RT Journal Article SR Electronic T1 Intracellular sodium concentration in cultured cerebellar granule cells challenged with glutamate. JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 1050 OP 1054 VO 45 IS 5 A1 Kiedrowski, L A1 Wroblewski, J T A1 Costa, E YR 1994 UL http://molpharm.aspetjournals.org/content/45/5/1050.abstract AB We monitored simultaneously the changes in the intracellular sodium concentration ([Na+]i) and intracellular calcium concentration ([Ca2+]i) in individual neurons from primary cultures of cerebellar granule cells loaded with sodium-binding benzofuran isophthalate and fluo-3. An application of glutamate (50 microM) in Mg(2+)-free medium containing 10 microM glycine evoked [Na+]i and [Ca2+]i increases that exceeded 60 mM and 1 microM, respectively. The kinetics of [Na+]i and [Ca2+]i decreases after the termination of the glutamate pulse were different. [Na+]i failed to decrease immediately after glutamate withdrawal and the delay in the onset of [Na+]i decrease after the glutamate pulse termination was proportional to the glutamate dose, the glutamate pulse duration, and the extent of [Ca2+]i elevation elicited by glutamate. The kinetics of [Ca2+]i decrease were biphasic, with the first phase occurring immediately after glutamate withdrawal and the second phase being correlated in time with a [Na+]i value lower than 15-20 mM. These results were interpreted to indicate that the glutamate-evoked calcium influx may lead to sodium homeostasis destabilization. The delay in the restoration of the sodium gradient may in turn prolong the neuronal exposure to toxic [Ca2+]i values, due to the decrease in the efficiency of the Na+/Ca2+ exchanger to extrude calcium. The glutamate effects on [Na+]i and [Ca2+]i were potentiated by glycine. Glycine (10 microM) added alone also evoked [Na+]i and [Ca2+]i increases; this effect was inhibited by a competitive inhibitor of the N-methyl-D-aspartate receptor, 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, indicating an involvement of endogenous glutamate.