TY - JOUR T1 - Adenosine-A2a Receptor Down-Regulates Cerebral Smooth Muscle L-Type Ca<sup>2</sup><sup>+</sup> Channel Activity via Protein Tyrosine Phosphatase, Not cAMP-Dependent Protein Kinase JF - Molecular Pharmacology JO - Mol Pharmacol SP - 640 LP - 649 DO - 10.1124/mol.64.3.640 VL - 64 IS - 3 AU - Katrina Murphy AU - Volodymyr Gerzanich AU - Hui Zhou AU - Svetlana Ivanova AU - Yafeng Dong AU - Gloria Hoffman AU - G. Alexander West AU - H. Richard Winn AU - J. Marc Simard Y1 - 2003/09/01 UR - http://molpharm.aspetjournals.org/content/64/3/640.abstract N2 - Adenosine acting via A2a receptors (A2aR) is a potent cerebral vasodilator that relaxes vascular smooth muscle cells (VSMCs) by a mechanism attributed to activation of cAMP-dependent protein kinase (cAK). We examined effects of adenosine and its mechanism of action on L-type Ca2+ channels in native VSMCs from rat basilar artery. Reverse transcription-polymerase chain reaction and immunofluorescence imaging confirmed transcription and expression of A2aR, and in situ hybridization confirmed presence of mRNA for L-type Cav1.2b channels. In patch-clamp experiments, adenosine down-regulated Ca2+ channel currents in a concentration-dependent manner, with receptor-subtype-specific antagonists [4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM-241385) versus 1,3-dipropyl-8-cyclopentyl-1,3-dipropylxanthine] showing that this was caused by action of A2aR. Down-regulation of channel currents was mimicked by stimulation of cGMP-dependent protein kinase (cGK; 8-Br-cGMP) and by inhibition of tyrosine kinase (AG-18) but not by stimulation of cAK [forskolin and 8-bromo-cAMP (8-Br-AMP)]. Down-regulation of currents by the A2aR agonist 2-[p-(2-carboxyeth yl)phenylethylamino]-5′-N-ethyolcarboxamidoadenosine (CGS-21680) was blocked by inhibiting protein tyrosine phosphatase (PTP; orthovanodate and dephostatin), but not by inhibiting cGK (KT-5823 and H-7). Western blots of lysate or of immunoisolated Ca2+ channels from arterial segments incubated with CGS-21680 showed 1) increased phosphorylation of vasodilator-stimulated phosphoprotein that was blocked by inhibiting cAK (KT-5720), consistent with activation of cAK by A2aR; and 2) decreased tyrosine phosphorylation of immunoisolated α1c subunit of the Ca2+ channel. Our data show that cAK, although activated, was not germane to down-regulation of Ca2+ channel activity by A2aR, and they delineate a novel signaling mechanism involving reduced tyrosine phosphorylation of Ca2+ channels by A2aR probably caused by PTP activation. ER -