RT Journal Article SR Electronic T1 Characterization of the neuropeptide Y-induced intracellular calcium release in human erythroleukemic cells. JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 767 OP 771 VO 41 IS 4 A1 A J Daniels A1 J E Matthews A1 O Humberto Viveros A1 E R Lazarowski YR 1992 UL http://molpharm.aspetjournals.org/content/41/4/767.abstract AB Human erythroleukemic (HEL) cells, loaded with fura-2, respond to neuropeptide Y (NPY) with a fast and transient increase in intracellular calcium. The Y1 receptor-specific agonist (Leu-31,Pro-34)-NPY is 4-fold more potent and the carboxyl-terminal fragment NPY13-36 is 150-fold less potent than NPY. Thus, it is concluded that the response is mediated through the activation of a Y1 type of NPY receptor. HEL cells do not respond to a second addition of NPY but do respond to a further addition of alpha-thrombin (alpha-T). However, in a calcium-free medium, prior stimulation with NPY largely inhibits a subsequent response to alpha-T. Moreover, prior stimulation with alpha-T in the absence of external calcium completely prevents the response to the addition of NPY, indicating a common effector pathway. The latter is further reinforced by using thapsigargin (TG), which has been shown to deplete the Inositol 1,4,5-trisphosphate-dependent calcium pool in other systems. HEL cells preincubated with TG in calcium-free medium fail to respond to either NPY or alpha-T. Likewise, prior stimulation with NPY or alpha-T in calcium-free medium significantly inhibits the response to TG. Preincubation of cells with phorbol esters strongly inhibits the NPY-induced release of intracellular Ca2+ in HEL cells, an effect that is partially prevented by preincubation of the cells with H7, a protein kinase C inhibitor. However, neither the homologous nor the apparent heterologous desensitization of the NPY receptor can be prevented by H7. It is concluded that NPY releases intracellular Ca2+ from an inositol 1,4,5-trisphosphate-sensitive calcium pool, which is restored by external calcium, and that NPY receptor desensitization is protein kinase C independent.