PT - JOURNAL ARTICLE AU - L D Khac AU - A Mokhtari AU - M Renner AU - S Harbon TI - Activation of beta-adrenergic receptors inhibits Ca2+ entry-mediated generation of inositol phosphates in the guinea pig myometrium, a cyclic AMP-independent event. DP - 1992 Mar 01 TA - Molecular Pharmacology PG - 509--519 VI - 41 IP - 3 4099 - http://molpharm.aspetjournals.org/content/41/3/509.short 4100 - http://molpharm.aspetjournals.org/content/41/3/509.full SO - Mol Pharmacol1992 Mar 01; 41 AB - In the guinea pig myometrium, carbachol, oxytocin, and fluoroaluminates stimulated the breakdown of phosphatidylinositol 4,5-bisphosphate, which was insensitive to pertussis toxin [Biochem. J. 255:705-713 (1988)]. We now demonstrate that an increased accumulation of inositol phosphates, with an early production of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], could also be obtained with K+ (30 mM) and the Ca2+ ionophore ionomycin. Removal of extracellular Ca2+ or addition of the Ca2+ channel antagonists nifedipine and verapamil almost totally abolished stimulations elicited by high K+ and partially attenuated receptor- and fluoroaluminate-mediated increases in inositol phosphates. Isoproterenol similarly attenuated the accumulation of inositol phosphates elicited by carbachol, oxytocin, and fluoroaluminates (maximal inhibition, 35%; EC50, 0.5 nM), with no change in the rate of Ins(1,4,5)P3, inositol bisphosphate, and inositol monophosphate generation. The beta-adrenergic receptor-induced inhibition was prevented by pertussis toxin and could not be reproduced by forskolin, indicating that cAMP was not involved. Experimental findings were, rather, consistent with a predominant role for Ca2+. Thus, inhibition due to isoproterenol was lost in a Ca(2+)-depleted medium and was not additive with that caused by nifedipine. Accumulation of inositol phosphates triggered by high K+ was insensitive to the beta-adrenergic receptor inhibition. The inhibitory effect of isoproterenol, similar to that of nifedipine, was counteracted by ionomycin and also by the Ca2+ channel agonist Bay K 8644. These data indicate that in the myometrium 1) phospholipase C can be activated through a voltage-gated Ca2+ entry-dependent process that contributes at least partially to the stimulations triggered by receptor- and/or guanine nucleotide-binding protein-mediated activation and 2) beta-adrenergic receptor activation is linked via a cAMP-independent, pertussis toxin-sensitive pathway to an inhibition of voltage-gated Ca2+ channels, resulting in an attenuation of the Ca(2+)-associated generation of inositol phosphates.