibody (Sigma, A4416) in 1:5000 dilution. To detect proteins on the membrane, SuperSignal West Pico chemiluminescent substrate have been used (Thermo Fisher Scientific, MA, USA). Both primary and secondary antibodies were diluted in TTBS containing 0.1% dry milk.
Statistical analysis

Data are presented as the average of at least three independent experiments (n, number of experiments). Averages are expressed as mean ± SD value.

Sample size had been adapted after initial results have been obtained.

Molecular modeling

Coordinate files have been downloaded from Protein Data Bank, and we used PyMOL Molecular Graphics System (Version 1.3 Schrödinger, LLC) for structural alignment and to prepare structural figures. The relative positions of NSol (590-609) and JSol (1656-1672) helices were determined by the alignment of the following structures: PDBIDs: 5T9M, 5T15, 5T9V, 5TAX, 5TAS, and 5TB1.

Results

First, Ca\(^{2+}\)-release experiments were performed using heavy SR vesicles, which correspond to the terminal cisternae of the intact SR. Accordingly, these vesicles contained both RyRs and SERCA pumps, which offers the option to load them with Ca\(^{2+}\) actively, using the SERCA pump. To this end, vesicles were suspended in imaging medium, and were loaded with four subsequent aliquots of Ca\(^{2+}\) (indicated by asterisks in figure 1) in the presence of 1 mM Mg\(^{2+}\) and 0.5 mM ATP. These Mg\(^{2+}\) and ATP concentrations were minimal requirements for proper loading.

The extravesicular Ca\(^{2+}\)-level was monitored by measuring the transmittance of the imaging buffer at 710 nm where decrease in APIII transmittance signal represents an increase in extravesicular [Ca\(^{2+}\)]. After finishing the loading...
procedure, the transmittance of the solution stayed constant, because during this time the basic vesicular Ca^{2+}-leak was balanced by Ca^{2+}-uptake.

The first series of experiments were designed to test whether [Mg^{2+}] affects the dantrolene action on Ca^{2+}-release. The effect of dantrolene was tested on the parameters of agonist-induced Ca^{2+}-release in 1 or 3 mM Mg^{2+} (figure 1A). The Ca^{2+}-release was triggered 1 minute after reaching the steady-state transmittance by using 400 µM 4CMC (black arrowhead) in the presence or absence of dantrolene (white arrowhead). We found that in 1 mM Mg^{2+}, 4CMC caused a robust Ca^{2+}-release immediately, while both 3 mM Mg^{2+} or dantrolene induced a significant delay in the Ca^{2+}-release curves (156 and 26 seconds, see the delays in figure 1A between records indicated as “a” and “ad” and “a” and “b”, respectively). The rate of Ca^{2+}-release was significantly lower in the presence of 3 compared to 1 mM Mg^{2+} (2.04±0.08 vs. 0.9±0.07 nmol Ca^{2+}/s, n=3 and 4), whereas dantrolene only slightly decreased the rate of release (2.04±0.08 vs. 1.4±0.22 nmol Ca^{2+}/s in 1 mM Mg^{2+} while 0.9±0.07 vs. 0.73±0.03 nmol Ca^{2+}/s in 3 mM Mg^{2+}).

Nevertheless, dantrolene caused an additional 180 seconds delay in 3 mM Mg^{2+} (figure 1A, curve “b” and “bd”, horizontal arrow), indicating that the suppressive effects of dantrolene and Mg^{2+} were synergistically potentiating (consistent with (Choi et al., 2017)).

The characteristic action of the drug, i.e. causing a delay in the onset of Ca^{2+}-release, raised the hypothesis that when ATP was present in the imaging medium the drug was able to prevent Ca^{2+}-release, but after SERCA consumed ATP and [ATP] fell below a certain level, dantrolene lost its effectivity (in spite of the fact that the RyR inhibitor Mg^{2+} accumulated during this process, Mg^{2+} failed
to prevent Ca^{2+} release). This result indicates the essential role of ATP in the effect of dantrolene. Therefore, we tested the drug with a higher [ATP] of 1.5 mM and found that the delay in Ca^{2+} release was longer by 158 s than observed under control conditions in the presence of 0.5 mM ATP (31 s between “a” and “ad” curves vs. the 189 s difference found between curves “a” and “Ad” in figure 1B), while 1.5 mM ATP alone did not cause any delay (figure 1B). These results confirm the hypothesis that ATP is also required for the inhibiting effect of dantrolene.

An alternative reason to possibly account for the dantrolene-induced delay would be a significant background Ca^{2+}-leak from the vesicles. Because, if the background leak through RyR was significant, balancing it by Ca^{2+}-uptake through SERCA would consume an elevated amount of ATP. Therefore, inhibiting this resting leak with dantrolene would preserve ATP for SERCA function, which would fuel SERCA for a longer period to prevent the triggered Ca^{2+}-release, i.e. when the solution runs below the threshold [ATP] later. However, our result that increased [ATP] alone did not cause any delay in the onset of Ca^{2+}-release suggests that the ATP-dependent delay in the presence of dantrolene is not a secondary, SERCA-mediated mechanism. To rule out this alternative possibility, we determined the resting leak of our vesicles. To this end, vesicles were loaded with Ca^{2+} as before in 0.5 mM ATP, and 20 μM thapsigargin (SERCA pump inhibitor) was added to the buffer, which induced a slow spontaneous Ca^{2+}-release (figure 1C). In a different set of experiments, loaded vesicles were left untreated and were allowed run free (figure 1D). In this case, no Ca^{2+}-release was observed for periods longer than 25 min, suggesting that SERCA was able to compensate the basal Ca^{2+}-leak so the medium did not run out of ATP during this
time. This result implies that our medium did not consume significant amounts of ATP while the loaded vesicles were incubated with dantrolene (for 60 s). These data rejected our alternative hypothesis that ATP saved by dantrolene would be responsible for the delay; and justify the idea that the effect of dantrolene on the RyR allosterically relies on ATP.

Similar experiments (in 0.5 mM ATP and 1 mM Mg^{2+}) were performed using cardiac vesicles, but we failed to reproduce these results (supplementary figure 1).

As dantrolene was previously shown to be ineffective in bilayer studies (Szentesi et al., 2001), the most important question of our study was whether Mg^{2+} is the magic ingredient for the action of dantrolene. Therefore, we tested whether Mg^{2+} was able to endow solubilized skeletal muscle-type RyRs with dantrolene-sensitivity in bilayer studies. Representative records are shown in figure 2A. The channel was incorporated into the bilayer in 50 μM Ca^{2+} (control) and few minutes later 3 mM Mg^{2+} was added to the cytoplasmic side of the same channel, which significantly suppressed the open probability (P_0) of the channel. Thereafter, 1 mM ATP was included in the same compartment of the bilayer chamber, which increased the activity of the RyR. After reaching steady-state, 10 μM dantrolene was added to the recording medium. Our single-channel analysis demonstrated that dantrolene decreased the open probability of the Mg^{2+}-ATP-treated channels by 48±5% (P_0=0.0177±0.025 vs. 0.0123±0.021 n=12, effect size: -0.23; 95% confidence interval: -1.03; 0.58). The average change of P_0 (±SD) obtained in 12 individual RyR is shown in figure 2C (third symbol). In 4 cases [ATP] was raised further from 1 to 2 mM after dantrolene treatment. Surprisingly, the P_0 further decreased - instead of being increased by ATP - to
17±8% of control (0.0177±0.025 vs. 0.0018±0.003, n=4, effect size: -0.71; 95% confidence interval: -1.83; 0.48) (figure 2C, fourth symbol), which is in accordance with the therapeutic effects of the drug. These results also indicate that ATP enhances the effect of dantrolene. However, when Mg²⁺ was omitted from the recording medium, dantrolene remained ineffective in the presence of 2 mM ATP (91±3% of control, P₀=0.38±0.35 vs. 0.35±0.33, n=10, effect size: -0.08; confidence interval: -0.96; 0.8) (figure 2C, second symbol), suggesting that ATP is a necessary, but not an exclusive requirement for RyR to be inhibited by dantrolene.

Dantrolene was also proposed to require calmodulin (CaM) to inhibit single-channel activity (Oo et al., 2015). However, the SR microsome fraction is very unlikely to retain its CaM content during differential centrifugation, the results by Oo et al. raise the assumption that SR microsomes, which were sensitive to dantrolene in the Ca²⁺-release experiments, contained CaM. Therefore, western blot analysis was performed to test whether our SR microsomes and purified RyR suspension contained CaM. In figure 3A, a western blot is displayed, showing that neither the SR microsome fraction nor the purified RyR1 suspension contained detectable amounts of CaM. In contrast, we were able to identify CaM in whole cell homogenate and purified CaM samples, as indicated by the bands of the corresponding lanes around the 15 kDa protein marker. Although the fact that SR vesicles lack CaM, but dantrolene inhibited Ca²⁺-release from these vesicles, do not support the idea that CaM is required for the action of dantrolene, we further tested the action of dantrolene in single-channel experiments in the presence of 100 nM CaM. 5 second-long segments of such current records are shown in figure 3B under control conditions (100 nM...
Ca\(^{2+}\), 1 mM ATP, 100 nM CaM) and during dantrolene treatment. \(P_0\) of 6 individual RyR1 channels is displayed in the graph of figure 3C, showing that dantrolene failed to inhibit RyR1 in the presence of CaM under our experimental conditions.

Discussion

The motivation of the current research was to resolve the discrepancy that dantrolene inhibited Ca\(^{2+}\)-release from intact fibers, but failed to inhibit Ca\(^{2+}\)-release channels in bilayer studies. Our work was directly stimulated by Choi et al.’s recent publication, demonstrating that Mg\(^{2+}\) is an essential cofactor for the dantrolene effect in skinned muscle fibers (Choi et al., 2017). Indeed, as Mg\(^{2+}\) inhibits channel activity and thus renders the evaluation of further RyR inhibition problematic, Mg\(^{2+}\) was omitted from all the single-channel studies that investigated the action of dantrolene, including Cherednichenko et al. (Cherednichenko et al., 2008; Szentesi et al., 2001). They performed experiments in a medium containing 100 nM Ca\(^{2+}\) and 1 mM ATP plus 1 µM CaM and showed that dantrolene did not inhibit RyR1. However, to date, the only study that demonstrated the suppressive effect of dantrolene on RyR in bilayers was published by Oo et al., who showed that CaM was required for dantrolene to inhibit both skeletal muscle (RyR1), and cardiac RyRs (RyR2), although their recording medium did not contain Mg\(^{2+}\) (Oo et al., 2015). As our and Choi et al’s data were different, new questions arose about the molecular mechanism of the dantrolene action. The solution for the discrepancy between these conflicting results may again be related to the composition of the recording medium. In contrast to standard recording buffers, Oo et al. buffered their solution to the
redox potential of ~200 mV using glutathione, providing a reducing environment to the proteins, which may account for their observations.

Another possible reason for the conflicting results is that purification of RyRs with CHAPS may alter how dantrolene works.

Here, we aimed to add important complementary single-channel information to Choi et al.’s research and used similar conditions in our bilayer chamber to those found to be essential for the action of dantrolene in the Ca\(^{2+}\)-release assay (ie. 3 mM Mg\(^{2+}\) and 1 mM ATP). As expected, under these conditions, dantrolene significantly inhibited the P\(_o\) of the channels. Most importantly, our data demonstrate for the first time that dantrolene requires the direct binding of Mg\(^{2+}\) to RyR, but not to other accessory proteins - as we used CHAPS-solubilized, “naked” RyRs.

Furthermore, we have shown that P\(_o\) was reduced by dantrolene in the presence of higher [ATP] (2 mM), strongly suggesting that ATP potentiates the effect of dantrolene. It should be noted that these single-channel data tightly correlate with our Ca\(^{2+}\)-release results.

Our finding that ATP is also required for the drug action is particularly important, because it modifies the message of Choi et al.’s paper. Choi et al. and Cannona’s commentary (Cannona, 2001) propose that diminishing [ATP] and consequent elevation of the free [Mg\(^{2+}\)] during MH episodes is may be needed for achieving the efficacy of dantrolene in the presence of halothane, while our data suggest that dantrolene would lose efficacy at severely low [ATP] even at otherwise sufficiently high [Mg\(^{2+}\)]. This means that there might be an optimal time-window during the MH episode for dantrolene application and also
highlights the importance of the immediate treatment (i.e. before [ATP] falls below the critical threshold level) (Choi et al., 2017).

The putative dantrolene binding site

Photoaffinity labeling studies identified the dantrolene binding site in the NSol domain, in the helix formed by the amino acids in the 590-609 position (Paul-Pletzer et al., 2002). Later, experiments using domain-peptide probe approach suggested that this region (called DP1) and another one, named DP4 (aa 2442-2477) are critically important to form domain-switch interactions and may interact with one another (Kobayashi et al., 2005). According to the most widely accepted model, the „zipped” configuration of the interdomain interactions formed by the N-terminal (aa 35–614) and central domains (aa 2129-2458) are transmitted toward the pore to mediate the closed conformation of the channel. Stimulation of RyR „unzips“ these molecular switches, and causes the opening of the pore. Similarly, MH mutations in the N-terminal disease hotspot may directly unzip and destabilize these interfaces, which results in overreactive channels. Dantrolene would fix these imperfections by pinching out the loosened structure at a certain point (around aa 590-609) and restabilizes the overall structure by an allosteric mechanism (Yamamoto and Ikemoto 2002; Ikemoto and Yamamoto 2002; Kobayashi et al., 2005; Kobayashi et al., 2004; Tung et al., 2010).

In order to understand the relationships of the DP1 domain (dantrolene binding site, DBS), we visualized this domain in a three dimensional structure of the rabbit RyR1 and explored the putative interaction surfaces in the proximity of DP1 (des Georges et al., 2016; Efremov et al., 2015; Zalk et al., 2015; Yan et al.,
It is clearly visible that DP1 and DP4 are located far away from the Ca2+ (Mg2+), ATP, and caffeine binding sites. DP1 is located in the Nsol (N-terminal solenoid) and DP4 is in the Bsol (Bridging solenoid) domain and these two subdomains do not interact with each other. However, our detailed analysis revealed several interdomain interactions in DP1's neighborhood. DP1 aligns with a helix in JSol (junctional solenoid) (aa 1657-1678) (figure 4B, circled) and its N-terminal loop gets in close contact with a loop in Bsol, formed by the amino acids 2166-2171 (figure 4B, dotted circle). Apparently, these interdomain interfaces form an important keystone of this region of the structure. This hypothesis is in line with the fact that these sequences are highly conserved among species and in addition, they contain four well-known MH mutation sites (R614, R2163, V2168, T2206). Mutations at these points may influence the affinity of dantrolene to its binding site, which may account for the ineffectiveness of dantrolene in some cases. Furthermore, the C-terminal end of DP1 potentially interacts with SPRY3 sequences (aa 1591-1595) too (figure 4B, dashed circle).

Our experimental data suggest two possible molecular mechanisms for the action of dantrolene: (1) dantrolene binding requires a specific allosterically modified state, which is mediated by Mg2+ and ATP, or alternatively, (2) dantrolene binding allosterically increases the affinity of RyR to Mg2+ (as proposed by Choi et al.) Our in silico analysis supports the latter possibility, because relative interdomain distances are similar in the structures determined in the presence of caffeine, ATP, and Ca2+ (open state, 5TAQ.pdb) or in the conformational state induced by EGTA (closed state, 5TB1.pdb), respectively (des Georges et al., 2016). This structural information indicates that the
dantrolene binding site is not subject to structural realignments during gating, therefore, it is most probably always accessible - no matter whether Mg\(^{2+}\) occupies the Ca\(^{2+}\) binding sites - indicating that dantrolene most probably acts by allosterically increasing the affinity of Mg\(^{2+}\) to RyR.

Figure legends

Figure 1. Dantrolene delays the onset of agonist-induced Ca\(^{2+}\)-release from SR vesicles.

Extravesicular Ca\(^{2+}\)-level was monitored using antipyrylazo III. SR vesicles were loaded with four subsequent aliquots of Ca\(^{2+}\) using SERCA activity. Injections of Ca\(^{2+}\) are labeled with asterisks.

(A) Ca\(^{2+}\)-release was triggered using 4CMC in 1 or 3 mM Mg\(^{2+}\) under control conditions (curves “a” and “b”) or in the presence of 10 μM dantrolene (curves “ad” and “bd”) (n=3-4).

(B) Ca\(^{2+}\)-release curves recorded in 0.5 mM or 1.5 mM ATP in the absence (curves “a” and “A”, respectively) or presence of dantrolene (curves “ad” and “Ad”).

Addition of dantrolene or DMSO is labeled with white- and the addition of 4CMC with black arrowheads.

Figure 2. Dantrolene suppresses RyR open probability in lipid bilayers.

(A, B) Single-channel currents of RyR1. Openings of the channel correspond to downward deflections. Representative current traces of a single channel under control conditions (50 μM Ca\(^{2+}\)), after the addition of 1 mM Mg\(^{2+}\) and 0.5 mM
ATP, are shown, respectively. Bottom trace: channel current in the presence of 1 mM Mg^{2+}, 0.5 mM ATP and 10 μM dantrolene. Average open probabilities are shown above the representative current curves. Quantitative data are presented in panel C. Data are expressed as mean ± SD. Individual data points are represented by small dots.

Figure 3. Dantrolene remained ineffective in the presence of calmodulin.

(A) Western blot analysis of calmodulin (CaM) in SR microsomes and a purified RyR sample. Whole cell homogenate and purified CaM served as positive control. **(B)** Single-channel currents recorded in 100 nM Ca^{2+}, 1 mM ATP and 100 nM CaM under control conditions (top traces) and during dantrolene-treatment (bottom trace). **(C)** P_o values of 6 individual channels under control conditions and during dantrolene treatment.

Figure 4. Representation of the putative dantrolene binding site and its interdomain interactions in the 3D structure of RyR1.

(A) Two subunits (Caffeine/ATP/Ca^{2+} dataset, 5TAQ.pdb) of RyR1 are shown by cartoon representation (side view). ATP, Ca^{2+}, and caffeine are shown by sphere representation and are colored by magenta and orange, respectively. N-Terminal Solenoid (NSol) domain (393-627) is shown by cyan. The dantrolene-binding site (DBS) (590-609) is highlighted by red. The DP4 region (2442-2477) is shown by orange. Sequence is numbered according to the rabbit Ryr1.
Panel B shows the putative interaction surfaces in the proximity of the dantrolene-binding site (DBS). The N-Terminal Solenoid (NSol) domain (393-627) is highlighted by cyan, the SP1a/Ryanodine receptor domain 3 (SPRY3) domain (1242-1656) by green, the Junctional Solenoid (JSol) domain (1657-2144) by orange, and the Bridging Solenoid (BSol) domain (2145-3613) by violet. Dantrolene-binding site (DBS) (590-609) is highlighted by red. Regions of neighboring domains located in the proximity of the Dantrolene-binding site are circled. Hydrogen bonds are formed between amino acids N1678-Q618, G1677-R615, D1658-H597; Q2169-A613; and D591-R1594, D591-R1594, L590-R1594. Well-known mutation-sites around the dantrolene-binding site are shown by blue sticks and are indicated by blue numbers and arrows. R614 of human Ryr1 corresponds to R615 in rabbit Ryr1. See text for further details.

References

Acknowledgements

This work was supported by the Hungarian National Research Development and Innovation Office (PD112199 to JA and K115397 to PPN). JA is supported by the Lajos Szodoray Scholarship of the University of Debrecen and the János Bolyai
scholarship of the Hungarian Academy of Sciences. The publication was supported also by the GINOP-2.3.2-15-2016-00040 and EFOP-3.6.2-16-2017-00006 projects (to LC, JA and PPN), which are co-financed by the European Union and the European Regional Development Fund.
Figure 1
Figure 2.
Figure 3.
Figure 4.