RT Journal Article SR Electronic T1 Breast Cancer Resistance Protein (BCRP/ABCG2) Induces Cellular Resistance to HIV-1 Nucleoside Reverse Transcriptase Inhibitors JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 65 OP 72 DO 10.1124/mol.63.1.65 VO 63 IS 1 A1 Wang, Xin A1 Furukawa, Tatsuhiko A1 Nitanda, Takao A1 Okamoto, Mika A1 Sugimoto, Yoshikazu A1 Akiyama, Shin-Ichi A1 Baba, Masanori YR 2003 UL http://molpharm.aspetjournals.org/content/63/1/65.abstract AB Breast cancer resistance protein (BCRP/ABCG2) is a novel member of ATP- binding cassette transporters, which induce multidrug resistance in cancer cells. We found that a high level of BCRP expression in CD4+ T cells conferred cellular resistance to human immunodeficiency virus type-1 (HIV-1) nucleoside reverse transcriptase inhibitors. The cell line MT-4/DOX500 was established through the long-term culture of MT-4 cells in the presence of doxorubicin (DOX) and had reduced sensitivity to not only DOX but also zidovudine (AZT). MT-4/DOX500 cells showed reduced intracellular accumulation and retention of DOX and increased ATP-dependent rhodamine 123 efflux. The cells were also resistant to several anticancer agents such as mitoxantrone, 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin, and 7-ethyl-10-hydroxycamptothecin. AZT was 7.5-fold less inhibitory to HIV-1 replication in MT-4/DOX500 cells than in MT-4 cells. Furthermore, the anti–HIV-1 activity of lamivudine was severely impaired in MT-4/DOX500 cells. In contrast, the antiviral activity of non-nucleoside reverse transcriptase inhibitors and protease inhibitors was not affected in the cells. MT-4/DOX500 cells expressed glycosylated BCRP but not P-glycoprotein (ABCB1), multidrug resistance protein 1, 2, or 4 (ABCC1, -2, or -4), or lung resistance-related protein. In addition, the BCRP-specific inhibitor fumitremorgin C completely abolished the resistance of MT-4/DOX500 cells to AZT as well as to DOX. An analysis for intracellular metabolism of AZT suggests that the resistance is attributed to the increase of ATP-dependent efflux of its metabolites, presumably AZT 5′-monophosphate, in MT-4/DOX500 cells.