RT Journal Article SR Electronic T1 PDZK1 Directly Regulates the Function of Organic Cation/Carnitine Transporter OCTN2 JF Molecular Pharmacology JO Mol Pharmacol FD American Society for Pharmacology and Experimental Therapeutics SP 734 OP 743 DO 10.1124/mol.104.002212 VO 67 IS 3 A1 Yukio Kato A1 Yoshimichi Sai A1 Kazuhiro Yoshida A1 Chizuru Watanabe A1 Tadayoshi Hirata A1 Akira Tsuji YR 2005 UL http://molpharm.aspetjournals.org/content/67/3/734.abstract AB Urinary excretion of cationic xenobiotics is believed to be mediated by organic cation transporter (OCT and OCTN) families expressed on both basolateral and brush-border membranes of renal tubules, although the molecular mechanisms for targeting of these transporters to each membrane are poorly understood. Here, to examine the regulatory mechanisms for cell-surface expression and function of these transporters, we evaluated the interaction of these transporters with several PDZ proteins. A pull-down study using recombinant C-terminal proteins of OCTs and OCTNs identified a specific interaction of apical transporters OCTN1 and OCTN2, but not basolateral transporters OCT1 and OCT2, with PDZK1, intestinal and kidney-enriched PDZ protein, and Na+/H+ exchanger regulatory factor 2 (also called E3KARP, SIP-1, or TKA-1). Both yeast two-hybrid and pull-down studies suggested a requirement of the last four amino acids in OCTN1 and OCTN2 for the interaction. The interaction of PDZK1 with the C terminus of OCTN2 was also confirmed in a pull-down study using kidney brush-border membrane vesicles. Immunohistochemical analysis revealed that both PDZK1 and OCTN2 are colocalized in brush-border membranes of the kidney. Finally, double transfection of OCTN2 with PDZK1 stimulated the uptake by OCTN2 of its endogenous substrate carnitine, and this increase could be accounted for by the 6-fold increase in transport capacity. Such an increase was not observed for OCTN2 with deletion of the last four amino acids. Biotinylation study of surface proteins revealed minimal effect of PDZK1 on cell-surface expression of OCTN2. The present findings are the first to identify PDZK1 as a functional regulator of OCTN2 through direct interaction with the C terminus.