RT Journal Article SR Electronic T1 Metabolites and DNA adduct formation from flavoenzyme-activated porfiromycin. JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 223 OP 228 VO 34 IS 2 A1 S S Pan A1 T Iracki YR 1988 UL http://molpharm.aspetjournals.org/content/34/2/223.abstract AB Porfiromycin was reductively metabolized by NADPH cytochrome P-450 reductase and xanthine oxidase under anaerobic conditions. The production of metabolites varied with the pH and the contents of the reaction buffer. In Tris buffer, two major metabolites were produced at pH 7.5 and above, whereas one major metabolite was produced at pH 6.5. The three major metabolites were separated and isolated by HPLC. Identification by californium-252 plasma desorption mass spectrometry showed that the two major metabolites from pH 7.5 were (trans) and (cis)-forms of 7-amino-1-hydroxyl-2-methylaminomitosene and the major metabolite from pH 6.5 was 7-amino-2-methylaminomitosene. All three major metabolites showed substitutions at the C-1 position. DNA was alkylated readily by enzyme-activated porfiromycin. Digestion of porfiromycin-alkylated DNA by DNase, snake venom phosphodiesterase, and alkaline phosphatase resulted in an insoluble nuclease-resistant fraction and a soluble fraction. The nuclease-resistant fraction reflected a high content of cross-linked adducts. Upon HPLC analysis, the solubilized fraction contained two monofunctionally linked porfiromycin adducts and a possibly cross-linked dinucleotide. The major adduct was isolated by HPLC and identified by NMR, as N2-(2'-deoxyguanosyl)-7-amino-2-methylaminomitosene. The N2 position of deoxyguanosine appeared as the major monofunctional alkylating site for DNA alkylation by porfiromycin. Thus, mitomycin C and porfiromycin (which differs from mitomycin C only by the addition of a methyl group to the aziridine nitrogen) share the same enzymatic activating mechanism that leads to the formation of the same types of metabolites and the same specificity of DNA alkylation.