RT Journal Article SR Electronic T1 N-Glycosylation Is Not a Prerequisite for Glutamate Receptor Function but Is Essential for Lectin Modulation JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 861 OP 873 DO 10.1124/mol.52.5.861 VO 52 IS 5 A1 Inga Everts A1 Carmen Villmann A1 Michael Hollmann YR 1997 UL http://molpharm.aspetjournals.org/content/52/5/861.abstract AB All ionotropic glutamate receptor (iGluR) subunits analyzed so far are heavily N-glycosylated at multiple sites on their amino-terminal extracellular domains. Although the exact functional significance of this glycosylation remains to be determined, it has been suggested that N-glycosylation may be a precondition for the formation of functional ion channels. In particular, it has been argued that N-glycosylation is required for the formation of functional ligand binding sites. We analyzed heterologously expressed recombinant glutamate receptors (GluRs) of all three pharmacological subclasses of glutamate receptors,N-methyl-d-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and kainate receptors. By expressing the GluR subunits in tunicamycin-treated, nonglycosylating Xenopus laevis oocytes, we determined that in neither case is N-glycosylation required for ion channel function, although for NMDA receptors, functional expression in the absence of N-glycosylation is very low. Furthermore, we analyzed and compared the interaction of the desensitization-inhibiting lectin concanavalin A (ConA) with all functional GluR subunits. We show that although ConA has its most pronounced effects on kainate receptors, it potentiates currents at most other receptor subtypes as well, including certain NMDA receptor subunits, although to a much lesser extent. One notable exception is the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor GluR2, which is not affected by ConA. Furthermore, we show that ConA acts directly via binding to the carbohydrate side chains of the receptor protein.