RT Journal Article SR Electronic T1 Suppression of Flavin-Containing Monooxygenase by Overproduced Nitric Oxide in Rat Liver JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 507 OP 514 DO 10.1124/mol.56.3.507 VO 56 IS 3 A1 Chang-Shin Park A1 Hyun-Moon Baek A1 Woon-Gye Chung A1 Kyung-Hoon Lee A1 Seung-Duk Ryu A1 Young-Nam Cha YR 1999 UL http://molpharm.aspetjournals.org/content/56/3/507.abstract AB Effects of excessive nitric oxide (NO) produced in vivo by an i.p. injection of bacterial lipopolysaccharide (LPS) on hepatic microsomal drug oxidation catalyzed by flavin-containing monooxygenase (FMO) were determined. At 6 and 24 h after the LPS injection, liver microsomes were isolated and FMO activities were determined by using FMO substrates like thiobenzamide, trimethylamine,N,N-dimethylaniline, and imipramine. Liver microsomal FMO activities of LPS-treated rats were decreased significantly for all these substrates. Microsomal content of FMO1 (the major form in rat liver) in LPS-treated rats as determined by immunoblotting, was severely decreased as well. In support of this, hepatic content of FMO1 mRNA was decreased by 43.6 to 67.3%. However, the hepatic content of inducible NO synthase (iNOS) mRNA was increased by 2.6- to 5.4-fold and the plasma nitrite/nitrate concentration was increased by about 30-fold in the LPS-treated rats. When this overproduction of NO in the LPS-treated rats was inhibited in vivo by a single or repeat doses of either a general NOS inhibitorN G-nitro-l-arginine or a specific iNOS inhibitor aminoguanidine, the FMO1 mRNA levels were not severely depressed (70−85% of the control level). Attendant with the reduction of plasma nitrite/nitrate concentration by single and repeated doses of NOS inhibitors, activity and content of FMO1 in liver microsomes isolated from these NOS inhibitor cotreated rats were restored partially (in single-dose inhibitors) or completely (in repeat doses). In contrast to these NO-mediated in vivo suppressive effects on the mRNA and enzyme contents of FMO1 as well as the FMO activity, the NO generated in vitro from sodium nitroprusside did not inhibit the FMO activities present in microsomes of rat and rabbit liver as well as those present in rabbit kidney and lung. Combined, the excessive NO produced in vivo (caused by the LPS-dependent induction of iNOS) suppresses the FMO1 mRNA and enzyme contents as well as the FMO activities without any direct in vitro effect on the activities of premade FMO enzyme. These findings suggest that NO is an important mediator involved in the suppression of FMO1 activity in vivo. Thus, together with the previously reported suppression on the cytochrome P-450 activities, the overproduced NO in the liver caused by induction of iNOS under conditions of endotoxemia or sepsis suppresses FMO and appears to be responsible for the decreased drug oxidation function observed generally under conditions of systemic bacterial or viral infections.