Screening and Identification of A Novel Anti-Siglec-15 Human Antibody 3F1 and Relevant Antitumor Activity

Jiaguo Wu1,2†, Jingyi Peng2,3†, Yangyihua Zhou2,4†, Ran Zhang3, Zhihong Wang2, Naijing Hu2, Dingmu Zhang2, Guiqi Quan2,5, Yuanyu Wu2, Jiannan Feng2, Beifen Shen2, Jian Zhao5,*, Yan Zhang6,*, Kaiming Yang1,*, Longlong Luo2,*

1 Department of Anatomy, School of Basic Medical Sciences of Dali University, Dali 671000, China
2 State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
3 Joint National Laboratory for Antibody Drug Engineering, the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng 475004, China
4 Hunan Normal University School of Medicine, 371 Tongzipo Road, Changsha 410013, Hunan, China
5 JOINN Biologics, Co., LTD, Beijing, 101102, China
6 Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA
†Equal contributions;

*Corresponding authors: Longlong Luo (luolong_long@126.com) & Kaiming Yang (176501584@qq.com) & Yan Zhang (3348929253@qq.com) & Jian Zhao (zhaojian@joinnbio.com.cn)

Longlong Luo (luolong_long@126.com), State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, P. O. Box 130 (3), Taiping Road #27, Beijing 100850, China. +86-10-66931325, Fax: +86-10-68159436

Yan Zhang (3348929253@qq.com), Department of Obstetrics and Gynecology, First Medical Center, General Hospital of Chinese PLA.
Running Title Page

Running title: Human mAb 3F1 targeting the functional epitopes of Siglec-15

Kaiming Yang (176501584@qq.com), Department of Anatomy, School of Basic Medical Sciences of Dali University.

Jian Zhao (zhaojian@joinnbio.com.cn), JOINN Biologics, Co., LTD, Beijing, 101102, China.

Keywords: Siglec-15; immune checkpoint molecules; tumor immunotherapy; human phage antibody library; ligands

Number of pages: 34

Number of Figures: 5

Number of Tables: 2

Number of Words in the Abstract: 251

Number of Words in the Introduction: 622

Number of Words in the Discussion: 894

Abbreviation:

ADCC Antibody-dependent cell-mediated cytotoxicity

CD44 Cluster of Differentiation 44

EC50 Concentration for 50% of maximal effect

ELISA Enzyme Linked Immunosorbent Assay

FBS Fatal Bovine Serum

HPLC High Performance Liquid Chromatography

LRRC4C Leucine-Rich Repeat-Containing Protein 4C
Siglec-15 is an important immunosuppressive molecule considered to be a key target in next generation tumor immunotherapy. In this study, we screened 22 high affinity antibodies that specifically recognize human Siglec-15 by using a large human phage antibody library and 5 representative sequences were selected for further study. The results showed the binding activity of 5 antibodies to Siglec-15 (EC\textsubscript{50} ranged from 0.02368\,μg/mL to 0.07949\,μg/mL) and in 2 Siglec-15 overexpressed cell lines, 3 antibodies had the strongest binding activity, so the 2 clones were discarded for further study. Subsequently the affinity of 3 antibodies were measured by Bio-layer interferometry technology (5-9×10-9M). As the reported ligands of Siglec-15, the binding activity of Siglec-15 and sialyl-Tn, CD44, MAG and LRRC4C can be blocked by 3 of the antibodies. Among these, 3F1 had a competitive advantage. Then, the antibody 3F1 showed an obvious ADCC effect (EC\textsubscript{50} were 0.85 \,μg/mL). Further, antibody 3F1 can reverse the inhibitory effect of Siglec-15 on lymphocyte proliferation (especially CD4+T, CD8+T) and cytokine release (IFN-γ). Given the above results, 3F1 was selected as a candidate for the in vivo pharmacodynamics study. In the tumor model of Balb/c Nude mice, 3F1 (10 mg/kg) showed certain anti-tumor effects (TGI was 31.5\%) while the combination of 3F1 (5 mg/kg) and ERBITUX (5 mg/kg) showed significant antitumor effects (TGI was 48.7\%) compared with the PBS group. In conclusion, novel human antibody 3F1 has
anti-tumor activity and is expected to be an innovative candidate drug targeting Siglec-15 for tumor immunotherapy.

Significance Statement:

Siglec-15 is considered as an important target in the next generation of tumor immunotherapy. 3F1 is expected to be the most promising potential candidate for targeting Siglec-15 for cancer treatment, and could provide a reference for the development of anti-tumor drugs.

1. **Introduction**

In recent years, an important development in tumor immunology is the concept of “Immune checkpoints” and the prominent therapeutic effect of targeting specific “Immune checkpoint molecules” in the field of anti-tumor (Alsaab et al., 2017; Chen and Mellman, 2017; Larkin et al., 2019; Ribas and Wolchok, 2018; Sharma et al., 2017; Vasan et al., 2019). These immune checkpoint molecules exist widely in the tumor microenvironment (TME) and lead to adaptive resistance mechanisms of tumor cells against an immune response (Dong et al., 1999; Freeman et al., 2000; Palakurthi et al., 2019; Sanmamed and Chen, 2018; van Dijk et al., 2019). For example, the antibody against B7-H1 or PD-1 blocks the B7-H1/PD-1 pathway (anti-PD therapy for short in this article), which normalizes the immune response in the TME through relieving tumour cells from immune response by effectors T cells, producing favorable tumor treatment results (Dong et al., 2002; Kim et al., 2018; Syn et al., 2017; Taube et al., 2012). In addition to anti-PD therapy, the sialic acid-binding immunoglobulin-like lectin (Siglec) receptor family has been recognized as an important target for tumor immunotherapy in recent years (Angata et al., 2007; Chang and Nizet, 2014; Crocker et al., 2007; Macauley et al., 2014; Pillai et al., 2012).

Siglecs belong to I-type lectin family. To date, 14 different mammalian Siglecs have been identified that mediate cell-to-cell or pathogen interactions by identifying sugar chains containing sialic acid (Chik et al., 2014), which plays an important regulatory role in innate and adaptive immunity (Kang et al., 2020; Pillai et al., 2012). The Siglec family is divided into two classes: one of which has conserved sequences, including Sialoadhesin (Siglec-1), CD22 (Siglec-2), MAG (Siglec-4), and
Siglec-15, which show low sequence homology. The other class of Siglecs has variable sequences associated with CD33 (Bornhofft et al., 2018). Siglec-15 gene encodes a short extracellular binding domain (ECD), the ECD of Siglec-15 contains a variable region of immunoglobulin (IgV) and a type 2 homeostasis region (IgC2), which shares more than 30% similarity to the B7 gene family (Li et al., 2020). It was previously proved that the combination of Siglec-15 and B7-H1 has a synergistic effect in an animal model of colorectal cancer (Wang et al., 2019). Studies have shown that Siglec-15 is highly expressed in liver, lung, thyroid cancer, and bladder cancer tissues and in tumor-associated macrophages (TAMs), whereas low expression in most normal tissues and immune cells suggests that targeting Siglec-15 drugs may have fewer side effects (Angata et al., 2007; Kizuka et al., 2017; Takamiya et al., 2013). Human Siglec-15 has been reported as acting as a TAM receptor that recognizes sialyl-Tn antigen, also known as Neu5Acα2, 6GalNAc, that is a sialylated glycan and commonly expressed in tumors. Crosslinking Siglec-15 on TAMs by sTn expressed on cancer cells induce TGF-β secretion via the DAP12-SYK pathway, which affects tumor progression. In addition to sialyl-Tn, CD44, MAG and LRRC4C also act as ligands on Siglec-15, mediating immune escape in tumor microenvironments. Wang et al (Wang et al., 2019) studies have shown that deleting Siglec-15 in mice or administrating antibodies against Siglec-15 have significant anti-tumor effects, transforming the immunosuppressive tumor microenvironment into pro-inflammatory and anti-tumor immunophenotypes. Furthermore, Siglec-15 and PD-1 gene expression is mutually exclusive, indicating anti-Siglec-15 therapy may also be suitable for treating patients who do not respond to anti-PD therapy. Overall, Siglec-15 may become the next generation “promising immunotherapy target” after PD-1 targeted therapy.

In this study, we aimed at screening and identifying the potential therapeutic antibodies against Siglec-15. A novel human antibody 3F1, with anti-tumor activity, was obtained through a series of verifications and biological evaluation. We will make great efforts to promote preclinical and clinical research of candidate antibodies, hoping to provide more opportunities for targeting Siglec-15 in the field of anti-tumor. Our experiments were not designed to test a pre-specified statistical null hypothesis; therefore, our study should be considered as exploratory.

2. Materials and methods
2.1 Reagents

Siglec-15-His protein (Cat. No.: CW37), Siglec-15/Fc protein (Cat. No.: CY14), Mouse-Siglec-15 protein (Cat. No.: CW71), Cynomolgus-Siglec-15 protein (Cat. No.: CW70), CD44 protein (Cat. No.: C579) and MAG protein (Cat. No.: C897) were purchased from Novoprotein corporation (Beijing, China); LRRC4C expression plasmid (Cat. No.: RC207363) was purchased from OriGene Technology Co., Ltd. (Maryland, USA); Poly (ethylene glycol) was purchased from ChemicalBooSk corporation (Beijing, China) (Cat. No.: 25322-68-3); M13K07 helper phage (Cat. No.: N0315S) was purchased from New England Biolabs, Inc. (USA); jetPRIME transfection reagent (Cat. No.: 114-01) was purchased from Univ Biotechnology Co., Ltd. (Shanghai, China); OPM-293 CD05 medium (Cat. No.: 81075-001) was purchased from Shanghai OPM Biosciences Co., Ltd. (Shanghai, China); Streptavidin-HRP (Cat. No.: S911) was purchased from Thermo Fisher Scientific Co., Ltd. (Massachusetts, USA); APC-labeled streptomycin (Streptavidin-APC, Cat. No.: SA10-10), APC-conjugated goat anti-human IgG Fc (Cat. No.: 410712), HRP-conjugated Goat anti-human IgG Fc (Cat. No.: 398006) was purchased from Agilent corporation (California, USA). ELISA MAX™ Standard Set Human kit (IFN-γ) (Cat. No.: 430101) was purchased from Biolegend corporation (California, USA); TMB color developing solution (Cat. No.: CW0050S) was purchased from Beijing ComWin Biotech Co., Ltd. (Beijing, China); Coating solution: 0.1M sodium carbonate-sodium bicarbonate buffer (pH 9.6, Sodium Carbonate Cat. No.: 10018960; Sodium Bicarbonate Cat. No.: 1001891922) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China); PBS (Cat. No.: G4200-500ML) was purchased from Servicebio corporation (Wuhan, China); PBST (0.1% Tween 20 added to PBS, Cat. No.: 11973-MM05T-H); Protein interaction running buffer solution (0.2% Tween 20 added to PBS); Anti-M13/HRP purchased from Sino Biological Inc. (Beijing, China); 2-YT medium (Tryptone 16 g, Yeast Extract 10 g, NaCl 5 g, agar powder 15 g, constant volume to 1 L); Tryptone (Cat. No.: LP0042) and Yeast Extract (Cat. No.: LP0021) were purchased from Shanghai Gensheng Biotechnology Co., Ltd.; Agar powder (Cat. No.: A8190) was purchased from Solarbio Technology Co., Ltd. (Beijing, China); FACS solution (2% serum in PBS); Destaining solution (ethanol 250mL, 75mL glacial acetic acid, pure water diluted to 1000mL); ONE-Glo™ Luciferase Assay System (Cat. No.: E6110) was purchased from Promega.
Biotechnology Co., Ltd (Madison, Wisconsin, USA); Mycoplasma PCR Detection Kit (Cat. No.: C0301S) was purchased from Beyotime Biotechnology (Shanghai, China). Anti-sialyl-Tn fluorescent antibody (Cat. No.: ab115957) were purchased from Abcam (Cambridge, UK); Anti-human CD3 antibody (Cat. No.: 555916) were purchased from Becton, Dickinson and Company (Franklin Lake, New Jersey, USA); ERBITUX was bought from Merck & Co. (Cat. No.: Ab00279-1.7-BS) were purchased from Biolegend corporation (California, USA); PB513B vector was purchased from System Biosciences corporation (SBI) (California, USA); pcDNA™5/FRT vector was purchased from Thermo Fisher Scientific Co., Ltd. (Massachusetts, USA) (Cat. No.: V601020). The natural phage library and anti-ricin monoclonal antibody MIL50 (in clinical stage) was prepared in and has been preserved in our laboratory.

2.2 Cell culture

293T, MC38, and NCI-H157 cells were from the American Type Culture Collection Center (ATCC). ADCC FcγRIIIa (158F) Jurkat Effector Cell Line was purchased from Jenomeditech Biotechnology corporation (Cat. No.: GM-C01619). All the cultured cells were tested for mycoplasma contamination using the Mycoplasma PCR Detection Kit and the cells without mycoplasma contamination were used for further studies. 293T and MC38 cells were cultured in DMEM medium containing 10% FBS. NCI-H157 cells were cultured in RPMI 1640 medium containing 10% FBS. ADCC FcγRIIIa (158F) Jurkat Effector Cell Line was cultured in medium containing 10% FBS, 0.75 μg/mL puromycin and 3.5 μg/mL Blastincidin. The above cells were placed in an incubator at constant temperature and humidity (Thermo, Waltham, Massachusetts, USA) at 37 degrees Celsius with 5% CO2. All cells were cultured for more than three generations, and the cells were in logarithmic growth phase before the experiment.

2.3 Plasmid construction, protein expression and stable strain construction

Human Siglec-15 sequence information was obtained from the Uniprot website (Q6ZMC9). According to the sequence information, the full length Siglec-15 and the Ig-like V-type sequence were intercepted (The detailed amino acid sequence is shown in Table S1). In order to achieve the membrane expression of the Ig-like V-type
sequence, the C terminal of the Ig-like V-type sequence was inserted into the PDGFR (Platelet-derived growth factor receptors) transmembrane region to achieve membrane expression. The above gene sequence was synthesized and cloned into commercial vector PB513B using specific restriction endonuclease sites and termed as PB513B-S15 or PB513B-S15-D1. The PB513B-S15 plasmid was transfected into 293T cells and NCI-H157 cells while PB513B-S15-D1 plasmid was transfected into 293T cells. Stable strains expressing Siglec-15 or Siglec-15-D1 on the cell surface were obtained by puromycin pressurization. The corresponding stable cell lines were named 293T (S15⁺), 293T (S15-D1⁺) and NCI-H157 (S15⁺) respectively. At the same time, Siglec-15-D1 linked with human IgG1 Fc was cloned into commercial vector pcDNA™5/FRT and Siglec-15-D1/Fc fusion protein was prepared using the 293T expression system.

2.4 Phage selection for human antibody against Siglec-15

10 μg of Siglec-15-His protein was dissolved in 500 μl of PBS and added to the immunotube at 4°C overnight. Subsequently, discarded the liquid in the immunotube, added 500 μl of 4% skim milk powder to each immunotube to seal the exposed site for 1h at room temperature while 5×10¹² natural phage libraries were diluted in 4% skim milk and sealed at room temperature for 1 h. 500 μL of the blocked phage solution was added and incubated at room temperature for 1 hour. The immunotube was washed with PBST (0.1% Tween 20 in PBS) for 25-30 times to remove unbound and non-specifically bound phage, and glycine-hydrochloric acid (100 mmol/L, pH 1.7) was used to elute the specifically bound phage and neutralized with Tris base (pH 8.0). The washed phage was added to TG1 in logarithmic growth phase and incubated at 37°C for 0.5 h. After centrifugation, the pellet was spread on 2-YT solid medium (containing 100 μg/mL ampicillin and 2% glucose) and cultivated overnight. The number of clones were then counted and the input/output ratio was calculated. 50% glycerol was used to scrape the bacteria on the plate and the next round of screening was carried out. The harvested bacterial solution from the first round was added to the 2-YT liquid medium (containing 100 μg/mL ampicillin and 2% glucose) in proportion. The bacterial solution was cultured at 37°C 220 r/min for 2.5 h until the OD₆₀₀ absorbance of the culture medium was between 0.8 and 1, then the M13K07 helper phage was added and incubated at 37°C for 0.5 h. The supernatant was discarded after
centrifugation and the precipitates were resuspended in 2-YT liquid medium (containing 100 μg/mL ampicillin and 80 μg/mL kanamycin) and cultured at 28°C 220 r/min for 16-22 hours. The phage was precipitated with PEG8000 and the precipitate was resuspended in 20% glycerol and stored at -80°C. Following this, the third round of screening was carried out according to the above method. After 3 rounds of screening, single clones were randomly picked from bacterial culture plate and cultured in a deep well plate for 4 hours. Subsequently, 100 μL of supernatant was aspirated from each well for subsequent sequencing. 5×10^{10} M13K07 was added to each well of the deep plate and incubated at 37°C for 0.5 h. Following centrifugation, the supernatant was discarded and 1mL 2-YT medium (containing 100 μg/mL ampicillin and 80 μg/mL kanamycin) was added to resuspend it and cultured at 28°C, 220 r/min for 16-22 hours. The centrifuged supernatant was collected for subsequent experiments.

2.5 Preliminary identification of phage positive clones via ELISA assay

The first domain of Siglec-15 is the ligand binding domain. To initially determine the binding epitope of positive clones, the Siglec-15/Fc protein and Siglec-15-D1/Fc protein were diluted in coating solution to a final concentration of 1 μg/mL and added to the ELISA plate at a volume of 100 μL/well, then placed at 4°C overnight. The coating solution was washed off and the exposure site was sealed with 4% skim milk at 37°C for 1h. Centrifuged the phage supernatant overnight in section 2.4 deep-well plate at 1800 r/min at 4°C for 15 min, and added 100 μl per well to the enzyme-linked plate and placed at 37°C for 1 h. After washing, anti-M13/HRP was added and placed at room temperature for 45 min. A color reaction was carried out by adding 100 μL TMB substrate in each hole, and the reaction was completed with 2N H_{2}SO_{4}. The results were read in OD_{450} light absorption assay using an enzyme-labeled instrument (Moleculer Devices, Silicon Valley).

2.6 Antibody expression and identification

The antibody sequence obtained from the screening was fused with the Fc of human IgG1 in the form of ScFv (Single-Chain Variable Fragment)-Fc and cloned into the commercial eukaryotic expression vector PB513B. The plasmid was extracted with a large-scale plasmid kit, jetPRIME transfection reagent was used to transfect the
antibody expression vector into 293T cells. After transfection for 6 hours, the expression medium OPM-293 CD05 was changed and cultured for 72 hours. The supernatant was collected and purified with a Protein A chromatography column. SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis) and SEC-HPLC (Size Exclusion Chromatography High Performance Liquid Chromatography) were used to identify antibody purity and molecular weight.

2.7 ELISA to identify the binding activity of selected antibodies

Siglec-15-His protein was diluted to 1 μg/mL in the coating solution and coated according to 100 μL/well in ELISA plate, then placed at 4°C overnight. The coating solution was washed off and the exposure site was sealed with 4% skim milk at 37°C for 1h to prevent non-specific binding. The antibody samples were diluted to 15 μg/mL and then diluted 4 times to obtain 8 concentration points. The above diluted samples were added to the plate and placed at 37°C for 1 h. After washing, secondary antibody (HRP-conjugated Goat anti-human IgG Fc) diluted with 1:6000 was added to react for 45 min at room temperature. The color reaction was carried out by adding 100 μL TMB substrate in each hole, and the reaction was completed with 2N H2SO4. The results were read using OD450 light absorption assay using an enzyme-labeled instrument. The experiments were repeated 3 times under this experimental conditions.

2.8 ELISA to identify cross-reactivity of selected antibody

HSiglec-15 (human-Siglec-15), mSiglec-15 (Mouse-Siglec-15), CySiglec-15 (Cynomolgus-Siglec-15), Siglec-2, Siglec-7, Siglec-8, Siglec-9, PD-L1, CD24, CD38, CD47, IL-2RA, IL-4R, IL-17A, and IL-22 protein were diluted with His-tagged to 1 μg/mL in the coating solution and placed at 4°C overnight. The coating solution was washed off and the exposure site was sealed with 4% skim milk at 37°C for 1h to prevent non-specific binding. The antibody samples were diluted to the concentration of 2 μg/mL and 100 μL/well was added to the plate to react at 37°C for 1 h. After washing, secondary antibody (HRP-conjugated Goat anti-human IgG Fc) diluted with 1:6000 was added to react for 45 min at room temperature. The color reaction was carried out by adding 100 μL TMB substrate in each hole and the reaction was completed with 2N H2SO4. The results were read in OD450 light absorption assay.
using an enzyme-labeled instrument. The experiments were repeated 3 times under this experimental conditions.

2.9 Affinity determination

Bio-Layer Interferometry (BLI) technology was used to detect antibody affinity. The Siglec-15-His proteins were fixed on the Ni-NTA chip, and the antibody samples were serially diluted with protein interaction running buffer solution (500 nM, 166.7 nM, 55.6 nM, 18.5 nM, 6.17 nM, 2.05 nM, 0.68 nM). The association reaction time was set at 180s, the dissociation reaction time was set at 180s. After the reaction, the reaction was regenerated in 500 mM imidazole for 5 seconds, and in protein interaction running buffer solution for 5 seconds. The regeneration-infiltration step was repeated 3 times. Data analysis 7.0 software was used to analyze the affinity of antibody samples. Imported the raw data into the analysis software, analyzed the kinetic method, obtained the binding dissociation constant and drew the kinetic curve. The experiments were repeated 3 times under this experimental conditions.

2.10 Determining the binding activity of antibody by flow cytometry

Cultivated stable strains that expressed Siglec-15 and Siglec-15-D1 on the cell membrane surface. When in the logarithmic growth phase, the cells were digested with 0.25% trypsin and washed with FACS solution. The cells were counted at 5×10^5 cells/tube. The anti-Siglec-15 antibody was diluted to 15 μg/mL, and then diluted 3 times to obtain 7 concentration gradients of which 100 μL was added to the corresponding cells and incubated at 4°C for 30 min. Secondary antibodies (APC-conjugated Goat anti-human IgG Fc) were added and incubated at 4°C for 30 min. After washing twice, BD FACSAria II flow cytometry was used to measure fluorescence. Flowjo 10.4 software was used to analyze the results. The experiments were repeated 3 times under this experimental conditions.

2.11 Determination of antibody blocking activity by ELISA

CD44 and MAG protein were diluted to 1 μg/mL in the coating solution and the ELISA plate was coated with 100 μL/well and placed at 4°C overnight. The coating solution was washed off and the exposure site was sealed with 4% skim milk at 37°C for 1h to prevent non-specific binding. 50 μL of Siglec-15-Fc-Biotin (the final
concentration was 5 μg/mL) and antibody (the final concentration was 50 μg/mL) were added to the corresponding plate and placed at 37°C for 1 h. After washing, the secondary antibody (Streptavidin-HRP) diluted with 1:6000 was added and left to react for 45 min at room temperature. The color reaction was carried out by adding 100 μL TMB substrate to each hole and the reaction was completed using 2N H2SO4. The results were read in OD450 light absorption assay with an enzyme-labeled instrument. The experiments were repeated 3 times under this experimental conditions.

2.12 Determination of the blocking activity of antibodies by flow cytometry

The LRRC4C expression plasmid was transiently transfected into 293T cells in the logarithmic growth phase and cultured for 48 hours. The cells were then digested with 0.25% trypsin and resuspended to 5×10^5 cells/tube with FACS solution. Following this, 50 μL each Siglec-15-Fc-Biotin (the final concentration was 5 μg/mL) and antibody (the final concentration was 100 μg/mL) were added to the tube. Siglec-15-Fc-Biotin (the final concentration was 5 μg/mL) without antibody was set as the positive control and all reactions were incubated at 4°C for 30 min. Finally, 100 μL secondary antibody (Streptavidin-APC) diluted at 1:3000 was added and incubated at 4°C for 30 minutes. After washing twice, flow cytometry was used to measure fluorescence. The activity of antibody blocking the interaction between Siglec-15 and LRRC4C was analyzed. The experiments were repeated 3 times under this experimental conditions.

NCI-H157 cells were cultured when the cells were in the logarithmic growth phase, and the cells were digested with 0.25% trypsin. The cells were washed with FACS solution and resuspended to 5×10^5 cells/tube, the commercial antibody against sialyl-Tn fluorescent antibody was added to detect sialyl-Tn antigen expression on the tumor cells. At the same time, 50 μL of each Siglec-15-Fc-Biotin (the final concentration was 5 μg/mL) and antibody (the final concentration was 100 μg/mL) was added to the corresponding tubes. Siglec-15-Fc-Biotin (the final concentration was 5 μg/mL) without antibody was set as the positive control and Streptavidin-APC was set as the secondary antibody control and all reactions were incubated at 4°C for 30 min. Each well had 100μL secondary antibody (Streptavidin-APC) added to dilute to 1:3000 and incubated at 4°C for 30 min. After washing twice, flow cytometry was
used to measure fluorescence. The antibody activity blocking the interaction between Siglec-15 and sialyl-Tn was analyzed. The experiments were repeated 3 times under this experimental conditions.

2.13 ADCC activity

ADCC FcγRIIIa (158F) Jurkat Effector Cell Line was cultivated as effector cells and 293T (S15+) was used as target cells. When the cells were in the logarithmic growth phase, the cells were digested from the culture flask and culture dish and resuspended in RPMI 1640 medium containing 10% FBS and the cell viability was checked (≥ 95%). Following this step, effector cells and target cells were added to a flat-bottomed 96-well plate at a concentration of 1:6, i.e. the final concentration of effector cells was 2.5×10^4 cells/well, and the final concentration of target cells was 1.25×10^5 cells/well, then 50 μL was added to the corresponding plate. Diluted the 3 candidate antibodies and the irrelevant antibody control (ML150) to 300 μg/mL, 5-fold dilution, 8 gradients, 50 μL were added into the plate. i.e. the final concentration of antibodies were 100 μg/mL, 20 μg/mL, 4 μg/mL, 0.8 μg/mL, 0.16 μg/mL, 0.032 μg/mL, 0.0064 μg/mL and 0.00128 μg/mL, 3 replicates wells for each sample. The 96-well plate was placed in a cell incubator at 37°C with 5% CO2 for 6 hours. 100 μL of ONE-Glo™ Reagent was added to each well and left to react for 2 minutes in the dark. After the cells were completely lysed, the luciferase value was tested on the GloMax NAVIGATOR machine. The ADCC activity of the antibody samples were calculated. The experiments were repeated 3 times under this experimental conditions.

2.14 Lymphocyte proliferation

PBMCs were isolated from heparinized blood of 5 healthy donors using ficoll-hypaque density gradient centrifugation. Anti-human CD3 was diluted with PBS to 0.1 μg/mL and 100 μL was added to each well in a flat-bottomed 96-well plate, which was placed at 4°C overnight. PBMC was isolated using density gradient centrifugation. The separated PBMC were resuspended in 1 mL PBS at a concentration of 1×10^7 cells/mL. CFSE was added to the cells at a final concentration of 5 μM and incubated for 10 minutes at room temperature. 1/4 volume of FBS was added and the samples were centrifuged at 1200 rpm for 4 minutes to discard the supernatant. The cells were resuspended in RPMI 1640 medium containing 10% FBS and the cell concentration
was adjusted to 2.5×10^6. 100 μL/hole was added to the middle 60 wells of the 96-well plate. At the same time, 50 μL of each Siglec-15-Fc (15 μg/mL; i.e. a final concentration of 5 μg/mL) protein or diluted Siglec-15 antibody (150 μg/mL, 5-fold dilution, 3 gradients; i.e. final concentrations of 50 μg/mL, 10 μg/mL and 2 μg/mL) were added to the wells. The 96-well plate was placed in a cell incubator at 37°C with 5% CO₂ for 72 hours. The cells were collected for flow cytometry analysis. To further determine the proliferation of T cell subsets, anti-CD4 and CD8 fluorescent antibodies were added to the cells and they were incubated at 4°C for 30 minutes. After washing twice with FACS solution, the labeled cells were analyzed by flow cytometry. The experiments were repeated 3 times under this experimental conditions.

2.15 Lymphocyte activity

Anti-human CD3 antibody was diluted with PBS to 0.1 μg/mL, and 100 μL was added to each well of a flat-bottomed 96-well plate, which was placed at 4°C overnight. The liquid in the orifice was aspirated, and PBMC cells were isolated using the method in section 2.14. All steps followed this method except for the CFSE staining step. The corresponding PBMC Siglec-15/Fc and diluted antibody samples were added to the plate. The 96-well plate was placed in a cell incubator at 37°C with 5% CO₂ for 72 hours. The cell supernatant was harvested and ELISA MAX™ Standard Set Human kit (IFN-γ) was used to measure the levels of IFN-γ. The experiments were repeated 3 times under this experimental conditions.

2.16 Animal experiment

6-8 week-old female Balb/c Nude mice were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd and placed in the SPF (Specific Pathogen Free) environment for 1 week. During this animal experiment, we observed animal ethics during the research according to the “3R” principles of replacement, reduction, and refinement; the use or treatment of the mice was in strict agreement with the guidelines for the care and use of research animals, and was approved by the Animal Ethics Committee of the Beijing Institute of Pharmacology and Toxicology. NCI-H157 (S15⁺) was subcutaneously inoculated at a density of 3×10^6 cells per mice. When the tumor volume reached approximately at 100 mm³, The mice were labeled with ear nails and arranged in descending order according to the tumor size, and the
mice were divided into 4 groups with 6 mice in each group according to the random number table. PBS was used as the negative control group, 3F1 (10 mg/kg) or ERBITUX (10 mg/kg) was used as the monotherapy group, and 3F1 (5 mg/kg) combined with ERBITUX (5 mg/kg) was used as the combined therapy group. The drug was administered intraperitoneally twice a week and the tumor size and mice body weight were monitored during the administration process. The tumor volume was calculated according to the following equation: tumor volume (mm\(^3\)) = \frac{1}{2} \times \text{length} \times \text{width}^2. After the treatment was completed, the mice were anesthetized and the tumors were dissected, weighed and photographed. After the assay, the mice were sacrificed using anesthesia with ketamine followed by cervical dislocation; we then used deep-freezing to confirm death.

2.17 Statistical analysis

Statistical analysis was performed using GraphPad Prism 8 software (San Diego, California). Data was shown as mean ± SD. Sample sizes were fixed before data were observed, all \textit{in vitro} experiments were replicated 3 times under the same experimental conditions. EC\textsubscript{50} values were calculated using a nonlinear regression analysis. The statistical significance of tumor volume and tumor weight between groups at the end of treatment was determined by One way ANOVA with Tukey test. The inter-group comparison in the Tukey testing after ANOVA had been specified before data were observed. Date were considered statistically significant when p values lower than 0.05. A post-hoc analysis had been chosen in the inter-group comparisons. 3 inter-group comparisons had been done, including 1 low p value and 2 high p values. Based on the exploratory character of our study, calculated p-values should not be interpreted as hypothesis-testing but only as descriptive.

3. Results

3.1 Phage panning for human-specific Siglec-15 antibody

In previous work, the laboratory established a large human phage antibody library and screened multiple therapeutic antibody candidates for specific antigens (Hu et al.,2021). The same technique was used to screen Siglec-15 antibodies in this study. In the process of phage panning, the input and output of phages were recorded, and the ratio of input and output was calculated (Table 1). According to the
input/output ratio histogram in Fig. 1A, the input/output ratio showed a decreasing trend after three rounds of screening, indicating that the phages that specifically recognized Siglec-15 antigen were effectively enriched. The phage supernatant was prepared from five 96-deep-well plates randomly selected from the titrated culture dishes produced by the third round of screening. Twenty-two clones with OD$_{450}$ greater than 1.5 were selected by ELISA for detecting the binding activity of phage supernatant to Siglec-15/Fc. According to literature (Angata et al., 2007), the 143-position arginine (R$_{143}$) existed in the first domain of Siglec-15 is highly conserved in the Siglec family and is known as "essential arginine", which plays an important role in the recognition of glycan. The mutation in R$_{143}$ almost caused complete loss of Siglec-15/glycan binding activity. Considering that the first domain of Siglec-15 is a functional and important domain, the Siglec-15-D1/Fc protein was constructed for functional screening and epitope verification. As shown in Fig. 1B, apart from two clones, 1D1 and 4H3, which did not bind to Siglec-15-D1/Fc, the remaining 20 clones could either bind to Siglec-15-D1/Fc or Siglec-15/Fc. Finally, 5 sets of antibody sequences were identified in 22 selected positive clones (① 1A11, 1D4, 1F10, 3E5, 5D2; ② 1B4, 1C1, 1F2, 3D12, 5D6; ③ 1D8, 2A12, 3A3, 3C8, 4C1; ④ 1E7, 3F1, 2C9, 3F3, 2C9, 3F3, 4E4; ⑤ 1D1, 4H3). Therefore, 1D4, 1B4, 2A12, 3F1 and 1D1 were selected for the following functional verification.

3.2 Antibody expression and binding activity verification

The candidate antibodies were prepared in the ScFv-IgG1 format, for which VH (Variable region of heavy chain) and VL (Variable region of light chain) were linked with flexible linker (G4S), and fused to the IgG1 Fc, and expressed by 293T expression system then purified by Protein A. The protein was characterized by SDS-PAGE and SEC-HPLC. Fig. 2A showed the SDS electrophoregram of the antibody using coomassie stained gel under reducing and non-reducing conditions. The results showed that the molecular weights of these five antibody proteins were 55KDa and 130KDa under reducing and non-reducing conditions respectively, corresponding to the theoretical values of the antibody sequence. Fig. S1 showed that 1B4 has a tendency to form aggregates while the other 4 antibodies appeared as monomers and have purity over 90%. Indirect ELISA was conducted to test cross-binding between different species of Siglec-15 and 5 candidate antibodies, as shown in fig 2B.
the results, 1B4 and 2A12 could bind to human/mouse/cynomolgus Siglec-15 effectively, 1D4, 3F1 could effectively bind to human/cynomolgus Siglec-15 and 1D1 could only bind to human Siglec-15 with very weak binding activity to mouse Siglec-15 and no binding activity to cynomolgus. Furthermore, 4 human Siglec family member proteins and a variety of human cell membrane or secretory proteins were selected to verify the specificity of the antibodies. Results are shown in Fig. 2C. The 5 antibodies only bound specifically to Siglec-15 antigen and did not cross-bind to other proteins. The binding activity of 5 candidate antibodies to Siglec-15 was tested by indirect ELISA in Fig. 2D. The results showed that all of the 5 antibodies were able to recognize Siglec-15, and the binding activity was concentration-dependent. According to the fitted four-parameter equation, the values of the antibody binding at half the effective dose (EC50) were ranked by numeric value as follows: 2A12 (EC50: 0.02368 μg/mL) < 1B4 (EC50: 0.02440 μg/mL) < 3F1 (EC50: 0.07949 μg/mL) < 1D1 (EC50: 0.2442 μg/mL) < 1D4 (EC50: 0.6847 μg/mL). Furthermore, flow cytometry was operated to verify the binding activity of the antibodies to membrane protein of Siglec-15 or Siglec-15-D1 overexpressed on the constructed 293T (S15+) or 293T (S15-D1+) stable cells. Fig. 2E showed that 1B4, 2A12, 3F1 had the strongest binding activity to Siglec-15 and Siglec-15-D1 was overexpressed on the cell surface, however, the binding of 1D4 and 1D1 was weak, and the membrane protein is closer to the conformation of natural protein, so the 1D4 and 1D1 clones were discarded for further study. Finally, the affinity of 3 candidate antibodies were measured by Biosensor interferometry technology. The affinity data was listed in table 2, and is ranked as follows: 2A12 (KD: 5.23×10E-09) < 1B4 (KD: 9.17×10E-09) < 3F1(KD: 1.08×10E-08). The specific association/dissociation fitting diagram is shown in Fig. S2.

3.3 The blocking activity of antibody candidates to interfere Siglec-15 and its ligand

It has been reported that Siglec-15 has four known ligands: CD44, MAG, sialyl-Tn and LRRC4C. Flow cytometry were used to detect whether the anti sialyl-Tn antibody could bind to the 293T cell line that highly expresses LRRC4C, the results showed that the anti sialyl-Tn antibody could not bind to these cells (Fig. S3A). In addition, we also verified that anti sialyl-Tn antibodies could not bind to CD44 and MAG using biofilm interference technology. Therefore, we believe that the binding of Siglec-15 to CD44, MAG and LRRC4C may be independent of sialyl-Tn (Fig. S3B).
Therefore, the selected antibodies that block Siglec-15 from binding to its ligands have therapeutic potential. In order to investigate the blocking activity of the antibodies, the CD44 and MAG proteins purchased were coated on the ELISA plate, and antibodies were incubated with Siglec-15-Biotin saturation. The saturation concentration of Siglec-15-Biotin was verified to be 5 μg/ml in advance. In the statistical analysis, the differences between the antibodies group and the control group were compared respectively to verify that the antibodies have blocking activity, and statistical analysis between antibody groups were performed to compare the difference between the antibodies. Fig. 3A shows three candidate antibodies which could compete for binding activity between Siglec-15 and CD44 at a specific concentration, and the corresponding competitive ability was as follows: 3F1 (Inhibition Rate 70.04%) > 1B4 (Inhibition Rate 54.48%) > 2A12 (Inhibition Rate 23.72%). Fig. 3B shows three candidate antibodies which have similar competitive trends for Siglec-15 and MAG, and their corresponding competitive abilities were as follows: 3F1 (Inhibition Rate 89.64%) > 2A12 (Inhibition Rate 75.18%) > 1B4 (Inhibition Rate 45.30%). Since both sialyl-Tn and LRRC4C are membrane receptor molecules, flow cytometry was used to verify the blocking activity of the antibodies. Human non-small cell lung adenocarcinoma cell line NCI-H157 expressed sialyl-Tn antigen was used and verified by anti-sialyl-Tn fluorescent antibody (Fig. S3C). The blocking activity of three candidate antibodies were shown in Fig. 3C. The interaction of Siglec-15 with the sialyl-Tn antigen could be effectively competed for by the three candidate antibodies at a given concentration. (Raw flow results are shown in Fig. S3D.) Finally, transient transfection of LRRC4C plasmid into 293T cells and transient expression of LRRC4C on the cell membrane was used for flow cytometry analysis. Fig. 3D shows that all three antibody candidates could compete effectively for the interaction between Siglec-15 and LRRC4C at a given concentration. (Raw flow results are shown in Fig. S3E.)

3.4 Luciferase reporter gene assay for evaluation of antibody ADCC activity

To evaluate the ADCC activity of antibody, luciferase reporter gene cell Line ADCC FcγRIIIa (158F) the Jurkat Effector was used. Jurkat cells stably express FcγRIIIa(158F) and firefly luciferase driven by NFAT response elements. In theory, the antibody could connect the target cells and effector cells, inducing luciferase
expression by activating the NFAT pathway downstream of the effector cells via FcγRIIIa (158F) receptor. In general, the activity of the antibody ADCC can be accessed according to the amount of luciferase expressed. The ADCC activity of the candidate antibodies were verified. Results are shown in Fig. 4A. All of the three candidate antibodies showed an obvious ADCC effect and certain dose dependence. The corresponding EC_{50} values were ranked below: 3F1 (EC_{50}: 0.85 μg/mL) < 2A12 (EC_{50}: 1.31 μg/mL) < 1B4(EC_{50}:2.90 μg/mL), and the monoclonal antibody MIL50 as an irrelevant antibody control and the results showed it had no ADCC effect.

3.5 Cell proliferation and cytokine release

It is well known that anti-human CD3 antibodies can stimulate T cell activation. It has been reported (Ren,2019; Wang et al.,2019) that Siglec-15 directly inhibits NF-κB/NFAT signaling by binding to unknown receptors on T cell surfaces. The secretion of IL-10 inhibits the proliferation of T cells and the production of cytokines, thus inhibiting anti-tumor immunity and promoting tumor growth. In vitro, Siglec-15, independent of macrophages or IL-10, directly inhibits the proliferation and activation of T cells. In order to verify whether the samples had the same trend among different people, we took blood samples from 3 volunteers, and set up 3 replicate wells under the same experimental conditions. In this study, anti-human CD3 antibody was used to stimulate T cell proliferation and cytokine release (IFN-γ). Siglec-15/Fc was added to inhibit T cell stimulation by anti-human CD3 antibody. Candidate antibodies were added to study the effect of antibodies on reversing the effects of Siglec-15 on T cell proliferation and the cytokine release of lymphocytes. The cell proliferation of the untreated group and the CD3 antibody group were compared, the difference between the CD3 antibody group and the CD3 antibody with Siglec-15/Fc group, and also compared the differences between CD3 antibody with Siglec-15/Fc group with CD3 antibody with Siglec-15/Fc and anti-Siglec-15 antibody group. The purpose was to test whether antibodies against Siglec-15 can effectively reverse the immunosuppressive effect of Siglec-15 on lymphocytes. As shown in Fig. 4B, MFI values can well reflect the proliferation of T cells, the faster the proliferation of T cells, the lower the MFI value. The lymphocytes proliferated more slowly without anti human CD3 antibody, with the highest average fluorescence intensity. The T cells proliferated significantly when anti human CD3 antibody was added. Therefore, the
corresponding mean fluorescence intensity (MFI) was significantly lower, and the addition of Siglec-15/Fc protein at a specific concentration could inhibit T cell proliferation, so the corresponding MFI was significantly higher, the addition of 3F1 could significantly decrease the MFI, and the other 2 antibodies showed a reversed effect (raw flow result is shown in Fig. S4), which indicated that 3F1 can effectively reverse the immunosuppression of Siglec-15/Fc on activated T cells while 1B4 and 2A12 did not have this function. Furthermore, specific CD4+ and CD8+ T cells were labeled with anti-CD4+ and CD8+ T fluorescent antibodies and their proliferation was analyzed. The results show that the results and the above results were consistent. Considering that 3F1 has better competitive activity in vitro (such as Siglec-15 and ligands CD44 and MAG), stronger ADCC activity and a potential stronger reversal effect reverses the ability of Siglec-15 to inhibit lymphocyte proliferation, 3F1 was selected as a candidate for further study.

In addition, we further evaluated the reversal of immunosuppression by 3F1 in the lymphocyte cytokine release (IFN-γ) assay. Results are shown in Fig. 4C, where the level of IFN-γ was lower without anti-human CD3 antibody, the IFN-γ value was significantly increased to a higher level when adding anti-human CD3 antibody, and this could be reversed by Siglec-15/Fc. On this basis, the addition of 3F1 was able to increase the level of IFN-γ, and the effect was concentration dependent. This suggests that candidate antibody 3F1 could effectively reverse the immunosuppressive effect of Siglec-15 on lymphocytes.

3.6 Evaluation of biological activity in vivo

It was reported that Siglec-15 is expressed at low level in normal human tissue, but highly expressed in TAMs and multiple tumors, which have a serious impact on patient prognosis. Thus Siglec-15 has become a hot target in anti-tumor immunotherapy. In this study, an overexpressed Siglec-15 tumor cell line was genetically constructed based on NCI-H157, and the tumor cells were inoculated subcutaneously into nude mice with certain immune deficiencies to form a subcutaneous tumor-bearing model to study the anti-tumor activity of the candidate antibody 3F1. Since NCI-H157 itself expresses EGFR molecules (Fig. S5), the study tested the therapeutic effects of targeted Siglec-15 and EGFR combinations. In statistical analysis, we separately compared 3F1 (10 mg/kg), ERBITUX (10 mg/kg),
3F1 (5 mg/kg) and ERBITUX (5 mg/kg) with the PBS group, and also compared the differences between 3 treatment groups. Fig. 5A shows a time-dependent growth curve of tumor size. The results show that, compared with the PBS control group, 3F1 (10 mg/kg) or commercial anti-EGFR antibody ERBITUX (10 mg/kg) could inhibit tumor growth. The combination of 3F1 (5 mg/kg) and ERBITUX (5 mg/kg) showed a significant antitumor effect. Furthermore, compared with the PBS group, the tumor growth inhibition (TGI) rates using ERBITUX, 3F1 monotherapy and 3F1 and ERBITUX combined therapy were 13.9%, 31.5% and 48.7% respectively. Fig. 5B shows time-dependent mice weight. The results show that the NCI-H157 tumor cells were malignant, and the mice weight in the PBS, 3F1 and ERBITUX groups decreased significantly (11.44%, 8.12%, 7.78%, respectively). An increase was only seen in the combined therapy group (4.64%). Due to animal welfare concerns, the trial was terminated on day 14 of treatment. Fig. 5C shows the weight of the tumor peeled off at the end of the experiment, and the results showed that compared with PBS control group, the 3F1 and ERBITUX monotherapy groups had lower tumor weight at the end of the experiment, while in the combined therapy group a significantly lower tumor weight was observed. Fig. 5D shows the tumor photos at the end of experiment. These results indicate that 3F1 has certain anti-tumor activity in mice, and obvious anti-tumor activity when combined with ERBITUX. The above results indicate that 3F1 could be used as a candidate drug targeting Siglec-15 for anti-tumor therapy.

4. Discussion

In recent years, immunotherapy, especially immune checkpoint blockade, has been widely used in the clinical treatment of malignant tumors (Hanahan and Weinberg, 2011; Pardoll, 2012; Ribas and Wolchok, 2018; Rosenberg et al., 2016; Wei et al., 2018). Multiple studies have shown (Quirino et al., 2021; Wang et al., 2019) that Siglec-15 is less expressed in normal tissues and overexpressed in the tumor microenvironment of many types of cancer and has an immunosuppressive function. This means that Siglec-15 may be a broad-spectrum target with fewer side effects. Recent studies have shown that Siglec-15 plays an important role in regulating the tumor microenvironment and promoting tumor immunosuppression in two main ways. One is by preferentially binding to the structure of sialyl-Tn (Briard et al., 2018), which is commonly expressed in
tumors and may induce TGF-β secretion via the intracellular DAP12–Syk signaling pathway of TAMs (Ishida-Kitagawa et al., 2012; Takamiya et al., 2013). Syk is mediated by a variety of intermediate kinases (such as AKT (Yi et al., 2014), PKC (Aggarwal and Pittenger, 2005; Takada and Aggarwal, 2004), ERK (Eliopoulos et al., 2006; Parsa et al., 2008), etc.). A large number of studies have shown that TGF-β is an important cancer-promoting cytokine in the middle and late stages of cancer (Ahn et al., 2015; Martini et al., 2014; Matsushita et al., 2012; Meulmeester and Ten Dijke, 2011; Shi and Massagué, 2003). TGF-β can inhibit immune cells in the tumor microenvironment and can promote the formation of tumor-associated fibroblasts and epithelial-mesenchymal transition (EMT), ultimately promoting tumor proliferation and metastasis. It can also do this through the expression of Siglec-15 on TAMs or tumor cells, which binds to an unknown receptor on the T cell surface (as yet unknown) to inhibit CD8+ T cell proliferation (Murugesan et al., 2021; Wang et al., 2019).

A large number of experiments have shown that Siglec-15 has potent immunosuppressive effects in animal tumor models, but the role of Siglec-15 in human tumors and the anti-tumor effect of blocking Siglec-15 has not been exactly confirmed. Liu et al (Liu et al., 2020) showed that in Siglec-15 positive renal clear cell carcinomas, miR-7109-3p controls the cell surface abundance of Siglec-15 by up-regulating LINC00973, which is involved in cancer immunosuppression. Furthermore, recent studies have demonstrated that Siglec-15 plays an immunomodulatory role in lung adenocarcinoma and bladder cancer, and that Siglec-15 may be an important prognostic biomarker (Hu et al., 2021; Li et al., 2020). Wang et al (Wang et al., 2019) pointed out that Siglec-15 differs from the escape route of PD-1/PD-L1 and that Siglec-15 does not overlap with the expression of PD-1/PD-L1 (Kamoun et al., 2020). This suggests that anti-Siglec-15 inhibitors may be an effective alternative to anti-PD therapy. Phase I clinical trials of anti Siglec-15 monoclonal antibody NC318 also demonstrated a response in patients with non-small-cell lung carcinoma who did not respond to PD-1 blockers. Currently, clinical trials on NC318 in the treatment of head and neck cancer and triple negative breast cancer are continuing. As a result, Siglec-15 is expected to become the next major immune checkpoint to benefit some cancer patients who do not respond to current immunotherapy drugs.
Phage display technology is the insertion of DNA sequences of foreign proteins or peptides into the phage capsid protein structure gene at the appropriate location, allowing the foreign gene to be expressed along with capsid protein expression while a biological technique in which foreign proteins are displayed on the surface of a phage as the phage is reassembled. Phage display, which plays an important role in the directed evolution of enzymes and in the selection of peptides and antibodies, was awarded the Nobel Chemistry Prize in 2018 (https://www.nobelprize.org/prizes/chemistry/2018/summary/). In this study, a total of 5 high affinity antibodies for Siglec-15 were screened from a human phage antibody library with large capacity constructed in the lab. These 5 candidate antibodies have good binding ability to the antigen and the affinity constant reaches the nM level. Three strains of antibody (1B4, 2A12 and 3F1) were selected by antigen binding and ligand blocking experiments in vitro. Among these, 3F1 showed better competitive activity in vitro (such as Siglec-15 and ligands CD44 and MAG), stronger ADCC activity and potential stronger reversal effect. Therefore, 3F1 was selected as a candidate for the in vivo pharmacodynamics study. The results showed that 10 mg/kg of 3F1 had a certain anti-tumor effect compared with the PBS control group, while the combination of 5 mg/kg of 3F1 and 5 mg/kg of ERBITUX significantly inhibited tumor growth. In addition, there was no significant weight loss in mice in the combined therapy group. The tumor volume in the combined therapy group was generally smaller than that of other groups, which indicates that the combined therapy group had the strongest anti-tumor activity. In summary, 3F1 is expected to be a candidate drug for targeting Siglec-15. However, this animal model has some shortcomings. Balb/c Nude mice lacking T cells were not able to be used to evaluate the effect of Siglec-15 on T and B cells. Anti-Siglec-15 monotherapy or combination therapy is more likely to work through antibody Fc effects (such as ADCC, CDC and ADCP) or through macrophage activation-related pathways.

In conclusion, this study has identified novel anti-Siglec-15 antibody candidate molecule 3F1, which has been tested and shown to have excellent in vitro biological activity. At the same time, therapy or combined therapy offers a certain level of in vivo anti-tumor activity. 3F1 is expected to be the most promising potential candidate for targeting Siglec-15 for cancer treatment.
Acknowledgement

We thank Springer Nature Group (https://authorservices.springernature.com/) for editing a draft of this manuscript.

Author Contributions:

Participated in research design: L.L.L., K.M.Y., Y.Z., and J.Z.

Contributed new reagents or analytical tools: J.G.W, J.Y.P., Y.Y.H.Z.;

Wrote or contributed to the writing of the manuscript: L.L.L., K.M.Y., Y.Z., and J.Z., J.N.F., B.F.S.
4. Reference

characteristics of Siglec-15 identified by pan-cancer analysis. Oncoimmunology 9, 1807291.

Footnotes

This research was supported by the National Natural Sciences Foundation of China grant (No. 31771010, No. 81700122) and Beijing Nova Program (No. Z211100002121020).

Conflicts of Interest

The authors declare that there are no conflicts of interest or personal relationships that could have appeared to influence the work reported in this paper.
Figure Legends

Figure 1: Screening and preparation of fully human antibody library specifically targeting Siglec-15. (A) Histogram of Input/output ratio. After three rounds of screening, the input/output ratio showed a decreasing trend, indicating that the positive clones recognizing Siglec-15 had been effectively enriched. (B) The binding activity of 22 clones to Siglec-15/Fc and Siglec-15-D1/Fc as measured by ELISA. These experiments were repeated 3 times under this experimental conditions.

Figure 2: Antibody expression and binding activity verification. (A) SDS electropherogram of candidate antibodies under reducing and non-reducing conditions. M stands for protein marker (bands respectively represent 10KD, 17KD, 26KD, 34KD, 43KD, 55KD, 72KD, 95KD, 130KD and 180KD). 1-5 are for SDS electrophoresis under reducing conditions and 6-10 are for SDS electrophoresis under non-reducing conditions of 1B4, 1D1, 1D4, 2A12, 3F1. As shown in the diagram, the purity of all the proteins is more than 95% and the molecular weights were 55KD and 130KD under reducing or non-reducing conditions respectively. (B) The indirect ELISA method was used to test cross-binding of 5 candidate antibodies with different species of Siglec-15. (C) Indirect ELISA was used to determine the binding of the candidate antibodies to 4 human Siglec family member proteins and 8 human cell membrane proteins or secreted proteins. (D) Indirect ELISA was used to verify the binding activity of 5 candidate antibodies to Siglec-15, and the binding activity was concentration-dependent. (E) Flow cytometry was used to verify the binding activity of candidate antibodies to 293T (S15") and 293T (S15-D1"). These experiments were repeated 3 times under this experimental conditions.

Figure 3: Analysis of blocking activity between candidate antibodies and different ligands of Siglec-15. (A) and (B) showed the inhibition rates of 3 candidate antibodies against CD44 (A) and MAG (B) with Siglec-15 by ELISA, the calculation formula was \[\frac{1- (\text{experimental group} - \text{blank control})}{(\text{positive control} - \text{blank control})} \times 100\] (the experimental group added the candidate antibody, and the
positive control group had no antibody). Among (A) and (B), all 3 candidate antibodies could effectively compete with the interaction between Siglec-15 and CD44, MAG at a specific concentration, and 3F1 had the strongest competitive effect. (C) It shows the gate percentage of 3 candidate antibodies against sialyl-Tn and Siglec-15. Flow cytometry was used to determine the blocking effects of the candidate antibodies and the ligand sialyl-Tn, and the percentage of gate was analyzed. At a specified concentration, all three candidate antibodies effectively competed for interaction between Siglec-15 and sialyl-Tn antigen to the background value. (D) It shows the gate percentage of 3 candidate antibodies against LRRC4C and Siglec-15. Flow cytometry was used to determine the blocking effect of the candidate antibody and the ligand LRRC4C, and the percentage of gate was analyzed. At a specified concentration, the 3 candidate antibodies effectively competed with Siglec-15 and LRRC4C. among (C) and (D), positive group was without antibody, its gate percentage was the highest, and the gate percentage of the antibody group was significantly reduced, reflecting the inhibitory effect of antibody. These experiments were repeated 3 times under this experimental conditions.

Figure 4: Evaluation of the biological activity of candidate antibodies in vitro. (A) The ADCC effect of the candidate antibodies was evaluated by detecting the luciferase value at different concentrations. The ADCC effect of the candidate antibody 3F1 was the strongest, the monoclonal antibody MIL50 as an irrelevant antibody control and the results showed it no had ADCC effect. (B) Flow cytometry was used to evaluate the inhibitory effects of the candidate antibodies on reversing the proliferation of human total PBMC mediated by Siglec-15. The candidate antibody 3F1 effectively reversed T cell proliferation. (C) ELISA was used to detect the influence of the candidate antibodies on the cytokines released into the supernatant of human PBMC. 3F1 was able to increase the levels of IFN-γ inhibited by Siglec-15. Adding 50μg/mL, 10μg/mL and 2μg/mL of 3F1 significantly reversed the level of IFN-γ inhibited by Siglec-15/Fc and the result was concentration-dependent. These experiments were repeated 3 times under this experimental conditions.
Figure 5: Evaluation of the biological activity of candidate antibodies \textit{in vivo}. The last time point data of tumor size, mouse weight and stripped tumor weight were calculated by one-way ANOVA with Tukey test. 3F1 monotherapy, 3F1 monotherapy and 3F1 and ERBITUX combined therapy compared with PBS control group respectively. (A) The growth curve of tumor size with different drug groups over time: compared with the PBS control group, 3F1 monotherapy (10 mg/kg) and ERBITUX monotherapy (10 mg/kg) had a definite anti-tumor effect (P>0.05). The combined treatment group of 3F1 (5 mg/kg) and ERBITUX (5 mg/kg) combined therapy showed an obvious anti-tumor effect (P<0.05) (n=6). (B) The percentage increase/decrease in body weight of mice over time. Apart from the combined treatment group which showed a slight increase in mice weight, all other groups showed a significant reduction in mice weight (P>0.05). (C) The tumor peeled off at the end of the experiment and the 3F1 and ERBITUX combined therapy group had a significantly lower tumor weight. (D) Photograph of detached tumor in each group. The last time point data of tumor size, mouse weight and stripped tumor weight were calculated by one-way ANOVA with Tukey test. (*P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001). P<0.05 was considered statistically significant.

Table 1: Phage selection for Siglec-15 and related input, output, and input-output ratios

<table>
<thead>
<tr>
<th>Screening round</th>
<th>Input</th>
<th>Output</th>
<th>Input/Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st round</td>
<td>5.00E+12</td>
<td>9.00E+04</td>
<td>5.56E+07</td>
</tr>
<tr>
<td>2nd round</td>
<td>2.00E+12</td>
<td>7.22E+04</td>
<td>2.77E+07</td>
</tr>
<tr>
<td>3rd round</td>
<td>1.00E+12</td>
<td>6.02E+06</td>
<td>1.66E+05</td>
</tr>
</tbody>
</table>

Table 2: Determination of affinity between antibody and Siglec-15 by BLI

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>KD (M)</th>
<th>Kon (1/Ms)</th>
<th>Kdis (1/s)</th>
<th>Full R^2</th>
</tr>
</thead>
</table>

This article has not been copyedited and formatted. The final version may differ from this version.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1B4</td>
<td>9.17E-09</td>
<td>3.52E+04</td>
<td>3.23E-04</td>
<td>0.999582</td>
</tr>
<tr>
<td>2A12</td>
<td>5.23E-09</td>
<td>1.09E+05</td>
<td>5.70E-04</td>
<td>0.997448</td>
</tr>
<tr>
<td>3F1</td>
<td>1.08E-08</td>
<td>1.12E+05</td>
<td>1.21E-03</td>
<td>0.960395</td>
</tr>
</tbody>
</table>
Figure 1

A

Input/Output ratio

6×10^7
5×10^7
4×10^7
3×10^7
2×10^7
1×10^7
0

Panning rounds

B

OD_{450} (nm)

3
2
1
0

• Siglec-15-D1-Fc
• Siglec-15-Fc

1A11 1B4 1C1 1D1 1D4 1D8 1E7 1F2 1F10 2A12 2C9 2C9 1B4 3A3 3C8 3D12 3F1 3F3 4C1 4E4 4H3 4G5
Figure 3

A. Inhibition rate (%)

- CD44

B. Inhibition rate (%)

- MAG

C. Gate (%)

- S-Tn

D. Gate (%)

- LRRC4C
Figure 4

A

- 1B4
- 2A12
- 3F1
- MIL50

B

- PBMC
- CD4+T
- CD8+T

C

- IFN-γ (pg/mL)

Con.c of Sample (μg/mL)

Luminescence

OD450nm

MFI of total PBMC

MFI of CD4+T cells

MFI of CD8+T cells

Con.c of Sample (μg/mL)

MFI of total PBMC

MFI of CD4+T cells

MFI of CD8+T cells

Con.c of Sample (μg/mL)

MFI of total PBMC

MFI of CD4+T cells

MFI of CD8+T cells

Con.c of Sample (μg/mL)
Figure 5

A

Tumor volume (mm3) vs. Days post administration

- PBS
- 3F1 (10mg/kg, 2qw, i.p.)
- ERBITUX (10mg/kg, 2qw, i.p.)
- 3F1 (5mg/kg) + ERBITUX (5mg/kg) (2qw, i.p.)

%TGI
- 13.9%
- 31.5%
- 48.7%

B

Mouse weight (g) vs. Days post administration

- PBS
- 3F1
- ERBITUX
- 3F1 + ERBITUX

C

Tumor weight (g) vs. PBS, 3F1, ERBITUX

- 3F1 (10mg/kg)
- 3F1 (5mg/kg) + ERBITUX (5mg/kg)

D

Comparison of tumor sizes for PBS, 3F1 (10mg/kg), ERBITUX (10mg/kg), 3F1 (5mg/kg), and ERBITUX (5mg/kg).