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Abstract 

 

For decades, traditional drug discovery has utilized natural product and synthetic chemistry 

approaches to generate libraries of compounds, some ending as promising drug candidates. A 

complementary approach has been to adopt the concept of biomimicry of natural products and 

metabolites so as to improve multiple drug-like features of the parent molecule. In this effort, 

promiscuous and weak interactions between ligands and receptors are often ignored in a drug 

discovery process. In this emerging concepts’ article, we highlight microbial metabolite mimicry, 

whereby parent metabolites have weak interactions with their receptors, that then have led to discrete 

examples of more potent and effective drug-like molecules.  We show specific examples of parent 

metabolite mimics with potent effects in vitro and in vivo. Further we show examples of emerging 

microbial ligand-receptor interactions and provide a context in which these ligands could be improved 

as potential drugs. A balanced conceptual advance is provided in which we also acknowledge 

potential pitfalls – hyperstimulation of finely balanced receptor-ligand interactions could also be 

detrimental. However, on balance, we provide examples of where this emerging concept needs to be 

tested.  

 

Significance 

Microbial metabolite mimicry is a novel way to expand on the chemical repertoire of future drugs. The 

emerging concept is now explained using specific examples of the discovery of therapeutic leads 

from microbial metabolites. 
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Biomimicry as an Innovation Concept. Biomimicry is derived from the words, bios (Greek) or life or 

nature, and mimesis (Greek) or imitation (Baumeister, 2012; Hargroves and Smith, 2006). Various 

industries have adopted biomimicry-based approaches for innovative solutions (Chauhan; Falanga et 

al., 2020; Hu et al., 2019; Wood, 2019). In medicine, biomimicry involves developing analogs of host 

endogenous molecules that have evolutionarily adapted to target a given receptor and induce a 

favorable outcome. For instance, the soil bacterium Sorangium cellulosum, (Gerth et al., 1994; 

Molnar et al., 2000) has likely evolved in its capacity for epothilone biosynthesis to ensure optimal 

fitness in its environment (Altmann et al., 2009; Gerth et al., 2003; Rachid et al., 2007; Tang et al., 

2000).  Epothilones have diverse therapeutic activity in host organisms as anti-inflammatory agents, 

antibiotics, anti-viral, anti-cancer and other therapies (Gerth et al., 1996). Modifying the oxidation 

states of a parental epothilone compound could give rise to a class of epothilone analogs with 

improved cytotoxic potential for cancer therapy (Tang et al., 2003). Indeed, a synthetic analog of 

microbial epothilones, BMS247550 (ixabepilone), targets microtubules in mammalian cells and is 

approved for the treatment of breast cancer (Li et al., 2017). Beyond cancer indications, obeticholic 

acid (OCA, OcalivaTM), an analog of the endogenous Farnesol X Receptor (FXR) ligand 

chenodeoxycholic acid, has exhibited clinical benefit for primary biliary cholangitis (PBC) (Markham 

and Keam, 2016; Pellicciari et al., 2002). Much effort has been allocated towards deriving 

therapeutics from potent metabolites produced by soil and marine bacteria. Here we will make the 

case that isolation of weak metabolites from the human commensal microbiome may increase the 

library of candidate metabolite analogs with therapeutic potential. 
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Recent evidence indicates that the human microbiome of a 70kg reference male contains 

approximately 3.8 x 1013 cells, roughly equivalent to the number of human cells in the body (Sender 

et al., 2016). While these figures remain best estimates, the massive numbers of microbes present in 

our bodies underscore their ability to expand the metabolic capabilities of the human organism. For 

example, in the gut, there are over 3-9 million unique bacterial genes (Qin et al., 2010; Yang et al., 

2009). We may speculate that bacterial metabolic pathways are equally as diverse and that their 

chemical compounds are highly varied in structure and function. Some metabolites derived from the 

commensal human microbiome exhibit therapeutic properties (Descamps et al., 2019; Dobson et al., 

2009; Saha et al., 2016; Skelly et al., 2019). Metabolites with known therapeutic potential are likely to 

be only a fraction of the total therapeutic repertoire of microbial metabolites, as suggested in 

metabolomic studies (Folberth et al., 2020).  

 

Microbial Metabolite Mimicry as a Drug Discovery Concept. We recently described microbial 

metabolite mimicry as an emerging 

concept for drug discovery (Dvorak et al., 

2020). Based on the potential for improving the potency, selectivity, or pharmacokinetics of weak to 

moderate natural ligands, microbial metabolite mimics may simultaneously minimize off-target 

liabilities as a means to expand chemical and drug repertoires (Figure 1). The feasibility of this 

approach has been demonstrated through the recent preclinical development of several mimics with 

promising results. 

 

 

Examples of Microbial Metabolite Mimicry in Drug Discovery.  

 

Indole mimics and inflammation. Microbial metabolism of dietary L-tryptophan yields a number of 

indole-containing metabolites (Roager and Licht, 2018) that are present and biologically active in 

Figure 1. Conceptual Schematic of Microbial Metabolite 
Mimicry.  
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rodents and humans (Barbora Vyhlídalová et al., 2020). These metabolites are diverse and many 

have effects on multiple host receptors (Kim, 2018). For instance, the combination of indole 

(traditionally an aryl hydrocarbon receptor ligand) and its metabolite indole propionic acid (IPA) was 

shown to activate the human pregnane X receptor (PXR). PXR agonism then regulates intestinal 

inflammation via the TLR4-NFB pathway (Venkatesh et al., 2014). Subsequently, the same group 

developed indole-IPA pharmacophore analogs like FKK6 that exhibited potent PXR-dependent anti-

inflammatory activity in mice (Nuzzo and Brown, 2020).  

Indole can act upon other receptors important to host physiology, including the aryl hydrocarbon 

receptor AhR. Activation of AhR by indole or other tryptophan  metabolites has been shown to protect 

against colitis in mice (Rogala et al., 2020). There are several microbial-derived tryptophan 

metabolites that act as AhR agonists and can modulate the gastrointestinal immune cells, enhance 

barrier function, and inhibit intestinal inflammation (Aoki et al., 2018; Natividad et al., 2018; Roager 

and Licht, 2018; Rothhammer et al., 2016; Vyhlidalova et al., 2020; Zelante et al., 2013). In this 

context, rationally designed indole analogs have been shown to act as potent AhR ligands that 

abrogate intestinal inflammation (Chen et al., 2020; Kawai et al., 2017). Since these are derived from 

parent molecules for which the host is likely tolerized, their toxicity is likely to be less than xenobiotics 

(Chen et al., 2020; Dvořák et al.). More recently, N-acetylserotonin (NAS), a tryptophan metabolite 

produced along the serotonin pathway, acts as a positive allosteric modulator of Indoleamine 2,3-

dioxygenase 1 (IDO1) (Sonowal et al., 2017). IDO1 is an immunoregulatory enzyme involved in 

converting tryptophan to kynurenine, an endogenous AhR agonist (Mondanelli et al., 2020). The 

allosteric agonism of IDO1 by NAS protected mice from neuroinflammation and restored physiological 

IDO1 activity in peripheral blood mononuclear cells from patients with relapsing-remitting multiple 

sclerosis (Mondanelli et al., 2020). Stable analogs of kynurenine may represent a feasible modality 

for AhR-targeted anti-inflammatory drug indications for autoimmunity. New classes of microbial 

derived AhR ligands have been described [e.g., 1,4-dihydroxy-2-naphthoic acid (DHNA)](Fukumoto et 
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al., 2014). DHNA inhibits DSS colitis in mice and these ligands would appear to be a scaffold for a 

new class of AhR-active drugs(Fukumoto et al., 2014). 

Apart from autoimmunity, pathogens also exploit the role of indole metabolism in maintaining 

homeostasis in the host. The pathobiont Klebsiella oxytoca secretes the indole analog tilivalline to 

induce antibiotic-associated hemorrhagic colitis (Stampfer et al., 2017). Substantially simplified 

tilivalline mimics block the production of tilivalline (von Tesmar et al., 2018). As these molecules 

mimic endogenous indoles produced by gut bacteria, they are likely to be non-toxic and improve 

health span (Sonowal et al., 2017). 

 

Microbial SCFAs and host GPCRs in health. Short chain fatty acids (SCFAs) are produced by 

intestinal bacterial fermentation of non-absorbed dietary carbohydrates. They have profound and 

generally homeostatic effects in the intestine (Chen et al., 2019; Kaiko et al., 2016).  There are 

several SCFA receptors (e.g., GPR43, FFA2, FFA3, GPR109a) involved in the process of regulating 

colonic epithelial physiology and mucosal immune responses (Bolognini et al., 2019; Priyadarshini et 

al., 2018; Smith et al., 2013). SCFAs bind to their canonical receptors with weak affinity (micromolar 

range)(Husted et al., 2017). Homology and crystal structure models, along with mutagenesis and 

structure-function studies, have paved a clear road for the discovery of potent small-molecule SCFA 

analogs (Tikhonova, 2017). Alternatively, glycoengineering SCFAs onto a drug candidate improved 

pharmacologic properties with therapeutic potential for glycan-mediated pathologies (Saeui et al., 

2018). SCFA-induced adipocyte differentiation can be enhanced using SCFA analogs (Jiang et al., 

2013). SCFAs also exhibit weak inhibition of histone deacetylases (HDACs). Specific zinc-chelating 

and motif tethered SCFA analogs display nanomolar potency as HDAC inhibitors (Lu et al., 2004), 

which suggests a feasible alternative source of chromatin modifying drugs. Tributyrin, a pro-drug of 

the SCFA butyrate, has more favorable pharmacokinetic properties than butyrate itself (Egorin et al., 

1999) and furthermore was shown to have protective effects in ethanol-induced mouse models of 

intestinal barrier dysfunction and liver injury (Cresci et al., 2014; Cresci et al., 2017). Similarly, 
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tributyrin can decrease the fitness advantage of pathogens like Salmonella that depend on lactate 

metabolism (Gillis et al., 2018). SCFAs may be important as a novel type of "co-drug" which 

enhances AhR-mediated effects in the gut (Jin et al., 2017; Korecka et al., 2016). Moreover, there is 

evidence that some high fiber diets can be metabolized to enhance SCFA production and these can 

be used in human studies(Baxter et al., 2019). 

 

Dietary nutrients, microbial metabolites and infection. Desaminotyrosine (DAT) is a microbial 

degradation product of polyphenolic flavonoids (Lambert and Moss, 1980; Schoefer et al., 2003). 

Recent data suggest that DAT protects against influenza virus infection by inducing type I interferons 

(Steed et al., 2017). Diets rich in polyphenols could exert a positive influence on DAT production. 

Identification of the exact molecular targets of DAT is a vital first step towards realizing DAT mimics 

with improved potency. While the deployment of better intestinal models of human is needed for the 

evaluation of polyphenol bacterial metabolites on preclinical models (van Duynhoven et al., 2011), a 

few studies have emerged that associate polyphenol metabolites with host health, including one 

implicating the metabolism of phenolic acids in blueberries (Russell et al., 2007). In these models, 

defining the targets of phenolic acids would be essential prior to embarking on drug discovery through 

microbial metabolite mimicry.  

 

Microbial enzyme inhibitors, diabetes and obesity. As a proof-of-concept, acarbose (-glucosidase 

inhibitor) is frequently used in diabetic patients to control glycemia and post-load insulin levels (van 

de Laar et al., 2005). Acarbose is made by Actinoplanes sp. SE 50/110. It is a pseudotetrasaccharide 

and contains an aminocyclitol moiety, valienamine, which inactivates intestinal -glucosidase and 

sucrase. This combined effect decreases intestinal starch hydrolysis. Similarly, a host of inhibitors are 

derived from marine microbes, most with weak enzyme inhibitor properties but with core 

pharmacophores that could be chemically modified (e.g., indole) (Gomez-Betancur et al., 2019). 
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Amylase inhibitors are also positioned as drugs for weight loss (Mahmood, 2016). Despite the use of 

such inhibitors in diabetes (Jayaraj et al., 2013), long term use warrants safe agents. To expand the 

drug repertoire by improving weak inhibitors, like those obtained from microbial products 

(metabolites), mimicry would be applicable. For example, a few microbial α-amylase inhibitors include 

paim (obtained from culture filtrates of Streptomyces corchorushii), and TAI-A, TAI-B (oligosaccharide 

compounds from Streptomyces calvus TM-521) (Demain and Sanchez, 2009). Lipstatin, a pancreatic 

lipase inhibitor produced by Streptomyces toxytricini, is used to treat obesity and diabetes (Hires et 

al., 2018). A stable analog of lipstatin, tetrahydrolipstatin (orlistat), is FDA approved for the treatment 

of obesity (Filippatos et al., 2008). The side-effects of orlistat are minimal and manageable but do 

include nausea, vomiting and diarrhea (Khalil et al., 2020). In rats, orlistat may increase aberrant 

crypt formation during chemically induced inflammation (Garcia et al., 2006). 

 

Emerging opportunities. 

Microbial metabolites and GPCR families. In addition to SCFAs, other human microbiome specific 

metabolites (e.g., phenylpropanoic acid, cadaverine, 9-10-methylenehexadecanoic acid, and 12-

methyltetradecanoic acid) modulate host GPCRs (Colosimo et al., 2019) (Offermanns, 2017).  The 

authors screened multiple fermentation fractions of bacterial culture broths from a simplified human 

microbiota SIHUMI consortium (Eun et al., 2014), and after reverse phase chromatography, applied 

the fractions to a multi-well 241 GPCR-specific engineered cell line screen (-arrestin recruitment 

screen). While some metabolites (e.g., nicotinic acid EC50 ~2.2M for GPR109A) were inherently 

potent activators of GPCRs, there were several new metabolites with weak agonist activity (e.g., 3-

hydroxyoctanoic acid EC50 ~ 304M; phenylpropanoic acid, a bacterial ligand, EC50 ~ 208M for 

GPR109B). Homology models, based on prior knowledge of GPR109A (Tunaru et al., 2005), and 

mutagenesis studies could be leveraged to define the ligand-binding pocket interactions for GPR109B 

with weak ligands; this could be useful for deriving phenylpropanoic acid mimics. Similar examples 
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are shown by Cohen et al. whereby a microbiome-synthetic gene therapy approach is applied 

towards GPR119-targeted therapy, given that human microbiota produce N-acyl amides that mimic 

human GPR119 ligands (Cohen et al., 2017). Furthermore, defining GPCRs with dominant roles for a 

given ligand would be important to assess, so that the correct receptor or set of receptors can be 

chosen to perform a library screen of mimics (Bolognini et al., 2019). 

 

Bile Acids, Microbial metabolites and FXR. The Farnesol X Receptor (FXR) is a major target for liver 

disease prevention (Hoofnagle, 2020) with the primary bile acid chenodeoxycholic acid as the 

endogenous ligand. FXR agonists, now in clinical use include obeticholic acid (OCA, 

OcalivaTM)(Pellicciari, 2008; Pellicciari et al., 2002) and cilofexor (a non-bile acid synthetic FXR 

agonist), which have inspired drug development for a variety of hepatic diseases (Gioiello et al., 

2014). The results of this study by Pellicciari and colleagues identified a key small pocket in the 

receptor-ligand binding domain that accommodate small hydrophobic groups at the C6-position of 

chenodeoxycholic acid. In particular, the ethyl moiety perfectly fits the 10 Å cavity leading to a 

hundred-fold increase in FXR activity and has become a key structural motif of a novel, potent bile 

acid-based modulator (findings made by Fraydoon Rastinejad). In 2016, OCA reached patients 

affected by PBC and is currently being evaluated in patients with non-alcoholic steatohepatitis 

(NASH) (Pellicciari, 2008).  More recently, microbial amino acid conjugations of the host bile acids 

phenylalanocholic, tyrosocholic and leucocholic acid, have been identified as FXR agonists (Quinn et 

al., 2020). Complementing these are other secondary microbial metabolites of bile acids like iso-

deoxycholate (Campbell et al., 2020). Using these templates, mimics could improve potency while 

limiting side effects (Quinn et al., 2020). 

 

Dummy analogs. The underlying rational for the design of dummy analogs is to mimic a given 

bioactive molecule to promote competitive inhibition of a given target. Imidazole propionate, a human 
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and rodent microbiome specific metabolite, blunts insulin-induced mTORC1 activation, impairing 

glycolysis (Koh et al., 2018). The authors defined the alternative p38 pathway as a target of imidazole 

propionate. Thus, dummy imidazole analogs could blunt the effects of imidazole propionate on p38 

via competitive binding. Importantly, the design of a imidazole analog library is reasonable, given the 

simplicity of the biosynthesis of imidazole propionate from histidine (Koh et al., 2018).  

 

Microbial metabolites and antioxidant drug discovery. Nrf2 is a global regulator of the antioxidant 

response that is evolutionarily conserved. A resident mucin-degrading bacterium Peptostreptococcus 

russellii produces the tryptophan metabolite indoleacrylate (IA), which activates Nrf2 and improves 

barrier function (Wlodarska et al., 2017). While it remains unclear if IA directly binds Nrf2, deeper 

investigation could reveal methods to mimic IA. Other small molecule scaffolds, such as oxo fatty 

acids that activate the Nrf2-ARE pathway, can also be used to enhance the potency of mimics 

(Sofyana et al., 2020). Urolithin A (UroA) is a major microbial metabolite derived from polyphenolics 

of berries and pomegranate fruits. UroA displays anti-inflammatory and anti-oxidative activities, yet 

weak potency. A recent report demonstrates the therapeutic potential of a more potent UroA analog 

UAS03 that enhanced barrier function and decreased inflammation in mice (Singh et al., 2019). It is to 

be noted that UroA could also act via the AhR pathway as a ligand and therefore, its effects on any 

phenotype could be due to pleiotropic molecular mechanisms(Muku et al., 2018; Pernomian et al., 

2020). In this context, vitamin metabolism by gut bacteria could affect the overall health of the host. 

For example, vitamin E acetate is metabolized by Lactobacillus acidophilus NCFM (Roager et al., 

2014) similarly to the metabolism of natural forms of vitamin E, -tocopherol and -tocopherol, by the 

intestinal microbiota of rats (Ran et al., 2019). Understanding the consequences of vitamin E 

metabolites and mimics on host health requires further study. These investigations should be coupled 

with defining not only host phenotypes, but specific protein targets affected by those vitamins and 

their bioactive long-chain metabolites (e.g., garcinoic acid) (Bartolini et al., 2020). Along with PXR, 
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these targets appear to include other nuclear receptors (e.g. PPAR-) recently reviewed elsewhere 

(Torquato et al., 2020) and the anti-inflammatory protein 5-lipoxygenase (Pein et al., 2018). In 

another example, microbiome-derived ascorbate inhibits the glucose transporter GLUT1 in human 

CD4+ effector T cells, inducing apoptosis (Chang et al., 2019). However, alternative mechanisms of 

ascorbate delivery to sites of local inflammation cannot be excluded (Wang et al., 1997). Ascorbate 

mimics that potently inhibit GLUT1, which is upregulated in activated T cells, could be a unique way 

to develop drugs targeting Crohn’s disease and other T cell mediated non-malignant disorders. In this 

regard, since multiple transporters are involved in ascorbate transport in different tissues, analogs 

specific to each transporter may also be feasible and could have reduced systemic, off-target toxicity 

(Corpe et al., 2005). 

 

Microbial metabolites and mimics as alternative to antibiotics. Discovery of new antibiotics is of crucial 

importance to combat antimicrobial resistance with a very significant impact on global health and the 

agriculture industry. Microbial metabolite mimicry can certainly be applied here, where most clinically 

used antibiotics are microbially derived (Lewis, 2020). In the pork industry, early weaning of piglets 

improves the reproductive cycle in sows (Campbell et al., 2013); however, early weaning often 

causes stress-induced diarrhea in the piglets that can respond to antibiotics (Lallès et al., 2007), 

although antibiotic resistance remains a major problem (Allen et al., 2014; Chen et al., 2018).  More 

recently, it has been shown that fecal transplants from resistant to susceptible early-weaned piglets 

reduce this stress-induced diarrhea (Hu et al., 2018). Two dominant strains, Lactobacillus gasseri 

LA39 and Lactobacillus frumenti, were identified from diarrhea-resistant feces that also confer 

resistance to diarrhea in susceptible piglets. The principal inhibitor that prevents diarrhea is the 

bacterial circular peptide gassericin A, which mediates its effect via host keratin 19 (KRT19) (Hu et 

al., 2018). It remains unclear if this peptide fragment is optimized for KRT19 binding, and optimizing 

the peptide sequence for this effect could present new therapeutic modalities. 
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Microbial metabolites and mimics to shape microbial diversity. Some microbial metabolites can shape 

the emergence or loss of microbial diversity (Douglas, 2020; Goldschmidt et al., 2018; Lilja and 

Johnson, 2017). Microbial metabolite mimics with specific antibacterial effects could be screened 

against a consortium of intestinal bacteria in vitro and in consortia-inoculated germ-free mice to look 

for diversity control as a means to aide in host disease control. In this way, mimicry allows for 

expanding the metabolite repertoire to diversify the microbiome and maintain homeostasis of host 

health (Haag and Siegmund, 2014). This might be particularly relevant to the rapidly increasing 

Western-predominant inflammatory conditions associated with dysbiosis, such as inflammatory bowel 

diseases (Crohn’s disease and ulcerative colitis), metabolic syndrome, obesity, fatty liver disease, 

and inflammatory arthritis.  In this respect, a dietary approach could be taken. A natural flavanol 

Kaempferol demonstrated significant activity against collagen-induced arthritis in mice when 

administered orally but not intraperitoneally, and Kaempferol was retained in the gut and diversified 

the microbiota; these data support the contribution of microbiome diversity towards the therapeutic 

effect (Aa et al., 2020). Kaempferol mimics with potent microbial re-shaping ability could be designed 

for the treatment of arthritis (Aa et al., 2020).  

The examples provided in this section of emerging opportunities demonstrates specific pathways in 

which microbial metabolites produced by bacteria in the host effectively engages one or more 

receptors in tissues. There is a clear phenotype observed when the metabolite engages the host 

tissue receptor. Indeed, modifying the metabolite, to either improve its potency or to make the 

metabolite more stable, could provide broad approaches towards improving drug discovery.  

 

Future Efforts. Based on the rationale and examples presented, we recommend exploiting 

metabolically focused host-microbe relationships for future drug discovery using the microbial 

metabolite mimicry approach. These efforts should be coupled with medicinal chemistry and medium 

to high throughput host phenotype assays. In some cases multi-specific small molecules may be 
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feasible especially when targeting a protein complex, as has been shown for antibodies (Deshaies, 

2020). The chemistry should be simple, possibly automated and integrated in innovative discovery 

platforms (Gioiello et al., 2020) to keep the process more efficient and at a low cost. Emphasis should 

also be on utilizing microbial chemistry pathways and well-designed engineered biocatalysts to 

synthesize novel mimics – perhaps using concepts of directed evolution of salient genes involved in 

the metabolite synthesis pathway (Chen and Arnold, 1993). 

 

In summary, several microbial metabolites have weak interactions with host receptors and offer the 

potential to generate mimics with increased binding affinities that will produce little to no toxicity when 

applied as therapies due to the host’s tolerance to the native forms of these metabolites. Microbe-

host interactions are critical to host physiology and these relationships could be exploited chemically 

to drive favorable interactions. In drug discovery, in comparison with efforts on soil and marine 

bacterial metabolites, the human microbiome offers many such interactions that warrant chemical 

mimicry. While these mimics could suffer the same metabolic fate as other xenobiotics, by keeping 

the chemistry simple and with a full understanding of its metabolic fate/liabilities, it is possible to 

design better drugs.  

Evolutionarily, it is also possible that these weaker receptor-ligand interactions are advantageous to 

the host to prevent hyper-stimulation of the respective receptors, which may in fact have detrimental 

consequences. Furthermore, not all microbial metabolites benefit the host as some may drive 

inflammation and carcinogenesis (Nyangale et al., 2012; O'Keefe, 2016; Windey et al., 2012). As 

such, in developing this new field of pharmacology, it is essential to understand the balance between 

binding affinities and physiological outcomes, in order to fine-tune receptor-ligand interactions for 

optimal health outcomes. 
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We (SM, ZD) have filed a patent application US 2019/0367475 A1: PXR agonists and uses thereof for 
gut barrier dysfunction and treatment prevention. 
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Figure Legend 
 
Figure 1. Conceptual Schematic of Microbial Metabolite Mimicry. The intestine (blue) harbors 
many bacteria (multicolored). Some of these bacteria produce metabolites from a parent molecule in 
the diet (e.g., L-tryptophan) with weak receptor modulation, represented by an indole structure (weak 
metabolite). In applying a biomimicry-focused approach, modulating the chemical structure of a weak 
metabolite (synthetic modification) may produce a more potent modulator of a given receptor, thereby 
altering host phenotypes. These biomimics are chemically similar to the parent metabolite and their 
off-target liabilities are likely to be less than that of xenobiotic structures, as demonstrated for indole 
mimics (Venkatesh et al., 2014). 
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