Supplementary Data: ## Senolytic-mediated elimination of head and neck tumor cells induced into senescence by cisplatin Fereshteh Ahmadinejad^{1*}, Tasia Bos^{2*}, Bin Hu³, Erin Britt², Jennifer Koblinski³, Andrew J. Souers⁴, Joel D. Leverson⁴, Anthony C. Faber², David A. Gewirtz^{5#}, Hisashi Harada^{2#} - 1: Department of Human and Molecular Genetics, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia - 2: Philips Institute for Oral Health Research, School of Dentistry, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia - 3: Cancer Mouse Models Core, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia - 4: AbbVie, North Chicago, Illinois - 5: Department of Pharmacology and Toxicology, School of Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia **Figure S1. Immunofluorescence imaging of C**₁₂**FDG** in **A)** HN30 and **B)** HN12 cells after senescence induction by 5 μM cisplatin. Blue fluorescence indicates nuclear staining with DAPI, and green fluorescence reflects C12FDG immunostaining. Figure S2. ABT-263 has minimal cytotoxicity on non-senescent cells or proliferative recovering cells from senescence. A, B, and C) Clonogenic survival assay performed on control cells treated with different concentrations of ABT-263 for 24 hours. The number of colonies were counted and analyzed. D) X-gal staining after sequential treatment of HN30 cells with cisplatin and ABT-263; decreased population of SA- β -gal positive cells show that ABT-263 treatment eliminates senescent cells. E) ABT-263 effectiveness diminishes over time when HN30 cells recover their proliferative capacity. Blue arrows indicate the cisplatin treatment timepoint. Red arrows are ABT-263 treatment timepoints. Note that HN30 cells undergo cell death only when they are in senescence state (top), but not in recovery stage (bottom). All quantitative graphs are mean \pm SD from at least three independent experiments. ## Figure S3 **Figure S3. BCL-X**_L is the primary target for ABT-263-induced senolysis. Clonogenic survival assay performed on **A)** HN30 and **B)** HN12 cells treated with vehicle or cisplatin followed by ABT-263, ABT-199, and A-1155463 (1uM for 24 hours). **Figure S4.** Cisplatin, ABT-263 treatment alone or in combination did not result in significant Neutropenia. Blood samples were analyzed for neutrophil percentage at different time points in different groups of **A**) control, **B**) Cisplatin alone, **C**) ABT-263, **D** and **E**) cisplatin in combination with ABT-263. Control vs ABT, cisplatin, Combination A or B: p > 0.05 All quantitative graphs are mean \pm SD from at least three independent experiments. * $p \le 0.05$, ** $p \le 0.01$, *** $p \le 0.001$, **** $p \le 0.0001$ 0001 indicate statistical significance of each condition compared to indicated condition as determined using two - way ANOVA with Sidak's post hoc test. Figure S5 Figure S5. Cisplatin, ABT-263 treatment alone or in combination did not result in significant levels of DNA double strand breaks measured by γ -H2AX levels. p > 0.05 All quantitative graphs are mean \pm SD from at least three independent experiments. * $p \le 0.05$, *** $p \le 0.01$, **** $p \le 0.001$, **** $p \le 0.001$ indicate statistical significance of each condition compared to indicated condition as determined using two - way ANOVA with Sidak's post hoc test. Figure S6. Animal experiments diagram.