RT Journal Article SR Electronic T1 Evidence of paired M2 muscarinic receptors. JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 211 OP 221 VO 39 IS 2 A1 L T Potter A1 L A Ballesteros A1 L H Bichajian A1 C A Ferrendelli A1 A Fisher A1 H E Hanchett A1 R Zhang YR 1991 UL http://molpharm.aspetjournals.org/content/39/2/211.abstract AB Binding assays involving various antagonists, including N-[3H] methylscopolamine, [3H]quinuclidinyl benzilate, AFDX-116, pirenzepine, and propylbenzilylcholine mustard, disclosed only a single population of M2 muscarinic receptors in membranes from the rat "brainstem" (medulla, pons, and colliculi). However, competition curves between N-[3H]methylscopolamine and various agonists, including oxotremorine, cis-dioxolane, and acetylethylcholine mustard, showed approximately equal numbers of guanine nucleotide-sensitive high affinity (H) sites and guanine nucleotide-insensitive low affinity (L) sites. This 50% H phenomenon persisted in different buffers, at different temperatures, after the number of receptors was halved (and, thus, the remaining receptor to guanine nucleotide-binding protein ratio was doubled), after membrane solubilization with digitonin, and when rabbit cardiac membranes were used instead of rat brainstem membranes. Preferential occupation of H sites with acetylethylcholine mustard, and of L sites with quinuclidinyl benzilate or either mustard, yielded residual free receptor populations showing predominantly L and H sites, respectively. Low concentrations of [3H]-oxotremorine-M labeled only H sites, and the Bmax for these sites was 49% of the Bmax found with [3H]quinuclidinyl benzilate plus guanine nucleotide. These and other results are most consistent with the idea that H and L receptor sites exist on separate but dimeric receptor molecules and with the hypothesis that only the H receptors cycle between high and low affinity, depending upon interactions between this receptor molecule and a guanine nucleotide-binding protein.