RT Journal Article SR Electronic T1 Binding of selective antagonists to four muscarinic receptors (M1 to M4) in rat forebrain. JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 267 OP 273 VO 38 IS 2 A1 M Waelbroeck A1 M Tastenoy A1 J Camus A1 J Christophe YR 1990 UL http://molpharm.aspetjournals.org/content/38/2/267.abstract AB To compare the proportions of four muscarinic receptors in different rat brain regions, we used competition curves with four selective antagonists, at 1-[N-methyl-3H]scopolamine methyl chloride [( 3H]NMS) binding equilibrium and after allowing [3H]NMS dissociation for 35 min. Himbacine and methoctramine were shown to discriminate two muscarinic receptor subtypes having a high affinity for 4-diphenylacetoxy-N-methylpiperidine methiodide and hexahydrosiladifenidol, intermediate affinity for pirenzepine, and low affinity for AF-DX 116. One M4 subtype had a high affinity for himbacine and methoctramine; it was found predominantly in homogenates from rat striatum (46% of total [3H]NMS receptors) and in lower proportion in cortex (33% of [3H]NMS receptors) and hippocampus (16% of [3H]NMS receptors). Its binding properties were identical to those of muscarinic receptors in the neuroblastoma x glioma NG 108-15 hybrid, suggesting that it was encoded by m4 mRNA. The M3 subtype (typically found in rat pancreas, a tissue expressing the m3 mRNA) had a low affinity for himbacine and methoctramine and represented about 10% of all [3H]NMS receptors in rat brain cortex, hippocampus, striatum, and cerebellum. M1 and M2 receptors were identified in rat brain by their high affinity for pirenzepine and AF-DX 116, respectively.