TY - JOUR T1 - Examination of the Mechanism(s) Involved in Doxorubicin-Mediated Iron Accumulation in Ferritin: Studies Using Metabolic Inhibitors, Protein Synthesis Inhibitors, and Lysosomotropic Agents JF - Molecular Pharmacology JO - Mol Pharmacol SP - 181 LP - 195 DO - 10.1124/mol.65.1.181 VL - 65 IS - 1 AU - J. C. Kwok AU - D. R. Richardson Y1 - 2004/01/01 UR - http://molpharm.aspetjournals.org/content/65/1/181.abstract N2 - Anthracyclines are potent anticancer agents, but their use is limited by cardiotoxicity at high cumulative doses. The mechanisms involved in anthracycline-mediated cardiotoxicity are still poorly understood, but numerous investigations have indicated a role for iron in this process. Our previous studies using neoplastic and myocardial cells showed that anthracyclines inhibit iron mobilization from the iron storage protein, ferritin, resulting in marked accumulation of ferritin-iron. Although the process of ferritin-iron mobilization is little understood, catabolism of ferritin by lysosomes may be a likely mechanism. Because anthracyclines have been shown to accumulate in lysosomes, this latter organelle may be a potential target for these drugs. The present study demonstrated, using native polyacrylamide gel electrophoresis-59Fe autoradiography, that ferritin-59Fe mobilization is an energy-dependent process that also requires protein synthesis. Depression of lysosomal activity via the enzyme inhibitors E64d [(2S,3S)-trans-epoxysuccinyl-l-leucylamido-2-methylbutane ethyl ester] and leupeptin or the lysosomotropic agents ammonium chloride, chloroquine, and methylamine resulted in a 3- to 5-fold increase in 59Feferritin accumulation compared with control cells. In addition, the proteasome inhibitors N-benzoyloxycarbonyl (Z)-Leu-Leuleucinal (MG132) and lactacystin also significantly increased 59Fe-ferritin levels compared with control cells. These effects of lysosomotropic agents or inhibitors of lysosomal activity were comparable with that observed with the anthracycline doxorubicin. Collectively, our study indicates a role for lysosomes and proteasomes in ferritin-iron mobilization, and this pathway is dependent on metabolic energy and protein synthesis. Furthermore, the lysosome/proteasome pathway may be a novel anthracycline target, inhibiting iron mobilization from ferritin that is essential for vital iron-requiring processes such as DNA synthesis. ER -